Chapter 5

Exact Solution of the Weak Shock

Wave in Non-ideal Gas

5.1 Introduction

The study of nonlinear hyperbolic system of partial differential equations governing
the propagation of weak shock waves in real situations has always been an interest-
ing research field due to its important applications. The present study is important
to the defense industry and the medical field. The medical field is in need of more
accurate experimental results that agree with theoretical results prior to testing on
living tissues. Due to various important applications of weak shock waves in real
situations, a continuous improvement in the subject is desirable. In past decades,

many attempts have been made to study the propagation of weak and strong shock
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waves in different material media. In the present thesis we study the problem of
propagation of weak shock wave in non-ideal gas. Let us consider the equation
of state for non-ideal gas as p(1 — bp) = oRT, where p, ¢ stands for the pressure
and density of the gas, T is the absolute temperature, R is the universal gas con-
stant and b is the material dependent characteristic parameters known as van der
Waals excluded volume of the gas. It is noticed that non-ideal gas possesses more
general thermodynamic properties than ideal gas, so dealing the system of equa-
tions governing the propagation of weak waves supplemented with equation of state
p(1 —bo) = pRT, is more complex and applicable than the ordinary gasdynamics
case. Shock waves are generated by point explosions (nuclear explosions and deto-
nation of solid explosives, solid and liquid propellants rocket motors), high pressure
gas containers (chemical explosions) and laser beam focusing. Shock wave problems

also arise in astrophysics, hypersonic aerodynamics and hypervelocity impact.

Courant and Friedrichs (1999) have analysed the Euler’s equations of gas dynamics
and discussed the conditions for discontinuities in the solution. Whitham (1974)
have presented the general method for the analysis of weak and strong shock waves
propagating in an ideal gas. Sharma and Shyam (1981) have derived the transport
equation for the weak shock wave in a radiating gas. Anile (1984) proposed the
generalized wave front expansion method for the solution of the problem of weak
shock waves and the results obtained were in close agreement to many experimental
results. Murata (2006) has presented a closed form solution of the blast wave prob-
lem for ordinary gasdynamics case. Singh et al. (2011) gave the exact solution of
planar and non planar weak shock wave problem in gas dynamics with generalized
geometries. Bira and Sekhar (2013) obtained the exact solution of the problem of
weak shock wave in isentropic magnetogasdynamics using the method of Lie group

transformation. Chadha and Jena (2015) discussed the steepening of shock wave
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in dusty gas. Arora and Siddiqui (2013) investigated the behavior of weak shocks
in a non-ideal gas. Vishwakarma and Nath (2009) have used the similarity method
to discuss the propagation of shock wave in non-ideal dusty gas. Wu and Roberts
(1996) discussed the problem of structure and stability of a spherical shock wave
in van der Waals gas. Jena (2009) and Oliveri and Speciale (2002) obtained the
solution of weak shock wave in different material media by using the Lie group of
transformations. Arora et. al (2012) investigated the behaviour of strong shock
wave in non-ideal gas using similarity transformation technique. Siddiqui and Arora
(2015) used similarity transformation to obtain the exact solution of spherical shock
wave problem in relaxing gas. Recently Bira et al. (2018), Kuila and Sckhar (2017)
and Ambika and Radha (2016) have studied the propagation of shock wave and
elementary wave interaction in different material media. To find the closed form
solution for the problem associated with the propagation of weak shock wave in
non-ideal gas is a challenging problem for researchers and scientist today. In the
present paper, an attempt has been made to obtain the exact solution of the prob-
lem of propagation of weak shock wave and an analytical expression for the density,
velocity and pressure are obtained in terms of position and time. The energy carried

by the weak shock wave in a non-ideal gas is also derived.
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5.2 Basic Equations and Jump Conditions

The governing equations describing an unsteady inviscid adiabatic one dimensional

flow of a non-ideal gas with generalized geometries is given by Singh et al. (2011)

do do o0 j o\
Eﬂg%“)(%JrEﬁ)_o’ (5:2.1)
a0 90 1dp
o ﬁ% + 00r 0, (5:22)
dp  Op o (00 G\
E+ﬁ%+a9(a_x+iﬁ =0, (5:2:3)

where o, ¥ and p are density, flow velocity and pressure of the non-ideal gas re-
spectively and ¢, x stand for time and spatial coordinates respectively. The entity
a = (vp/ (0(1=1b)))"? is the speed of sound in non-ideal gas. j = 0 , 1 and 2
respectively correspond to the planar, cylindrically symmetric and spherically sym-
metric flows. The entity v = ¢,/c, is the ratio of specific heat at constant pressure

and specific heat of gas at constant volume.

Let R be the position of the shock front from the centre of disturbance at time ¢,

then the propagation velocity of shock front, s, is given by

_dR
Cdt

S

(5.2.4)

If oy denotes undisturbed gas density and g, ¥ and p denote the density, velocity
and pressure of non-ideal gas just behind the shock respectively. Then the following

Rankine-Hugoniot conditions across the shock front are satisfied

7+1 2bog  2(1—bgo) 1 17"
:7_1 1+’Y—1+ 'y—l W 0o, (525)
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where M = 2, called mach number.

In the present problem, the undisturbed density oq is taken to vary according to the

power law of the radius of the shock front R after the disturbance and is given as

00 = 0. R, (5.2.8)

where g, and k are constants. The constant x is to be determined later.

5.3 Exact Solution of the Weak Shock Wave Prob-

lem

The expression for the pressure behind the shock front satisfying the RH conditions

(5.2.5)-(5.2.7) is given as

(1—boo) [M? = (y = 1) /)] [M?(y = 1) /2+ boo (M* — 1) +1]

= . (931
Y M2 — bgoM? — (1 — bgo)]” o’ (5:31)
By equation (5.3.1), equations (5.2.2) and (5.2.3) may be written as
o0 oY V2 Do 00
— — 4+ K| ——+ 20— | = 3.2
8t+198:c 1<g8x+ 198:(:) 0 (5:3.2)
o9 09 [0V ] B
5 g+ K (% + 5&) 9 =0, (5.3.3)
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where K7 and K, are given as

(1 —=0go) [M? = (y—=1) / (29)] [M? (y = 1) /2 4 boo (M* — 1) + 1]
[M?2 — booM? — (1 — boy)]”

Ky = . (5.3.4)

(v =Dy =1 M + 2]+ boy [(3y = 1) M* = 2(y = 1)]

= (T ME £ 2 boo (7 — 1) M2 1 2)]

(5.3.5)

Combining (5.3.2) and (5.3.3) and after integration we have the resulting equation
as,

ft)=o0¥a™X, (5.3.6)

where f (t) is function of time only and ) and x are given as

By equation (5.3.4) and (5.2.1), we have

%%_(1_@@_”—“)6—1%_0. (5.3.9)

Solving equations (5.3.3) and (5.3.5), we have

L rd
TFar

(5.3.10)

where 7) is a constant given as

1
VK +x+1)j+ (1 +¢K,)

= (5.3.11)

Also

J@) = fot™™, (5.3.12)
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FIGURE 5.1: Behavior of radius of weak shock wave for j = 0.

where fj is arbitarary constant and 7 is given as

B "
T Dt Dnt (5.3.13)

Rankine-Hugoniot condition (5.2.6) yields the radius of the shock front given as

+1

1—-bp nr
e (5.3.14)

R=t

Rankine-Hugoniot condition (5.2.5) yields the following value of x which is given as

20+ 1) (L= boo) /M2 + by — 1) -~
s | 3

The effect of van der Waals parameter on the radius of weak shock wave is shown
in Fig.5.1, Fig.5.2 and Fig.5.3. The effect of van der Waals parameter of the gas on
the radius of the weak shock wave in planar, cylindrically symmetric and spherically

symmetric flows is shown in Fig.5.1, Fig.5.2 and Fig.5.3 respectively. The values of

the constants appearing in the computations are taken as: gy = 3.0 and v = 1.4

, M =1.02, 1.04, 1.06 and b = 0.0, 0.02, 0.04. Here, b = 0.0 corresponds to the

ordinary gas dynamics case. It is observed that an increase in the value of van der
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F1GURE 5.3: Behavior of radius of weak shock wave for j = 2.

Waals excluded volume and Mach number causes to increase the radius of the weak

shock wave.

The solution of weak shock wave problem in non-ideal gas is given by

B fot—7+wxjx—w
- P

9 =nr-
777ta

(5.3.16)

(5.3.17)
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FIGURE 5.4: Density profile of weak shock wave for j= 2.
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FIGURE 5.5: Velocity profile of weak shock wave for j= 2.
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Distribution of flow parameters density, velocity and pressure in non-ideal gas
are presented in the Fig.5.4, Fig.5.5 and Fig.5.6 respectively. It is observed that
the effect of increasing value of van der Walls parameter is to increase the density
and to decrease the velocity and pressure in the disturbed region which is in close

agreement with the results obtained by Arora et. al (2012).

After determining the physical variables density, velocity and pressure behind the
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FIGURE 5.6: Pressure profile of weak shock wave for j= 2.

shock front, we can also calculate the total energy carried by the weak shock wave

in a non-ideal gas at any time as Singh et. al (2011)

R

1 1-0b .

E= 477/ {—9192 + Mp} xdx. (5.3.19)

2 v—1
0

Putting the value of the density, velocity and pressure from equations (5.3.16),

(5.3.17) and (5.3.18) in (5.3.19), we have

(DGO =6 +3)n7+2(w—7—2) (1-beg—(1-beg) /M?)
B = gt 2(1—bog—(1—beg)/M?)

9
where

_ 0 =D+2(((v=1) = (v = 1) beo +2 (L —boo) /M?) / (v = 1))
2(5 (x+1) =¥ +3) (v = 1) + 2bgo + 2 (1 = boo) /M?) (7)"

The effect of Mach number on the energy carried by weak shock wave in non-ideal
gas for spherically symmetric, cylindrically symmetric and planar flows is shown in
Fig.5.7, Fig.5.8 and Fig.5.9 respectively. The values of the constants appearing in

the computations are taken as: oo = 1.0 and v = 1.4, M = 1.02, 1.04, 1.06, 1.08
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FIGURE 5.7: Behavior of Energy of weak shock Wave for j= 0.
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FIGURE 5.8: Behavior of Energy of weak shock Wave for j= 1.
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FIGURE 5.9: Behavior of Energy of weak shock Wave for j= 2.
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and b = 0.02. Here, it is observed that an increase in the value of Mach number
causes to increase the energy of the weak shock wave in spherically symmetric,
cylindrically symmetric and planar flows. The variation in energy carried by weak
shock wave in planar, cylindrically symmetric and spherically symmetric flows have
similar trend but energy carried by weak shock wave is more in planar case as
compared to cylindrically symmetric and spherically symmetric flows. The energy
carried out by weak shock wave in cylindrically symmetric flow is more than as

compared to spherically symmetric flow.

5.4 Conclusion

In the present chapter the exact analytical solution for the problem of weak shock
wave in a non-ideal gas has been derived. The solution of Euler’s equation in a non-
ideal gas obtained here is a new one. The behavior of variations of the radius and
energy of weak shock wave in a non-ideal gas are similar to that as in an ideal. Here,
it is observed that the solution of weak shock wave problem for adiabatic non-ideal
gas given by equation (5.3.16-5.3.18) reduces to the solution presented by Singh et
al. (2011) for b = 0.0.
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