Chapter 3

The Plane Piston Problem with
Weak Gravitational Field in a

Dusty Gas

3.1 Introduction

Dusty gas is the mixture of perfect gas and a large number of spherically small solid
particles. The solid particle motion in rocket exhaust and dust flow in geophysical
and astrophysical problems are the most important physical phenomena in which
considered volume is a mixture of gas and dust particles. Here, we consider that
solid particles are of uniform size and uniformly distributed in the gas and volume

of the small solid particles is considered to be very less in comparison to the volume
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of the mixture Chadha and Jena (2014, 2015). In case of the propagation of shock
wave the velocity of the mixture is very high so the dust particles present in the
mixture are assumed to be a pseudo fluid. The applied gravity is dominated in
stellar atmosphere that contains gas and a small amount of dust particles. The
unsteady motion in a dusty gas under the effect of weak gravitational field, which
is discussed in the present paper, have a great significance in the field of physical
sciences. The transient process in the solar atmosphere is an important dynamical
problem and is an unsteady process. The impulsive motion of the piston in backward
direction causes a rarefaction wave and forward motion generates a compressive wave
moving into the gas. When a shock wave induced by the motion of plane piston is
propagated in a dusty gas the physical parameters change across the shock, and
have a significant difference from those which arise when the shock wave induced by

piston passes through an ideal gas.

The propagation of shock wave induced by piston in compressible fluid is formulated
mathematically as a system of quasilinear hyperbolic system of partial differential
equations. The problem of shock wave in a gaseous medium has drawn attention to a
number of authors during the past decades. The most important break-through was
made by Friedrichs (1984), Whitham (1956), Sedov (1959), Chisnell (1955), Chisnell
et al. (1982) to study the shock wave for ideal isentropic gas dynamics. Pai (1977),
Miura and Glass (1983), Miura (1972), Carrier (1958), Pai et al. (1983), Pai et al.
(1980), Vishwakarma and Nath (2009), Jena and Sharma (1999), Vishwakarma et
al.(2017), Singh et al. (2012), Anand (2014a, 2014b) have studied the shock wave in
a dusty gas. Arora and Siddiqui (2013), Arora et al. (2012), Bira and Sekhar (2015)
examined the behaviour of shock wave in non-ideal gas. Bira and Sekhar (2013) have
studied the nature of shock wave in magnetogasdynamics. Sharma and Shyam (1981)

discussed the growth and decay of weak discontinuity in radiating gas dynamics.



Chapter 3. The Plane Piston Problem with Weak Gravitational Field in a Dusty
Gas 53

Singh and Jena (2016) evaluated the behaviour of weak shock wave in non-ideal
relaxing gas. The presence of gravity in the transient process of astrophysics play
very important role, so the consideration of gravity is important and relevant. Wen-
rui (1985), Singh et al. (2011), Nath and Sahu (2016) studied the shock wave
problem in the presence of gravitational field. In the present paper, the effect of
dust particles on weak and strong shock wave between the region from the piston
position to shock front is analysed by using perturbation method and similarity
transformation technique. The effect of dust particles on the wave front is also

discussed.

3.2 Basic Equations

The basic equations governing the motion of one dimensional planar flow of a tran-
sient gas with dust particles in a local region of stellar atmosphere may be written
in the following form Wen-rui (1985)

d0 00, 00

8t+ 3x+gax 0, (3.2.1)

o9 99 19p GM

5t T =0 (3.2.2)
dp op s 00
5% + 19% +a 05 = 0, (3.2.3)

where o, ¥ and p are density, velocity and pressure of the dusty gas in the local
region respectively and ¢ is the time and z is spatial coordinate. In the present
study the centre of the star is assumed as origin and x-axis is taken in the direction
of stellar radius. G and M stand for the universal gravitational constant and stellar

mass respectively. The equation of state for the dusty gas flow is given by Pai (1977)
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where i is gas constant. The entity a = (I'p/ (o (1 — Z)))"/? is the speed of sound
in the dusty gas, where Z = Vj,/V,, denotes the volume fraction of solid particles
with V;, and Vj are the volume of the dust particles and the gas respectively. The
specific heat of the dusty gas at constant pressure is given by ¢,q = kycsp+ (1 —kp)cp,
where ¢, and ¢y, stand for specific heat of gas and specific heat of solid particles
respectively and k, = mg,/m, is the mass fraction of solid particles with mg, and
mg are the masses of solid particles and gas respectively. If ¢,q denotes the specific
heat of the dusty gas at constant volume then the ratio of specific heats for the
dusty gas is given by Pai (1977) ' = Z;‘: = %» where 6 = k,/ (1 — k), B = csp/Cps
v = ¢,/c, With ¢, as specific heat of gas at constant volume. The relation between
the parameters Z and k, is k, = Zps,/0, where g, stands for the density of solid
particles in a dusty gas. Since mass fraction of solid particles must be constant in
the equilibrium flow therefore Z/p = constant (say ¢). The entities Z and k, are
also related by Z = k,/((1 — k,)Q2 + k;,), where Q = g, /0, with p, and g, are the

density of solid particles and gas respectively.

According to the theory of similarity and dimensional analysis Sedov (1959) the

dimension of velocity may be written as

|8

(3.2.4)



Chapter 3. The Plane Piston Problem with Weak Gravitational Field in a Dusty
Gas 55

Since in our model the gravitational field is also present which leads another quantity

for velocity dimension given as Wen-rui (1985)

M
9, = e (3.2.5)

Z

In the presence of weak gravitational field, the gravitational velocity (3.2.5) is lesser
than both the sound and plasma velocity. To discuss the basic flow properties, the

following non-dimensional parameters are introduced

~ 9 a ~
V=— a=—, t=— = — 3.2.6
/19*7 a a*7 t*7 m x*7 ( )

and
2

€= ﬁ—g <1, (3.2.7)

where ¥, represents the typical velocity and z,, t, stand for the space and time.
For isentropic flow, the equations (3.2.1 - 3.2.3) may be written in terms of non-

dimensional parameters defined by (3.2.6 - 3.2.7) and suppressing the tilde sign as

Oa , Oa (I —1+22) 09

oa 400 (L—1+27) 09 28
o Vart 22 “or Y (3:2:8)

o9 oV 2(1-2)  Oa 5
P9y 272 4 c 2.
ot * 03:+ (F—1+2Z)aax x? (32.9)

To construct the solution we introduce the following expansion of flow variables in

terms of small parameter ¢ as
a=0a"+ea® 2@ , (3.2.10)

0=09 + oM + 20 + ... , (3.2.11)

=90 £ e9® 429 1 (3.2.12)
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Using the expansion (3.2.10 - 3.2.12) of the flow variables in equations (3.2.8) and

(3.2.9) and collecting the terms of zero order, we have

9a(® 0a® (T —1+2Zy) (509
49O Y 4 = 2.1
o TV o T ez ¢ o Y (8:2.13)

= 0. 2.14
ot Ox (L' = 1+2%) Ox 0 (3 )

The equations (3.2.13) and (3.2.14) may be transformed in terms of similarity vari-

able ¢ in the following form

9a (T —1+2Z) (509

9O — =0 3.2.15
090 2(1 — Zy) d0a®
9O — 07 _q© = 0. 3.2.16
( §) o (T —1+22)" o€ (3:2.16)
The Riemann invariants for the above system are given as
2(1—2Z
9O + % = const. (3.2.17)

The solution of the problem is determined under consideration that the velocity of

the piston is constant and the flow variables ahead of the shock is uniform i.e.
9O = const., o = const. (3.2.18)

Collecting the terms of first—order from the expansion of equation (3.2.10 - 3.2.12),

we have
1 1 1
ot Ox 2(1—2y) Ox

0, (3.2.19)

9D WD 2(1— Zy) da 1
(0) 0,0 - 2.2
R A T 1r22)" o =l (3.2.20)

and similarly for all higher order terms. In this method, all relations of higher order,
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excluding the zeroth order relation, are linear. So, the effect of the gravity on the
transient process in astrophysics and space science for all higher order equations is
linear. By dimensional methods, the solution of the first order relations may be

taken as

I ()=t (€), a6 ) =tTg(€). (3.2.21)

Using equation (3.2.21) in equations (3.2.19) and (3.2.20), we have

If we consider the typical velocity ¥, as the plane piston velocity ¥, which is assumed

to be a constant, the initial velocity becomes
9O =1,
and the boundary condition at the plane piston will be
f(1)=0. (3.2.22)

Let & = %, then equations (3.2.19) - (3.2.20) may be written in terms of £ and say

it is equivalent to £, and £, as

£1(f,9)=(1-) a%ég) (FQ_(11_+Z2§O)G(O) 8225) B

g (&) =0, (3.2.23)

of (§) n 2(1—Zp) a(O)ag &
¢ (T —1+22) o€

£9(f,,9)=(1—¢) f&) =1/ (3.2.24)
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3.3 Jump Conditions for Weak Shocks

The Rankine-Hugoniot jump conditions for the dusty gas may be written as Anand

(2014a; 2014b)

-1

F—1+2ZO 2(1—Z0) <a0>2
= — 3.3.1
¢ T+1 T+l \s % (3:3.1)
2(1 -2 1
ﬂzu[f—a(ﬂ—, (3.3.2)
v+1 5
2(1 -2
p:po+u[s2—a3] 00, (3.3.3)

I'+1

where the subscript “0” denotes the quantity evaluated in undisturbed region and s
is the shock speed. Also p, 9, o are the pressure, velocity and density in the disturbed
region. Expanding the variables p and s in terms of ¢ similar to the equations (3.2.10

- 3.2.12), the zero order Rankine-Hugoniot jump relations may be expressed as

I—1+27y 2(1—2Zy) [ ag\2]""
o _ o
= |t 2 () | e (3:3.4)
21— Zo) [ (2 1
0 _ 20 =2 [02_ 2] L
90 = = [s ao} i (3.3.5)
2(1—Z 2
O — pﬁ% [50° — a2] on (3.3.6)

Also the first order Rankine-Hugoniot jump relations may be expressed as

A(1-20) { ag \2
(1) _ (F+10) (5(_8)) 00 s
o= r—1427, , 2(1—Z) 512 5(0)° (3.3.7)
[ S el (STQ))) }
2 (1 - Z ) 1 2 5(1)
1) 2" 20 = 1,0 2| 7
LS (NI 0 [S *‘LO} ROR (3.3.8)
4(1— Z
e s (3.3.9)

I'+1
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where the subscript “s” stands for the value evaluated at the shock £ = &;. With

the help of (3.2.10 - 3.2.12), the zeroth order speed of sound may be written as
1/2
a©@ = (Tp@/ (6@ (1—00@)))"". (3.3.10)

Also the first order sound speed may be written as

Do W

( (
om_* (P _ 0
at) = {p@ 5&)(0)}’ (3.3.11)

with 6 = (1 —260) / (1 — 60\”) . From equations (3.3.8) and (3.3.9), the speed of

sound at the shock is given by

a\t = ﬁ 4(1 — Zy) 908(0)2 B 40 (1 — Zy) ag

2 (F+1)p0+2(1 _ZO) (5(0)2 _a(Q)) 00 (F— 1"’220) 3(0)2+2(1 —Zo) (1(2)

(3(0)2 — a%) g
X > (3.3.12)

2 )"
(s«» +a3) v

From equations (3.3.10) and (3.3.12), we have a relation between f (&) and g (&) as

f(&) =ag (&), (3.3.13)

where the constant « is given by the following relation

1_ 249 (1 — Zo) 005" B (1—Zy)ad
a O L) e+ 200 (1 = Z0) (3(0)2 _ ag) (0 —1+270)59% +2(1— Zo)
02 _ 2
S Q,
X (w)Q—‘;) : (3.3.14)
sO% + a2

With the help of equations(3.2.22) and (3.3.12), perturbation state equations (3.2.23)

- (3.2.24) may be solved for the region 1 < £ < s(9/9,,.
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TABLE 3.1: Numerical value of o with varying k, at a / s = 0.50

p

v

Q

J

S
Up

a
Ip

a9

Up

«

0.0

0.5

1.66666

1000

0.00000

1.77778

1.2814

0.888889

2.0842

0.2

0.5

1.66666

1000

0.25000

1.70157

1.17808

0.850787

247471

0.4

0.5

1.66666

1000

0.66666

1.62013

1.06718

0.810063

3.10873

TABLE 3.2: Numerical value of o with varying k, at a / s = 0.75

8

v

Q

J

S

Up

i)
Up

a9
Ip

(@7

0.0

0.5

1.66666

1000

0.00000

3.04762

2.63114

2.28571

2.72098

0.2

0.5

1.66666

1000

0.25000

2.91698

247418

2.18774

3.27565

0.4

0.5

1.66666

1000

0.66666

2.77736

2.3064

2.08302

4.19054

TABLE 3.3:

Numerical value of o with varying 8 at a / s =0.50

v

Q

J

S
Uy

)
1971

a0
Yy

(0%

0.1

0.0

1.66666

1000

0.111111

1.77797

1.28172

0.888987

2.08294

0.1

0.5

1.66666

1000

0.111111

1.74031

1.23064

0.870153

2.25878

0.1

1.0

1.66666

1000

0.111111

1.70852

1.18745

0.854261

2.43343

TABLE 3.4:

Numerical value of a with varying 8 at a / s =0.75

p

v

Q

J

S

Ip

)
Jp

ag
Up

v

0.1

0.0

1.66666

1000

0.111111

3.04796

2.63158

2.28597

2.7194

0.1

0.5

1.66666

1000

0.111111

2.98338

2.55396

2.23754

2.96798

0.1

1.0

1.66666

1000

0.111111

2.9289

2.48846

2.19667

3.21638

TABLE 3.5:

Numerical value of o with varying ©Q at a /s = 0.50

8

v

Q

J

S
Iy

a0
Ip

4o
Up

(%

0.1

0.5

1.66666

10

0.111111

1.75945

1.26246

0.879724

2.12154

0.1

0.5

1.66666

100

0.111111

1.74205

1.23353

0.871023

2.24557

0.1

0.5

1.66666

1000

0.111111

1.74031

1.23064

0.870153

2.25878

TABLE 3.6:

Numerical value of o with varying Q at a / s = 0.75

p

v

Q

J

S

Op

i)
Jp

ao
Ip

«

0.1

0.5

1.66666

10

0.111111

3.30162

2.59621

2.26215

2.79453

0.1

0.5

1.66666

100

0.111111

2.98636

2.5578

2.23977

2.95133

0.1

0.5

1.66666

1000

0.111111

2.98338

2.55396

2.23754

2.96798
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The solution of the piston problem in the mixture of gas and dust particles may be

reduced in two elementary solutions as Wen-rui (1985)

1

°€1(f17791)207 £2(flwgl):_§_27

and

£1(f2,,92) =0,  £2(f2,,92) =0, fo(1)=0, go(1)=1.

Since the equations (3.2.23) and (3.2.24) and relation (3.3.13) are linear, so the

solution of plane piston problem in a dusty gas may be given as

F(&) = f1(&) + Afa(§), (&) = g1(&) + Aga(),

where A is arbitrary constant, which is determined with the help of equation (3.3.13)

as

4 hilE) —an()

0’92(53) - fQ(gb) .

In figures, continuous and broken lines denote the function f(£) and g(&) respectively.
Since the strength of the shock wave depends on I e, f(&s), therefore f(&) ~ 0
shows that the strength of shock wave in a dusty gas changes due to applied gravity.
An increasing nature of f(£) near the piston shows that the kinetic energy of the
dusty gas increases near the piston and decreasing nature of f(£) at the shock £ = &,
shows that the kinetic energy of the dusty gas decreases at the shock. The monotonic
decreasing nature of g(¢£) shows that the internal energy between piston and shock
wave of the dusty gas will exhaust to overcome the applied gravity. An increment in
any one parameter among k,, 5 and (2 causes to decrease the internal energy of the
dusty gas between piston and shock wave. From fig.3.1 and fig.3.2, it is clear that an

increase in the value of k, at constant {2 and 3 causes to increase the kinetic energy
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F1Gure 3.1: Profile of functions f and g for table-3.1.
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FIGURE 3.2: Profile of functions f and g for table table—3.2.
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FIGURE 3.3: Profile of functions f and g for table-3.3.
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FIGURE 3.4: Profile of functions f and g for table-3.4.
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of the dusty gas near the piston and to decrease at the shock wave. From fig.3.3
and fig.3.4, we infer that the increasing values of § at constant 2 and £, causes
to increase the kinetic energy of the dusty gas near the piston and decrease at the
shock wave. From fig.3.5 and fig.3.6, it may be noted that the increasing values of
2 at constant k, and 3 results in an increase in the kinetic energy of the dusty gas

near the piston and to decrease at the shock wave.

3.4 Strong Shock Wave Approximation

In case of strong shock wave, the flow region becomes narrow and § —1 < &, —1 < 1,

as a result equations (3.2.23) and (3.2.24) may be written as

—_— — = 4.1
S ar @ g =0, (341)
2(1-Z0) 1
_ — =——. 4.2
e O - 1O =5 (342)
From equations (3.4.1) and (3.4.2), we have
0> 10 1 1
or tor 1o, 1 (3.4.3)
082 £0¢ a0 g2 al0)’¢4
The general solution of equation (3.4.3) may be written as
f(ég)—Cé“‘”ﬂLCF“Jrw—2l (3.4.4)
= 2 N A.
Using above equation in equation (3.4.1), we have
T — 1427 L w1
g(6) = S 20 et e - (34.5)

2(1=2Z0)¢ (2 —4)€]’
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TABLE 3.7: Value of function f({s) for varying parameters of dust particles

K8 @ | fE&) |
0.0 | 0.5 | 1000 | -0.497847
0.2 ] 0.5 | 1000 | -0.623254
0.4 ] 0.5 | 1000 | -0.841998
0.1 0.0 1000 |-0.499713
0.1 0.5 1000 | -0.553561
0.1 ]1.0| 1000 | -0.606005
01105 10 -1.0468
0.1]10.5] 100 |-0.577153
0.1 ] 0.5 | 1000 | -0.553561

where w = 1/ a9 and ¢, ¢y are constants, which are determined with the help of

cquations (3.2.22) and (3.3.13) as

o w [w[EPBar (1-Z) 6] 60 - (T -1+ 2Z) o+ (1- Z)wé] &
L) | [HRRa-(1-Z0)&) &+ [P Ra+ (1 - Zo) &) 65
] (3.4.6)
o w (w[EEPRa - (1= Z) 6] € (M= 1+2Z0) at (1= Zo) w2
U | o (1- 208 &+ [T Bat (1- 206 6 -
(3.4.7)

Using above results in (3.2.21) the first order solutions are given as

) Ty ()] e

- G () (D) g ()] s

From the above table it is clear that f() is negative for the dusty gas in which

volume fraction of dust particles is less than five percentage of the total volume of
gas. Hence strength of shock wave becomes weak. it is also observed here that by in-
creasing the value of any one parameter among 3, k, and 2 causes to further weaken
the strength of shock wave. From equation (3.4.5), we have ¢'(£) < 0 therefore g(&)

is monotonic decreasing function of &, hence internal energy will exhaust. Also it is

Y
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observed that in case of strong shock wave the effect of presence of dust particles
in the gas have similar behaviour as in case of weak shock wave. From equation

(3.4.1), we have
2(1 - Zy) )
(T — 1 +2Z)a@7"")

OB

which shows that the effect of presence of dust particles is to accelerate the wave

motion if the sign of ¢g(1) is positive and deceleration will occur if g(1) is negative.
From equation (3.4.2), we have

/) =~ G a1 = ()

Negative sign of ¢/(1) shows that the internal energy of the dusty gas will exhaust and
an increment in the value of any one parameters among 3, k, and ) will contribute

in rapid decrease of internal energy of the dusty gas.

3.5 Results and Discussion

In the present section we discuss the structure of the shock wave front. The charac-

teristic lines for the system of equations (3.2.1 — 3.2.3) are given as
—=v—aqa, v, J+a (3.5.1)

Substituting the value of ¥ and a from equations (3.2.9) and (3.2.11), we have

Z—f =90 —a® 4 ¢ (¥ — o), (3.5.2)

d
d—f = 9O 4 29, (3.5.3)
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Ccll—f =90 +a@ 42 (9D 4 oM. (3.5.4)
From the equations (3.5.2 — 3.5.4) it is clear that the characteristics are not straight
lines in the presence of applied gravity. The inclination of second and third char-
acteristics near the piston increases in absence of gravity whereas tendency of first
characteristics is opposite to second and third characteristics.

We now discuss the effect of presence of dust particles in the gas on the nature of
shock front. In the presence of weak gravitational field in a dusty gas, the position

of shock front is given as

gt—c —s+es, (3.5.5)

which shows that the inclination of shock front decreases due to presence of gravita-
tional field because the strength of shock wave becomes weak due to applied gravity.
Since increment in the dust particle parameters will participate in the strength of
shock wave and causes to weaken it, so increment in the dust particle parameter
will contribute in decreasing the inclination of shock front. To discuss the piston

problem in a dusty gas with boundary conditions at the piston
Ve=1= 1), ale=1= ay,
which requires the perturbation state boundary conditions given as
f(1)=0, g(1)=0. (3.5.6)

The solution profiles of equations (3.2.23 — 3.2.24) together with boundary condition
(3.5.6) are shown in figures (3.7 — 3.12). The result shows that the internal energy
of shock wave front in a dusty gas will exhaust more rapidly with an increase in the

value of k,, 8 and 2 and shock wave becomes weak due to applied gravity.
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FIGURE 3.7: Profile of functions f and g for different values of k.

0.10 \ \

0.08

0.06

{_. s _g}

0.04

0.02

0.00

3

FIGURE 3.8: Profile of functions f and g for different values of k.
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3.6 Conclusions

In the present work, the motion of plane piston in a dusty gas under the influence of
weak gravitational field is discussed and following conclusions may be drawn from

the above discussion.

1. In case of weak shock wave, the internal energy of the dusty gas between piston
and shock wave decreases. An increment in the value of any one parameter
among k,, B and (2 causes to decrease the internal energy of the dusty gas

between piston and shock wave.

2. In case of weak shock wave, the kinetic energy of the dusty gas increases near

the piston and decreases at the shock wave.

3. In case of weak shock wave, an increment in the value of any one parameter
among k,, 5 and €2 causes to increase the kinetic energy of the dusty gas near

the piston and to decrease at the shock.

4. An increment in the value of any one parameter among £, 3 and €2 results to

further weaken the strong shock wave.

5. Internal energy of strong shock wave will exhaust due to applied gravity and
an increment among any one parameter k,, 3 and {2 will contribute in rapid

decrease in internal energy of the dusty gas.

6. It is observed that the solution of the plane piston problem with weak gravita-
tional field in a dusty gas reduces to the solution presented by Wen-rui (1985)
for 6 =0 .
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