LIST OF FIGURES

Figure 1.1: 2015 World electricity generation by different types of fuels
Figure 1.2: Possible sources of mechanical energy harvesting (left) and possible
applications in sensing and actuation (right) for piezoelectric devices5
Figure 1.3: The relation between electric charge and elastic phenomena8
Figure 1.4: A molecular model to explain the piezoelectric effect (a) An undisturbed
molecule with no dipoles or polarization (b) on the application of an external force (F) it
induces polarization (P) (c) the overall effect of polarization on the surface after
application of external force
Figure 1.5: Axis nomenclature
Figure 1.6: Polymerization of vinylidene fluoride to form PVDF15
Figure 1.7: Chemical structures of copolymers of PVDF
Figure 1.8: α, β and γ-conformations of PVDF
Figure 1.9: (a) XRD pattern of (i) Pure PVDF, nanocomposite with (ii) 0.1 wt%, (iii)
0.5 wt% and (iv) 1.0 wt% AlO-rGO content (b) FTIR spectra of neat P(VDF-HFP) film
and ZnO nanoparticle etched porous film
Figure 1.10: SEM images of pure PVDF showing spherulites and its hybrid with
nanoclay showing needle like morphology24
Figure 1.11: (a) output voltage and power density with respect to load resistance of
PVDF-activated carbon composite (b) Power density as function of load resistance for
PVDF-natural sugar nanofibers, inset shows the glowing LED using the device (c)
output voltage and power density with load resistance for ytterbium-PVDF composite,
inset shows the glowing LED's by device
Figure 2.1: Organic modifier used for modification of nanoclay31
Figure 2.2: Hybrid preparation through solution route

Figure 3.1: Structure of layered silicate
Figure 3.2: Structure and nanostructure a) Bright field transmission electron
micrograph of HFP nanohybrid, b) nanostructure of hybrid and changes in interlayer
spacing of clay after polymer insertion c) UV-vis absorption spectra of HFP and
nanohybrid. Inset figure shows the absorption spectra of pristine organically modified
nanoclay, d) XRD deconvoluted diffractograms of HFP and nanohybrid, showing
different phases, and, e) FTIR spectra of pure HFP and nanohybrid indicating different
peaks positions for α -, β - and γ -phases
Figure 3.3: Effect of stretching a) Stress-Strain curve for Pure HFP and nanohybrid
samples stretched at different temperature, corresponding (b) toughness and (c)
modulus d) FTIR spectra of pure HFP and nanohybrid stretched samples, e) wide angle
X-ray diffraction pattern of pure HFP and nanohybrid stretched samples at 90°C. Inset
figures show the deconvoluted diffractograms of stretched specimen, and, f) Phase
fraction of unstretched and stretched samples showing percentage of α -, β - and γ -
phases
Figure 3.4: a) DSC thermograms of pure HFP and nanohybrid unstretched and
stretched samples; HFP-S and NH-S represent specimens after stretching of respective
sample, b) Polarizing optical microscope images of pure HFP and nanohybrid. No
birefringence is observed in nanohybrid whereas spherulites were present in pure HFP,
and, c) Scanning electron microscope image of pure HFP and nanohybrid. Inset figures
show corresponding stretched sample images
Figure 3.5: a) Bar diagram showing piezoelectric coefficient for pure HFP and
nanohybrid before and after stretching at different temperatures b) Image of a fabricated
unimorph, inset figure shows representation of assembly of device and, c) Output
voltage response as a function of time

Figure 4.1: (a) Stress-strain curve of PVDF at elevated temperature (90 °C), polarized
optical (lower images), and scanning electron microscopy images (top images) for
corresponding marked (*) positions (initial and final); (b) XRD patterns before
stretching (P) and after stretching (P-S) showing intermediate pattern of taking sample
(P-S') at middle asterisk marked position in stress-strain curve (inset diagram, phase
fractions of different crystalline forms); and (c) FTIR patterns before and after
stretching of the sample indicating absorption bands of various crystalline forms54
Figure 4.2: (a) X-ray diffraction pattern for unpoled and poled samples (b)
Piezoelectric coefficient and (c) unimorph responses of stretched and poled
samples56
Figure 4.3: (a) open circuit voltage on finger pressing; (b) corresponding power of
indicated unstretched, stretched, and poled samples58
Figure 4.4: (a) open circuit voltage and (b) power density at different modes of
application of stress like bending, twisting, foot tapping and walking59
Figure 4.5: Schematic representation showing induction and orientation of piezoelectric
phase in PVDF (red, α -phase; blue, β -phase; green, amorphous phase)60
Figure 4.6: Working Principle of charge generation in device
Figure 5.1: (a) Stress-strain curves and toughness for pure PVDF and nanohybrid at
90°C showing high elongation at break; (b) TEM images of nanohybrid before and after
stretching (arrow indicates the stretching direction); (c) XRD patterns for pure PVDF
and nanohybrid before and after stretching (inset shows deconvoluted diffractograms
for stretched samples) and other deconvolution patterns have been shown in supporting
information; (d) phase fraction from the deconvoluted patterns; a, α and β represent the
content of amorphous, $\alpha\text{-}$ and $\beta\text{-}phase,$ respectively; (e) XRD of PVDF and nanohybrid
at lower angel, schematic shows the origin of diffraction peak (f) UV-visible spectra for

pure PVDF and nanohybrid samples. Inset shows the UV-vis spectra for nanoclay (g)
FTIR patterns of PVDF and nanohybrid before and after stretching indicating the
presence of different phases; and (h) DSC thermograms of PVDF and nanohybrid
before and after stretching showing the change in melting temperature due to phase
change66
Figure 5.2: Schematic representation of phase transformation in nanohybrid and change
in structure of single island or domain
Figure 5.3: (a) Polarized optical microscope images of pure PVDF and its nanohybrid
showing spherulite in pure PVDF and no birefringence in nanohybrid; (b) SEM images
of pure PVDF and nanohybrid before and after stretching indicating the direction of
stretching; (c) Piezo force microscopy images of nanohybrid samples before and after
-tt-t-i (4) Pi fi
stretching; (d) Piezo force microscopy of P, PC, P-S and PC-S samples showing
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure suggests the magnified view of the respective profiles
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure suggests the magnified view of the respective profiles
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure suggests the magnified view of the respective profiles
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure suggests the magnified view of the respective profiles
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure suggests the magnified view of the respective profiles
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure suggests the magnified view of the respective profiles
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure suggests the magnified view of the respective profiles
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure suggests the magnified view of the respective profiles
average profiles of magnitude; and (e) phase angle of the indicated samples. Inset figure suggests the magnified view of the respective profiles

ESM40 for the calculation of phase fraction; (d) Plot of β -phase fraction with ESM
content showing higher β -phase in PC-ESM. Dashed line indicate β -phase for PC and
vertical arrow shows the jump in piezo-phase content; (e) FTIR spectra of Pure PVDF,
P-ESM40 and PC-ESM40 hybrids indicating peak position of different phases and (f)
FTIR spectra of eggshell membrane83
Figure 6.3: (a) Polarized optical images of indicated specimens showing spherulite in P
and P-ESM and absence of spherulite in PC-ESM; (b) Scanning electron microscope
images for pure PVDF, P-ESM and PC-ESM nanohybrids; (c) Piezo force microscopic
images for pure PVDF, P-ESM40 and PC-ESM40 nanohybrids, inset shows the Phase
profile of the specimens obtained from PFM images85
Figure 6.4: (a) Open circuit voltage from the devices using pure PVDF, P-ESM and
PC-ESM nanohybrids with 40 wt.% ESM; Output OCVs from the devices fabricated
using indicated ESM content in (b) P-ESM, (c) PC-ESM; (d) variation in power density
with resistance in devices made from pure PVDF, P-ESM and PC-ESM nanohybrids
with 40 wt.% ESM content; (e) Power density variation with ESM content from the
devices made of P-ESM and PC-ESM nanohybrids. The dashed line indicate the power
output value using device made of PC (PVDF and nanoclay); (f) Open circuit voltage
from device fabricated with PC-ESM (40 wt.% ESM content) nanogenerator with
increasing number of stacks as indicated; (g) Schematics showing local ordering in
different nanohybrids demonstrating induced structure in presence of only ESM and
combined effect of ESM and nanoclay; and (h) Power output from the device as a
function of ESM content in PC-ESM nanohybrid demonstrating synergism of nanoclay
and ESM which exhibit significantly high output88
Figure 6.5: Demonstration of practical applications of the nanogenerator to harvest
energy by applying normal human movements e.g.(a) Twisting: (b) Bending: (c) coin

dropping; (d) Walking; (e) Foot tapping; and (f)Hand slapping; (g) Mechanical and
durability test of the device after obtaining the device performance for sufficiently long
time showing almost similar output voltage; and (h) The ability of output power from
the device to charge a capacitor followed by discharging kinetics using the device made
of PC-ESM40 (i) the LEDs glowing on the finger tapping92
Figure 6.6: Photographic images of orange peel and synthesized hybrid showing its
high flexibility and mechanical stability95
Figure 6.7: (a) XRD patterns of PVDF and hybrid showing different crystalline planes,
inset shows the XRD plot of pure orange peel; (b) deconvolution of XRD plot (c)
percentage of different phases present in PVDF and hybrid P-OR40 (d) FTIR spectra of
orange peel (e) FTIR spectra of PVDF and hybrid indicating peaks corresponding to
different phases; (f) melting thermograms of PVDF and hybrid. Dashed lines indicate
the deconvoluted patterns of β – and γ –phase of hybrid; (g) Schematic for crystallization
of PVDF at the interface of orange peel and (h) thermal stability of PVDF, peel and
hybrid as measured through thermogravimetric studies
Figure 6.8: (a) Polarized optical microscopic images of as cast PVDF and hybrid thin
films indicating various phase of crystallites; (b) Surface morphology of PVDF, hybrid
and orange peel showing different crystallites and fiber as observed through SEM; and
(c) schematic of PVDF crystallization at the edge of peel fibers demonstrating the
appearance of electroactive induced phases in polymer matrix99
Figure 6.9: Polarized optical Microscopy images of a) PVDF and b) hybrid with
changing temperature100
Figure 6.10: (a) Open circuit voltage obtained from devices made of indicated hybrids
or pure PVDF (inset shows the schematic of prepared device). The numbers after P-OR
represent the amount of orange peel (w/w): (b) output power from the devices under

varying applied resistance; voltage generation from the device under different body
movements (c) bending, (d) twisting and (e) walking on the device. Inset figures show
the type of loading on the device; (f) charging and discharging nature of a capacitor
from the energy produced by the device under finger tapping; (g) lightening of LEDs
from energy produced by the device from household door sliding102
Figure 6.11: (a) Photographic image of Pomegranate, peel and its hybrid with PVDF
(b) X-ray diffraction pattern of pure PVDF and hybrid, inset shows the XRD of
pomegranate peel (c) FTIR of pomegranate peel (d) FTIR of pure PVDF and hybrid (e)
DSC of PVDF and hybrid, (f) Thermogravimetric analysis of for pure PVD, hybrid and
pomegranate peel powder. (Here hybrid with 40% filler taken for comparison)107
Figure 6.12: (a) POM images of pure PVDF and hybrid (b) SEM images of
pomegranate peel and (c) peel powder and (d) PVDF and hybrid (e) AFM images of
pure PVDF and hybrid and (f) corresponding height profiles
Figure 6.13: (a) Open circuit voltage and (b) corresponding power density of pure
PVDF and hybrids with different filler contents. Open circuit voltage on (c) bending,
(d) twisting and (e) walking (f) capacitor charging on finger tapping and (g) LED
lightening and corresponding circuit

