LIST OF FIGURES

Figure	Title	Page
No.		No.
1.1	Comparison of thermal conductivity of common liquids, polymers and solids (Ref. 4)	3
1.2	Application of nanofluids	4
2.1	Saturated pool boiling (Ref. 18)	10
2.2	Boiling curve and heat transfer mechanisms in pool boiling (Ref. 27)	11
2.3	Flow patterns in vertical up flow: (a) bubbly flow; (b) slug flow; (c) churn flow; (d) annular flow (Ref. 30)	13
2.4	Flow boiling in a uniformly heated circular tube (Ref. 32)	15
2.5	Physical model (a) coalescence into vapour mushroom; (b) coalescence among individual bubbles (Ref. 37)	17
2.6	Comparative boiling experiments on the smooth surface (Ref. 61)	21
2.7	Mechanism of nanoparticle deposition during the boiling process (microlayer evaporation) (Ref. 63)	23
2.8	Solid-liquid-vapor three phase contact line (Ref. 16)	28
2.9	Wetting zone of bare and nanoparticles-coated specimens: (a) photographs of wetting zone (b) q" = 250 kW/m² (c) q"=600 kW/m² (Ref. 72)	30
2.10	Bubble images on heating surface with water and ZnO nanofluid (0.005 vol.%) at different heat fluxes and constant flow rate of 0.1 lps (Ref. 73)	34
2.11	Bubble behaviour of pure water and nanofluid in microchannel at OFI (Ref. 16)	35

3.1	Ultrasonicator	40
3.2	XRD pattern of (a) Alumina nanoparticles (b) Titanium nanoparticles (c)XRD pattern of silica nanoparticles	43
		44
3.3	HR SEM of (a) Al2O3 nanoparticle (b) TiO2 nanoparticle (c) SiO2 nanoparticle	45
3.4	EDS of (a) Al2O3 nanoparticle	46
	(b) TiO2 nanoparticle (c) SiO2 nanoparticle	47
3.5	Brookfield Viscometer (CPE-42)	50
3.6	Thermal conductivity measurement apparatus (Hot Disk TPS 500)	52
4.1	Schematic of Flow Loop	57
4.2	Test Rig during experimentation	57
4.3	Test Rig	58
4.4	K-type thermocouple	59
4.5	NI cDAQ-9132	60
4.6	Labview	61
4.7	High Speed Camera	64
4.8	Image obtained after Post Processing	64
5.1	Comparison between theoretical and experimental data for the Nusselt number of water	70
5.2	Boiling curve of water ($\Delta T_{sub} = 20 \text{ K}$)	72
5.3	Boiling curves of water and alumina nanofluid (ΔT_{sub} = 20 K)	73
5.4	Boiling curves of water and silica nanofluid ($\Delta T_{sub} = 20 \text{ K}$)	73

5.5	Boiling curves of water and titania nanofluid ($\Delta T_{sub} = 20 \text{ K}$)	74
5.6	HTC variation of alumina nanofluid	75
5.7	HTC variation of silica nanofluid	76
5.8	HTC variation of titania nanofluid	76
5.9	SEM images of (a) bare heater surface (b) nanoparticle deposited surface	78
5.10	Effect of mass flux on HTC of water	80
5.11	Effect of mass flux on HTC of alumina nanofluid	80
5.12	Effect of mass flux on HTC of silica nanofluid	81
5.13	Effect of mass flux on HTC of titania nanofluid	81
5.14	Effect of inlet subcooling on HTC of water	83
5.15	Effect of inlet subcooling on HTC of alumina nanofluid	83
5.16	Effect of inlet subcooling on HTC of silica nanofluid	84
5.17	Effect of inlet subcooling on HTC of titania nanofluid	84
5.18	Boiling curves of water and Alumina Nanofluid at the mass flux of 6 $${\rm kg/m^2s}$$	86
5.19	Boiling curves of water and Titania Nanofluid at the mass flux of 6 kg/m²s	87
5.20	Heat transfer coefficient of water and Alumina nanofluids at 6 kg/m²s.	88
5.21	Heat transfer coefficient of water and Titania nanofluids at 6 kg/m²s	88
6.1	Flow patterns of water and water based nanofluids at different heat fluxes at a mass flux of 6 kg/m ² s	95

6.2	Bubble behaviour of a water bubble ($\Delta T_{\text{sub}} = 20 \text{ K}$, $\dot{m}=12 \text{ kg/m}^2\text{s}$)	96
6.3	Bubble growth curve of water bubble ($\Delta T_{sub} = 20 \text{ K}, \dot{m}=12 \text{ kg/m}^2\text{s}$)	97
6.4	Bubble growth curves for various water bubbles (ΔT_{sub} = 20 K , \dot{m} =12 kg/m ² s)	98
6.5	Bubble Structure observation of water and nanofluids (ΔT_{sub} = 20 K, mass flux= 3.8 kg/m ² s)	100
6.6	Sequential images of bubble growth and lift-off at ONB	102
6.7	Sequential images of bubble growth and lift-off at OSV	103
6.8	Effect of heat flux and nanoparticle concentration on Maximum Bubble Diameter	104
6.9	Bubble Coalescence Phenomenon	106
6.10	Effect of heat flux on the bubble departure diameter	107
6.11	Effect of heat flux on the bubble detachment time	108
6.12	Effect of heat flux on the bubble departure frequency	109
6.13	Flow Pattern Transition	111
6.14	Temperature Fluctuation during Flow Oscillation (a) Water and Alumina Nanofluid (b) Water and Silica Nanofluid	112
6.15	Consecutive Images showing oscillation amplitude in water and nanofluids	113