CONTENTS

	Page No.
List of Figures	xii-xv
List of Tables	xvi
List of Abbreviations	xvii-xviii
Preface	xix-xx
Chapter 1	
Introduction	1
1.1 Objective	1
1.2 Coupling in Multi-element Antenna Structures	2
1.2.1 Antenna Array	2
1.2.2 Multiple-input multiple-output (MIMO) Antenna	3
1.2.2.1 Envelope Correlation Coefficient (ECC)	6
1.2.2.2 Diversity Gain	8
1.2.3 Repeater Antenna	8
1.3 State-of-the-Art Review of Isolation Enhancement Techniques	11
1.3.1 Decoupling Network	11
1.3.2 Neutralization Line	12
1.3.3 Ground Resonator	13
1.3.4 Defective Ground Structure (DGS)	13
1.3.4.1 DGS with Different Antenna Orientation	14
1.3.4.2 DGS with Neutralization Line	14
1.3.4.3 DGS with Ground Resonator	15
1.3.5 Resonator Between Radiators	15
1.3.6 Other Miscellaneous Techniques	16
1.3.6.1 Radio Frequency Choke	16
1.3.6.2 Branch Line in Conjugation with the Suspended Line	16
1.3.6.3 Orthogonal Antenna Placement along with Metal Wall	16
1.3.6.4 Neutralization Line and Decoupling Network	17
1.3.6.5 Near-field Cancellation Method	17
1.4 State-of-the-Art Review of Metamaterial/Metasurfaces Based Isolation	17
Enhancement Techniques	

Cor	πe	nts

1.4.1 Electromagnetic Bandgap Material	18
1.4.2 Metamaterial Absorber	19
1.4.3 Split Ring Resonator (SRR)	20
1.4.4 Complementary Split Ring Resonator (CSRR)	20
1.4.5 Other Miscellaneous Techniques	21
1.4.5.1 Metamaterial Substrate	21
1.4.5.2 Frequency Selective Surface (FSS) Superstrate	22
1.4.5.3 Metamaterial-inspired Resonator with Ground Resonator	22
1.4.5.4 Metamaterial Insulator	22
1.4.5.5 Mantle Cloaking Method	22
1.5 Summary of the Literature Review	23
1.6 Motivation Behind the Present Thesis	23
1.7 Scope and Structure of the Thesis	24
Chapter 2 Metamaterial-based Polarization-insensitive Wide-angle Dual-band Microwave Absorber	27
2.1 Introduction	27
2.2 Design Schematic and Simulated Response	28
2.2.1 Unit Cell Structure	28
2.2.2 Absorption/Reflection Characteristics	30
2.2.3 Input Impedance	31
2.3 Optimization of the Absorption Frequency and Absorption Level	32
2.3.1 Absorption Frequency	32
2.3.2 Absorption Level	35
2.4 Absorption Mechanism	38
2.5 Polarization-insensitive Behavior	38
2.6 Constitutive Parameter Retrieval	40
2.7 Experimental Results	43
2.7.1 Normal Incidence	44
2.7.2 Oblique Incidence	44
2.8 Performance Comparison with Some Other Dual-band Absorbers	46
	70

Chapter 3	
Transmission Line Model of a Dual-band Metamaterial Absorber	49
3.1 Introduction	49
3.2 General Transmission Line Model of the Metamaterial Absorber	50
3.3 Equivalent Circuit Model of the Proposed Absorber	51
3.3.1 Modeling of the Absorber1:	53
3.3.2 Modeling of the Absorber2:	58
3.3.3 Modeling of the Proposed Absorber	61
3.4 Conclusion	63
Chapter 4 Wide-angle Polarization-insensitive Quad-band Metamaterial Absorber	65
4.1 Introduction	65
4.2 Design of the Unit Cell	66
4.3 Results and Discussion	68
4.3.1 <i>S</i> -parameters	68
4.3.2 Normalized Input Impedance	68
4.3.3 Constitutive Parameters (ε_{eff} and μ_{eff})	69
4.3.4 Parametric Analysis	70
4.3.5 Power Loss Density and Surface Power Loss Density	72
4.3.6 Electric Field and Surface Current	72
4.4 Polarization-insensitive and Wide-angle Performance	74
4.5 Experimental Results	76
4.6 Performance Comparison with Some Other Multiband Absorbers	76
4.7 Conclusion	78
Chapter 5 MIMO-configured WLAN Access Point Antenna with High Port Isolation	79
5.1 Introduction	79
5.2 MIMO Antenna Array without Isolator	82
5.3 Design and Analysis of the Isolator	84
5.4 MIMO Antenna Array with Enhanced Isolation	88

5.4.1 Surface Current Density	91
5.4.2 Radiation Characteristics	93
5.4.3 MIMO Characteristics	95
5.5 Experimental Verification	97
5.6 Performance Comparison of the Proposed Isolator with Other	100
Metamaterial Based Isolators	
5.7 Conclusion	101
Chapter 6	
Conclusion and Future Scope	103
6.1 Summary and Conclusion	103
6.2 Scope for Further work	108
References	109
List of Publications	125

Contents