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Abstract

In this paper, the relation between two dimensional fractional Fourier transform and fractional
Hankel transform is discussed in terms of radial functions. Various operational properties of
Hankel transform and fractional Hankel transform are studied involving Riemann—Liouville
fractional derivatives. The application of fractional Hankel transform is given in networks
with time varying parameters.
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1 Introduction

Riemann—Liouville fractional derivatives played an important role to solve many problems
of applied mathematics, physics and engineering sciences. Yang et al. (2015) introduced a
new fractional derivative without singular kernel and considered the potential application for
modeling the steady heat-conduction problem. Yang et al. (2015) provided the method of
integral transforms via local fractional calculus to solve various local fractional ordinary and
local fractional partial differential equations. They presented the basics of the local fractional
derivative operators and proved some new results of local integral transforms. Further, Yang
(2016) proposed a class of the fractional derivatives of constant and variable orders and
modeled fractional-order relaxation equations of constant and variable orders in the sense
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of Caputo type, from mathematical point of view. The results have much importance in
description of the complex phenomenon arising in heat transfer. Yang et al. (2017) observed
the new general fractional derivatives involving the kernels of the extended Mittag-Leffler
type function and analyzed the mathematical models for the anomalous diffusion of fractional
order. Further a new family of local fractional PDEs and linear, quasi-linear, semilinear
and nonlinear local fractional PDEs were investigated by Yang et al. (2017). After that,
Yang et al. (2017) discussed a family of special functions via the celebrated Mittag-Leffler
function defined on Cantor sets and the obtained results were more useful for describing the
characteristics of fractal special functions. Further Debbouche and Antonov (2017) presented
non-differentiable analytical solutions of diffusion equations arising in fractal heat transfer.

Ortigueira and Machado (2015) discussed the concepts behind the formulation of opera-
tors, interpreted as fractional derivatives or fractional integrals. They accessed the Griinwald
Letnikov, Riemann Liouville and Caputo fractional derivatives and the Riesz potential. They
also obtained a Liebnitz rule for the Riesz potential. Abdeljawad and Torres (2017) consid-
ered symmetric duality of Caputo fractional derivatives in discrete version to relate left and
right Riemann Liouville and Caputo fractional derivatives. They provide an evidence to the
fact that in case of right fractional differences, one has to mix between nabla and delta opera-
tors. They derived right fractional summation by parts formula and left fractional difference
Euler—Lagrange equations for discrete fractional variational problems, whose Lagrangians
depend on right fractional differences. Baleanu et al. (2017) extended the definition of the
fractional derivative operator of the Riemann Liouville and discussed its properties, by using
generalized beta function. They also established some relatons to extended special func-
tions of two or three variables, with the help of generating functions. Karite et al. (2018)
investigated exact enlarged controllability for time fractional diffusion systems of Riemann
Liouville type. By using the Hilbert uniqueness method, they proved exact enlarged control-
lability for both cases of zone and pointwise actuators. They gave a penalization method and
characterized the minimum energy control. Baleanu et al. (2010) studied fractional systems
and showed applications of fractional differentiation in nanotechnology.

Hankel transformation is an important tool to solve many problems of fractional deriva-
tives and partial derivatives. Sneddon (1995) studied Fourier transform in terms of radial
functions and found a relation between Fourier transform and Hankel transform in terms of
radial functions. This relation played an important role for our present investigation. Torre
(2008) proposed the fractionalisation of certain types of Hankel transform and proved the
applicability of resulting transforms in connection with the evolution problems. Dufty (2004)
used Hankel transform theory to solve many problems of partial differential equations like,
elastic wave equation, heat equation, Laplace’s equation, Poisson’s equation etc. and some
mixed boundary value problems. Luchko et al. (2008) introduced a new definition of frac-
tional Fourier transform of real order o, 0 < o < 1 and studied its important properties,
including the inversion formula and the operational relations for the fractional derivatives.
They also showed the applications of the aforesaid transform for solving some model partial
differential equations of fractional order.

Motivated from the above results, our main aim of this paper is to discuss the following
objectives:

1. The relation between two dimensional fractional Fourier transform and fractional
Hankel transform in terms of radial functions.

2. To introduce the fractional Hankel transform of order o, 0 < @ < 1.

3. To study properties of Hankel transform and fractional Hankel transform with the help
of Riemann Liouville fractional derivatives.
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4. To find an application based on the theory of fractional Hankel transform, in networks
with time varying parameters.

Now we give some definitions and properties, which are useful for our present work:
From Luchko et al. (2008), let V (R) be the set of all functions v € S satisfying

d"v
dx"|,._o

—=0,(n=0,1,2,...).

The Lizorkin space ®(R) is defined as the Fourier pre-image of the space V(R) in the
space S,

PR)={peS:FpecVR)}.

The fractional Fourier transform of order « of a function u belonging to the Lizorkin space
is defined by Kilbas et al. (2010) as :
“+00
. 1
(Fat) (@) = / eMENNCIT g (1) dr. (1.1

—00

A radial function is a function ¢ : R?> — R satisfying ¢ (x, y) = ¢(Jx — y|) for points y
in discrete subset of R

The Hankel transformation of a function ¢ € L'(0, co) was defined by Zemanian (1968)
to the distributions in the form:

(@) (@) = /(wx)%lu(wx)qb(x)dx, w e (0,00), 1 > —%. (1.2)
0

Let¢ € L' (0, 00) and h ud € L1(0, 00). Then the inversion formula of Hankel transform
is defined by

@) = /(wt)%lu(wt)(hw)(w)dw, (1.3)
0

where J, is the Bessel’s function of first kind of order 1.
Motivated from the work of Zemanian (1968), Altenburg (1982) introduced the space of
type H, consisting of all smooth complex functions ¢ on (0, co) such that

1 q
<*D> @ (x)
X
for every p,q € N.

The topology on space ‘H is considered to be associated with the family y, , of semi-
norms.Thus £, is an automorphism on . Belhadj and Betancor (2002) showed that the
space ‘H coincides with the Schwartz space of all even functions Seyen-

From Zemanian (1968), Prudnikov et al. (1986), Samko et al. (1993), Luke (1969) and
Luchko et al. (2008) we give some conceptual remarks about the Lizorkin space associated
with Hankel transform, Riemann Liouville fractional derivatives and integrals and other
properties, which are useful in our present paper:

Let U(R™) be the space, defined as the space of all functions u € Seyen, satisfying:

d"u
dxn

Vp.q (@) = SUP,c(0.00) (1 + 527 < 00, (1.4)

|x:OZOs n=0,1,2,...
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The Lizorkin space W(R™) is defined as the space, which is the Hankel pre-image of the set
U(R™) in the space Seyen »

W(RT) = {§ € Seven : hyu(d) € URD)). (1.5)

Further, for any function ¢ € W(R™),the following orthogonality condition is satisfied:

o0

/x”qb(x)dx =0, n=0,1,2,... (1.6)
0

The other properties, which are useful in this paper are also given:
(I) For a function ¢ € W(R™T) the fractional derivative Dg is defined as,

Do (x) = (1= B)(DG, ) (x) — B(DLP)(x), O <a =<1, BEeR, (L.7)

where DS‘ . and D? are Riemann Liouville fractional derivatives on the positive real axis,

d —a
(DG 9)(x) = (o ®)(x) (1.8)
and
o d 1—a
(DZ¢)(x) = (— ?)(I* P (x), (1.9)
X
where [f,_is the Riemann Liouville fractional integral operator
17 .
(5 9)(x) = Ta /(x — 0 )dt (1.10)
0

and 7“ is the Riemann Liouville fractional integral operator
[e.¢]
o 1 a—1
IZg)(x) = T (t —x)" " @(r)de. (1.11)
X

(IT) Let f, g € L'(0, c0) then the following formulas for the fractional Riemann Liouville
derivatives and integrals hold Samko et al. (1993),

/f(X)(D8+g)(X)dx = /(Dﬁf)(X)g(X)dx (1.12)
0 0

and
/f(X)(I&rg)(X)dx = /(Iﬁf)(X)g(X)dX- (1.13)
0 0

(IIT) From Samko et al. (1993) 1% has the following property
(I%¢)(x) = (cosam Iy, + sinamw S5, )(P)(x), (1.14)

where S is the singular operator, defined as

A dr. (1.15)

t—x

1 o0
(SP)(x) = */
T
0
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(IV) From Luke (1969), the hypergeometric function ,, ', has the following relation with
oF1

ap+r 2\ . _ fiz
pr+1(bp+r,,B+r’Z)_0Fl( sﬂ+r7z)+r(ﬂ+r)
oFi(= B+r+ 124+ 007, (1.16)

where f; = ZJP.ZI (aj —bj), zis fixed and r is sufficiently large and positive.
(V)Forc,r,y >0and —Rev < Reff <r + %, from Prudnikov et al. (1986), we have

oo
xP-1
/ Ty Jy(cx)dx = X(0), (1.17)
where
X(e) = ey ! cot 2ktptv T
T 2T+ 1) = kK'(v+ D2k + v)€ r
2.2\ k B—r
cTy 1/2 1
- — - - -_ 1.18
X( 4 ) +2<c) ;(r—l—rk—ﬂ)f (1.18)
F(V+ﬂ*2r*’k) <cy>rk
i L\ )
F(l) ZV T + 1) 2
(VI) The relation between J,, and o F is given as
1\’ 12
rv+nJy@) = <§> oF1 (—; v+ 1; —Z>. (1.19)
(VII) We have
r'B+2r)
= 1.20
(B)ar I (1.20)
and
A A1
Mo =27(2) ([ — 1.21
o =(2) (1)), a2
for 2r € Ny.

(VIII) From Zemanian (1968), we have
d
a(t_“JM(wt)) = —owt " J 11 (01). (1.22)

The entire paper is organized by the following way:

Section 1 is introductory, in which various definitions, properties and results are given.

In Sect. 2, the theory of fractional Hankel transform is introduced with the help of relation
between two dimensional fractional Fourier transform and fractional Hankel transform, in
terms of radial functions.

In Sect. 3, operational properties of Hankel transform and fractional Hankel transform are
discussed, with the help of Riemann Liouville fractional derivatives.

In Sect. 4, the application of fractional Hankel transform in networks with time varying
parameters is given.
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In the last section, graphical representations of a signal in time domain and frequency

domain are studied, by exploiting the theory of fractional Hankel transform.

2 Fractional Fourier transform of radial functions

In this section, we study two dimensional fractional Fourier transform of radial functions
and obtain various results. With the help of these results we define the fractional Hankel

transform.

Theorem 2.1 The two dimensional fractional Fourier transform can be expressed in terms

of fractional Hankel transform as
o
(Fa w1, ) < Tho(F(r))(p),

where F(r) = r f(r), and r, p are radial functions.

Proof

(Fa (@1, @2)

“+00 +00

// t(SIgn(wl)\wl\H1+slg"(wz)lwzlwz)f /x +x2 dx;dxs
27'roz 2

—00 —0O0

+00 +00
1 f/el(wllwlla X1+w2\w2|°’ xz)f [x2 4+ x2 dxdx,.
27101 1 2

—00 —O0

If we put x; = rcosf, xo =rsinf, w; = pcos ¢, wy = psin ¢, we obtain

(Fa (@1, w2)

21 00
. 1
= % //ei(rcosGPCOS¢IPCOS¢|57I+’SinepSin(b‘psmwail)f(r)rdedr
T
0 0
21 00
. 1
< Zi//ei(’cosepcoswf'ﬂsinepsi"W*])f(r)rder
T
0 0
21 00
1
_ L//eir,ﬂ 0s(0=9) ¢ (r)rdodr.
2o
0 0

Changing the order of integration by Fubini’s theorem, we get

2

(Fo f)(@1, 02) < /(/ irp® °°S(9*‘7’)d9>rf(r)dr
0

1
(Fa @1, ) < &/rfo(par)f(r)dr
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Fuf)@1.an) < ° i

/(r,o )ZJ (p‘*r)”f(r)dr

Set F(r) = r2 f(r), we have

(Faf) (@1, w2) = 7h (F(r)(p).
O

Similarly, by using the technique of Sneddon (1995, pp. 63-65), we can prove the following
relation

=La-1

(Fuf) @1, 0. .. wn) < 7%[:@2 LIy (pFr)dr.
o 0
Setting ¢(r) = r2 7' f(r), v =1~ 1,¢(p) = p 3D (F, F)(@r, wa, . .., wn), we find

o0

lﬂ /rJU(pér)qs(r)dr. 2.2)
2

0

#(p) =

From the above two expressions (2.1) and (2.2), we can define fractional Hankel transform
in the following way:

The fractional Hankel transform of function ¢ € W(R™) of order o, 0 < o < 1 is defined
by,

r 1
G010 = [@in}uinewdn = -3, 3)
0

For o = 1,we get Eq. (1.2),which is the definition of conventional Hankel transform .
The corresponding inverse fractional Hankel transform is given by

b(1) = é/(wéz)%J,L(wét)(hgq)(w))w%*‘dw. 2.4)
0

Example Fractional Hankel transform of the function f(¢) = 11+3 =47 can be evaluated as
following:
From Erdélyi et al. (1954), using Hankel transform of the function f(¢) ,we have

a)’“r% o2
e f)0) = e
Thus
2;§+1 2
(hy ) (@) = Qo 2.5)
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3 Operational relations for the fractional Hankel transform

In this section, various operational properties of Hankel transform and fractional Hankel
transform are investigated and obtained important results.

Lemma3.1 For pu > 0,w € (0, 00) and 0 < « < 1, we have the following relation

w43 pgs 2
i (A (D)
BF R S R N S

= (wx) " T (@x)2"T (n + 1) + %(C{)X)I_MJM+1(CL)X)2MF(M + 1)

ol(2)),

-3
where O ((%) ) are lower ordered terms.

ProofTakingp:27al :%7a2:%7b1 :%—{—%,bz:%-ﬁ-%,r:%,ﬂ:%-{-l,Z:
_(%)2 and fi = (a1 — b1) + (a2 — bp) = —a in Eq. (1.16), we get

n3 ] 2
ot s tiontl 2

2
—oF (=1 (2 ? T a()? Fil= 1) +1: wx\?
=oF|—pu+ L > %(M'i‘l)()l ;(u ; >

Using the formula (1.19), we have

w3 LS 2
213 HeraJr 43 ’ Merot+ 45 1 ; _<%>
> Ti.T Traont

= (x) "I, (@x)2"T (1 + 1) + %(wx)l_”J#H(a)x)Z“I‘(u )
u\ 3
+o((5) )

Lemma3.2 Let u > 0,w € (0,00) and 0 < a < 1, then we find the result, which is given
below:

m}

F(u+3)
F(p+3+a)

%

(Ig+(wr)% J,L(a)t)>(x) [x“(wx)% Ju(wx)

+%xl+“(wx)%Ju+1(wx)i|, (3.2)

for neglecting lower order terms.
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Proof From Eq. (1.10),we have

(1(‘)’+(wt)%1,,¢(wt))(X) = lfla /(x - t)“*l(wt)%lu(wt)dt
0

1 X \¢ ! 1
=— | x> H1-= (wt)2 J,, (wt)dt
e Jg x s ’

Let )’7 = s, dt = xds. Then the above expression becomes

(18‘+(wt)%J,L(wt)>(x)
| 1
= Ex“'% %/(1 — )% 1SZJM(wxs)ds
0
00 r +2r 1
= + 1 Z =D (a))“ /(1 —s)"‘_]s%(xs)“"'zrds.
= rlC(w+r+1)

o

By the property of beta function,

(13 ()2 ), (a)t)) x)

1 i (=1 (wx)““’ I(u+2r+3)la
riC(u+r+1) T(u+2r+3+a)

Ot+

Bl —

w?

r=0

Using Eq. (1.20),we get
(13‘+(wt)% Jﬂ(a)z))(x)

=X

oo 3 () (1t Do+ D
2

2a)2
r!
r=0

In view of Eq. (1.21),we have
(15’+ (@021, (a)t)) )
C(n+ %) Z( 1)r< ),U«+2r 1
F(M+1)F(M+§+a) r! 2 (n+ 1),

s(set) (5+1),
(i) (),

a+

Nl
=

w

Thus

G+ DTG D+ 3 +a)y T+ 3+ )
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(13‘ (), (wt)) (x)

ot(wx)MJr% (e + %)
24 T(u+ DO+ 3 +a)

Koy 3 | 2
X2 F3 ﬁaﬂa’ﬂaﬁs ?_<%> :
= ti. T tioutl 2

Applying Lemma 3.1 and neglecting lower ordered terms,

(wx)+3 L+ 3)
24 T+ DIk + 3+

(13 ()2, (wt)) (x) = x* [(a)x)—“ Ju(wx)

X2MT (i 4+ 1) + %(wx)l_“JM_,_l(a)x)Z“F(/L + 1)].

So that

F(n+3)

« 1
WH[ (@0 Ju@x)

(18‘+(wt)%lﬂ(wl)>(x) ~

+%x1+“(wx)% JM+1<wx>].

Lemma3.3 Letw € (0,00),0 <o < 1 and p > 0. Then we have

(13 (1), (wr))(x)

L T+
T T(p+3 4w

( « Lot > 1<2>°‘
X (a)x)ZJM(a)x)—i— (a)x)ZJMH(wx) + —| —
“w T
> ‘Hak-i-]) 1 a2 nw+o—=k 1
_— - — - . 33
XkZZ(:) pn—a+k a+k 4)(\/5 m ( 4 >< > j| ( )

Proof From Eq. (1.14),we have

[(cos o + sin o tan(a + M)n)

(Ig(wt)%lu(wt)>(x) = (cos am I, + sin an51g+> <(wt)%lu(wt))(x), (3.4)

where

\ -

(S¢)(x) =

o0
t
/ 2@ 4
r—x
Using Lemma 3.2, we have
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« L Tw+d) b [rtinen
(SI5 ()2 Jy (1)) (x) = m no/ r—x
3 o0

3 3
aw? / T2 g4 (wt)

dr | (x). (3.5)

r—x

From Egs. (1.17) and (1.18), we find the value of following integrals:

o 1 1
1**2 ], (ot 1/2\%"2
/ &dr = nx‘H%JM(wx) tan(a + ) + 3 <7>
1)

t—x
0
<D 4 ) o
x Z F(u—oH—k + g) 7 (3.6)
k=0 2 4
and
0 3
“tag t \ 1/2\%"2
/ tM7+l(a))dl = ﬂxa+%‘]u+1(a)x) tan(ot + /«L)N + 5<*>
— X w

0

() nto—k 5 k
% Zw(wx> ] (3.7)

—atk | 3

(5= +)\ 2

Putting the value of the integrals from Egs. (3.6) and (3.7) in Eq. (3.5), we obtain
F(u+3)

I'(p+ % +a)

20[_% 00 F(/ﬁ-a—k +

1
by
o n—a+k 3
T T +3

[x“(wx)% Jy (wx) tan(o + p)m
wXx K oaw 1
(3) v

2 2
s (@x) 2 Jyy 1 (@x) tan(u + )7 +
UT W

00 F(/L+a—k + §) wx k
X Z (/L—i+k 3 (7) i|
0 2

=T +1)

(SIS, (1) 2 ], (1)) (x) =

Thus Eq. (3.4) becomes

(13 (wrﬁJ,L(wz))(x)

L T+
T T(p+3 4w

1/2\*
><< "‘(a)x)2 Jy(wx) + 7Xd+ (wx)?2 ]M_H(a)x)) + (—)

XZ )

Sl T ()]
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Lemma3.4 Forw € (0,0),0 < a < 1 and u > 0, we prove the following:

D) h (1§, ¢)(w) = M [(cosom + sin a7 tan(o + u)n)
HoF '+ 3+a)
><<hﬂ(x“¢>+-9;9hu+4<x1+“¢>>]<w>. (3.8)
o ~ F('u + é) o dw o
m)mummm:rw+gimpﬁx@+L/Wmﬂ+m}m.(w)

Proof (I) We take
hAmmmwszmhAmx%¢mmL
0

In view of Eq. (1.13),we get

[ee)

hu(I5,.9) (@) 2/(H(wt)%fu(wt))(X)qﬁ(X)dX-

0

By using Lemma 3.3, the above expression becomes

h (I, ) (@)
F(u+3)

~ ———= || cosamr + sinar tan(« + ,u)rr)
NM+§+ai<

*© L o oaw i 1 a+1
><</ (wx)2 Jy (0x)x“ P (x)dx + 7/(wx)ZJM+1(wx)x ¢ (x)dx
0
0

S0 ERE G )

k=0 2 4
X ) i k d
<§> /x o (x) x]
0

o0
Since the function ¢ is in Lizorkin space W (R™), then from Eq. (1.6) f xkdb(x)dx =0.
0
Thus
F(u+3)
F(+3+a)

X (hu(xaqb) + %hu+l (xl+°‘¢)>](w)~

hy(Ig, ) (w) = [(cos o + sinar tan(a + u)n)
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(IT) We have
B (146) (@) = f (00)} (@) (1%$)(x)d.
0

By the virtue of Eq. (1.13),
o0

hy(1°¢) (@) = / (h‘ﬁ(wn%Ju(wr>)(x>¢<x>dx.

0

Applying Lemma 3.2, we obtain

T+ 3)

hu(I%¢)(w) = m

[/(wx)%Ju(wx)x“qb(x)dx L+
n
0

x /(wx)%Jﬂ+l(wx)xa+1¢(x)dx].
0

Thus

F(u+3)

hu (12 N —
n(IZ)(w) T+ 3+

[hu(xa¢) + %hu-s-l (x1+“¢)](w).

Lemma3.5 Letw € (0,00),u > 0and 0 < a < 1. Then
(Dg (N, (a)t)) )

o (3 -a)(1 - ) - po
o )

3
F(,u + 2) [(wx)%ju(a)x)x7 +

T T(e+3—o)

n(p+3 —a)
(1 — a@)w?

w(p+3 —a)

s (x2)x 7 Iy (wx) — (wx)%J,Hz(wx)xz*“]. (3.10)

Proof From Eq. (1.8),we have

d
<D8‘ (wt)? J,L(a)t)> (x) = o < (1(} RACHENA (a)t)) (x)>.
Using Lemma 3.2,

d[ T(u+3)

1
DY 2J ~ ~, .5 <
( 0+ (@) ﬂ(“”))(x) de[P(u+3 —a)

+%x2_“ (a)x)% Jyut1 (wx)>:| .

(xlfa (a)x)% Jyu(wx)

Consider
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d X! (a)x)% J (wx)
dx "

d
= o? o (xf"J,L(wx)x"Jr%"")
x

3 d
= a)% <x_“ Jyu(wx) (u + 3~ a)x"“_‘”% + x"““‘%_"‘a(x_“lu(wx))).
In view of Eq. (1.22),

(st
— | x Y (wx)2 J, (wx)

dx
1 —a+3 3 —a+3
=w?|x 2 ,u—i—i—oz Ju(wx) — wx 2Ju41(wx) ). (3.11)
Similarly,
d
a;(xz—“(wx)%fp+1(wx)>
W —at3 7 —a+3
=wI|x \u+ 3~ a ) Jup1(wx) — wx 2Jy2(wx) ). (3.12)
Thus

(D&wnﬂﬂwﬂu)

a+”((; ~a)(1 o) - o)

wli+s—a)

~ T+
T T+3 -

|:(wx)% Jyu(wx)x™

_ 2
x(a)x%)xl_alu_,_l(a)x) — %(w}c)% JM+2(wx)x2_“].
nln+3—a)
O
Lemma3.6 Letw € (0,00),u > 0and0 < a < 1. Then
(Di ()2, (wl)) )
3
I~ L—;_Z) [(cos amr — sinaw tan(pu — a)rr)
Fu+35—a
- (G- —a)—pa) 1, (1-a)o?
(b T e e
| 1 12\ & (ko T(42E 4 3)
ot ) G) BB
X (wx)2x u+2(wx (;,L—I—%—Cl)ﬂ p ; 5 F(%ﬂ'k—i—%)
1 (l—oc)\fZ nw—a—k 3 wx <!
(H- == )E) G

Proof From Eq. (1.9),we have

(Dﬂwﬁj,&w)) (x) = —%((Il*"‘(wr)%J,L(wtO(x)).
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Applying Lemma 3.3,
<DZ (wt)? J,L(wt)> x)

d[ T(u+3)

T & lru+i-o

e 1 - 5, .1 1/2\'"™
x| x (a)x)ZJ,L(wx)—i-Tx (0x)2 Jyq1(x) +; —

0]
o0 I-(u+1 o k+i)

Sy E)G) ]

Thus
<D°i (1), (wt))(x)

|:(cos(1 —a)m +sin(l —a)rtan(l — a + ,u)n)

NERACES
T T(u+3-o
1—a
L <x1“"(wx)%lu(wx) + M)cQ—"‘(wx)%JMJFI(M)> - l<3>
dx % T\w
= r(Egt 4+ )

S )]

Taking into account Egs. (3.11) and (3.12), the above expression yields

|:<cos o — sinar tan( — a)n)

(Di (@2, (wt)) )
3

1 L—EZ) [(cos amr — sinaw tan(pu — a)rr)

F(n+ 5 —a)

1 Tyl —a)— i 11— 2
2 2
1oy 1 lzl—aoo uak+3
oot aaon) () 2 (SR
(G N ]
V2 W 2
O

Lemma 3.7 The following relations hold for v € (0,00),0 <o < 1 and pu > 0:

3
(D h,(DF o)) (w) = m |:<cos am — sinaw tan(p — a)rr)
3
_ o((F —o)(1 - ) - pa) -
h @)+ h «
x( W) T e N L
1 — 2
_thz(xz%))](w). (3.14)
3 -
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o((§ —a)( - ) — pa)
i+ 3 —a)

M+ 3)

) h,(D* &
) PPN = o

|:hu x"%) +

(1 — a)w?

)hy (1) — =
" (i +3 —a)

hu+2(x2_a¢):|((0)- (3.15)

Proof (I) We take
hu (DG ¢)(w) = /(wx)%fu(wx)(08‘+¢)(x)dx~
0

In view of Eq. (1.12),we get

[ee)

h (DG, $) (@) Z/<D°_‘(wt)%1u(wt)>(X)¢(X)dx~

0

Using Lemma 3.6,

hyu (DG $)(w)
3 00
~ 1“(Mi—;_z)[(cos am — sina tan(p — oz)n)(/(wx)%J,l(a)x)x*“qb(x)dx
F(p+35—a 5
7_ o) — = — ?
yelg =l Ze - pe) [ @0t s@ont g oa - . i
ulp+35 —a) . ulp+35 —a)

i 1 2w 1 1 2 1—a
X /(a)x)2JM+2(wx)x ¢(x)dx) - f(* 7)
0 m+ 57—« T w

2 (ko F(“_g_k-l-% 1 Q-2 p—a—k 3
() (T )

k=1

Since the function ¢ is in Lizorkin space W (R™), therefore using Eq. (1.6),

ka_l(p(x)dx =0.
0

Thus
3
Iy (DE, 6 (1)) (@) = % [(cos a — sin e tan(u — 01)71)
.
Y o((§ —a)(1 —a) — pa) o (1 - a)w? ’w )}
h h __Lowe .
(o + e T e ) - @) [

[}
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(IT) We have
h (DZ¢)(w) = /(wx)%fu(wx)(Df@(X)dX-
0
By the virtue of Eq. (1.12),
hu (D2 ¢)(w) = / <Dg+(wt)% Ju (wt)> ()¢ (x)dx.
0

Applying Lemma 3.5, we obtain

hy (D) (w)
3 00
~ L—gz)[/(wx)%lxl(wx)x7“¢(x)dx +
Mu+s5 - !
x / (@x)2 Jyui1 (@2)x ¢ (x)dx —
0
Thus

o((F )l — ) — pa)
mwp+3 —a)

(1 —a)w?

M/(wx)éllﬁz(wx)xz°‘¢>(x)dx]_
3 -

0

T+ 3)
NI )

o((F )l — ) — pa)

hu (D% p(x))(w) =
w(D=¢N mwp+3 —a)

[hu(xfo‘qb) +

(1 —a)w?

et (6170¢) — ————
Rt pwi+ 3 —a)

hu+z(x2‘“¢>](w).
O

Theorem 3.8 Let 0 < o < 1, u > 0. Then the following operational relation holds for any
value of parameter 3:

(h D) (w) = [(1 — B)(cosam — sinam tan(u — o)) — /3]

r
F(p+3—a)

Lot _ ) —

u(p+3—a)

e ()

2
1— o
_whg+2<x2a¢)](w). (3.16)
2

Proof By the definition of fractional Hankel transform,

(h% D§$) () = / (@7 x)? T (@7 x) (DY) (x)dx
0

= / (@4 x)? T (e 0)[(1 — B) (D, $)(x) — B(D$)(x)]dx.
0
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By the virtue of Eq. (1.12),we get

(thg¢xw)=<1——ﬁ>/‘(Dﬁ«oioénxwéo)cn¢cwdx
0

—ﬂ/ (Dg+(w$z)%Jﬂ(wér)>(x)¢(x)dx.
0

Using Lemmas 3.5 and 3.6 and then replacing w by a)al, we have

(h, Dg)(w)
Ik +3) [ .
~(1—p)—LTa) - -
=) - (cosam — sinar tan(u — o))
o 1 a)é ((%—a)(l—a)—ua)
x(/ (wex)2 Jy(wex)x % (x)dx + 3
0 i+ 3 —a)

[ 1, (1 - aws
X/W”VMH@”M )y — ——————
, wluts —a)

[ Lo\i 1 2—«a 1 1 2 I—a
« [@hobaeiotomar) - —— (1) ()
0 M"’Z—Ol T we

e )

i kow \ T (55— +
X ) r(u+a+k+ ﬁ m

|: /(a)éx)% Ju(a)éx)x_“q&(x)dx

uw
+
a)atl ((% —a)(l —a) — ,uoz)

u(p+3 —a)

/(a)éx)% Jut1 (a)éx)xl_a¢(x)dx
0

(l—oz)a)g T 11 L5,
—)/(wax)2 Jupo2(wex)x ¢(x)dx]. (3.17)
0

win+3 —a
Since the function ¢ is an element of Lizorkin space W(R™), therefore using Eq. (1.6),

o

[ xk=1p(x)dx = 0.

0

Thus Eq. (3.17) becomes
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3
(hZDg(p)(w) ~ M[(l - ﬁ)(cosom — sina tan(u — a)n) — ,3:|

w0t (3 — )1 — @) - par)
wl+3 — )

X[hi(x—a(p) + hZJr](xl—a(p)

(1 —ot)w%

_ he 2—a )
w(n+3 —a) pa ¢)](w)

Verification: Putting « = 1 in Eq. (3.16), we get

T(n+3) ( “ w )
h, (D ~ —(1-8) - h — h .
w (D@ (x))(w) F(M+%)( (1=B)=B)| hu(x""¢) M+% wt+1(@) (@)
Therefore,
1
hu (D¢ (x))(w) = <— (M + §>hu(x_1¢>) +whﬂ+1(¢))(w)» (3.18)

which is true in the case of ordinary derivative of order 1.

Case () If o = 0:
Putting w = 0 in Eq. (3.16), we obtain

(e +3)

F(u+3—a)
x [hfj(x—“qs)(O) +

(h}; Dg¢)(0) = [(1 — B)(cosam — sinaw tan(u — a)7w) — ,3]

i (3 — o)1 — @) - par)
wle+3 )

e (' 4$)(0)

a- O[)w% a 2—a
a0
2

0. (3.19)

12

Case (IDIf g = 1:
Putting 8 = 1 in Eq. (3.16), we get

L(n+3)

h% D 2
(. D 6) (@) 20 (1 + 3 — )

[(cos am — sinar tan(u — o)) — 1j|

i ((§ = )1 — ) — per)
wlu+3—a)

x [h;';(x—%) + he L (x4 )

2
(1 - a)o« o —a
i 1o ate oo
2

Case (IID If 8 =0, D§ = D‘O’+:
From Eq. (3.16), we have
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3
Lk +3) ] [(cosan — sina tan(p — ot)ﬂ)]
o

he DY) () & —— 2

B wi (3 —a)(1 — ) — pa) ~
hlx o hOt o
X|: M(x ) + l‘v(l’«"’%_a) IL+l(x )

2
(I - o= o —a
L] O
2

Case IV)If B = 1, DY = —D“:
From Eq. (3.16), we find

1
wa((% — Ol)(l — a) — MO[)

() +
[“x wli+s—a)

P(u+3)

h DY ro—— P
ULDfPw =~ B

2
1— o
((x)('())hz+2(x2a¢)i| ().

xh®_ (x'""¢) —
n+1 M(M + % _

4 Application of fractional Hankel transform

In this section, we give the application of fractional Hankel transform in networks with time

varying parameters.
From Eq. (2.3), the fractional Hankel transform is given by,

(9@ = [ (@80} gingaa,
0

If we put g(¢) = 12 f (1), then above equation yields
o0

(h ) (@) = (@)} f Fu(@d 1) f(0dr.
0

Then, we have
(h%8) (@) = (0)? (% f)(@), 4.1)

where
o0
4.2)

1
(hﬁf)(w) = / tJy(wet) f(t)de.
0
Now we find the inversion formula of fractional Hankel transform (4.2) of a function f as in
Eq. (24),

1 oo
f) = &/wﬁflju(wét)(hzf)(w)dw. 4.3)

0
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In Gerardi (1959, p. 201) replacing a by aé, 0 < a < 1 in the Bessel’s differential
equation, we get

d2x  1dx L, 2 £
—_— 4 —— @) — — |x = —=. 4.4

d12+tdt+<(a ) t2>x 12 44
If f(¢) = 0; the complementary solution is,

1 1
X, = Al,(a=t) + BY,(av1),

where A and B are arbitrary constants, J, (a ‘ t)and Y, (a “ t) are Bessel’s functions of first
kind and second kind respectively.
Now proceeding as in Gerardi (1959, p. 201) we find

2 1d 1, 1.9 1.9
h(;: <@ + ;a - tiz + (av) )x(t) = <(a°‘) — (w@) )(hﬁx)(w) 4.5)
For finding the charge ¢ (¢) in a positive feedback circuit at time ¢ [Gerardi (1959), p. 203],
we take the Bessel’s differential equation
d>¢ 1dg q kg Kik
de2 "t dt  CoL, CoLot?  LotwtD’

where C,, and L, denote initial capacitance and initial inductance respectively, K1, k are
constants and

(4.6)

2001 (u+ )

Ki=L
k()
Putting (aé)2 = and p? = k in Eq. (4.6), then
OLO COLU . ' ’
d>¢ 1dg u?q ) K1k
—t, -2 _=21 o = ——, 4.7
dr? + ¢t dt 12 +@s)rq L,t+D @.7)
Taking fractional Hankel transform of Eq. (4.7) and using Eq. (4.5), we have
2 2 K1k
(h},q) () <aw — a)a> = hZ(W) (w). (4.8)
From Gerardi (1959, p. 203), set
K]k 2 =
a = — o
then Eq. (4.8) becomes
pn—1
o 2 we
(h,) (@) = ——5——. 4.9)
™ (af o)

Taking the inverse fractional Hankel transform of Eq. (4.9) and using the technique of
Gerardi (1959, p. 205), we get

q(t) = (@o)*(tan ur Jy (@) — sec pr H_y(awt)), (4.10)

where H_; (a v t) is Struve’s function of order  and J;, (aét) is Bessel function of first kind
of order (.
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5 Conclusions and observations

In the present paper, the authors have introduced the fractional Hankel transform in a new
way and analyzed their properties, with the help of Riemann—Liouville fractional deriva-
tives and integrals. These results are very useful to solve the problems of partial differential
equations and ordinary differential equations. This theory will be also applicable in engineer-
ing sciences and theoretical physics. In Sect. 4, we have done an application of fractional
Hankel transformation in ordinary differential equation for the networks with time varying
parameters.

In this section, the graphical representations of a signal in time domain as well as in
frequency domain due to fractional Hankel transform are shown with some remarkable obser-
vations.

For example, for u > —1, a > 0, the classical Hankel transform of the function

F0) = 43t (5.1)
is given in Erdélyi et al. (1954) as
a)’“'% W2
(hy (@) = We da.

The fractional Hankel transform of the function f (¢) is given as

21541 2
w 2a wo
(% f)(@) = Gy (5.2)

For u = % and a = 1, we can compare the results between classical Hankel transform and
fractional Hankel transform, for different values of «.

Case (I) For a = 1, the classical Hankel transform of f(¢) is given by

0 o
(h1 f)w) = —e . (5.3)
: (2)2
Case (II) For o = % the fractional Hankel transform of f(¢) is,
1 w? ot
(hif)(a)) = e 1. (5.4)
2 @3
Case (IIT) For o = % the fractional Hankel transform of f(¢) is,
1 @ W
(hif)(w) =—Fe 7. (5.5)
! 3

(22

Using MATLAB the following graphical representations are obtained:

With the help of graphical representations Fig. 1a—d, it is shown that the peaks obtained
in frequency domain, due to fractional Hankel transform are more clear and area bounded
by them is lesser than that of classical Hankel transform. The above analysis indicates that
the whole information of the signal in case of fractional Hankel transform is more accurate
than the classical Hankel transform, for different values of «, such as « = % and o = %

Further, it is observed that the result obtained in Theorem 3.8 has a nice graphical rep-

. . a2
resentation. For the function f(f) = T2~
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Graph(5.1) .

Graph(5.3)

(h, ()

B S S S S S i B L A S S S 4
N O S S S i B A S 4
-4 -4
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
t o
(a) Fig.(5.1) (b) Fig.(5.3)
. Graph(5.4) Graph(5.5)

T T T 4

T

N Q
= =
I, 1]
3 3
3 3
= acY
< <

Bl S e - Bt T SR i -
-4 -4
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
(O] ®
(c) Fig.(5.4) (d) Fig.(5.5)

Fig. 1 Graphical representations of a signal in time domain as well as in frequency domain, due to classical
Hankel transform and fractional Hankel transform for « = % anda = %, respectively

been compared between classical Hankel transform of ordinary derivative of the function f
and fractional Hankel transform of fractional derivative of the function f.
The following approximate results obtained:

Case (I) Classical Hankel transform of ordinary derivative of f(¢) is given by

12 /1 4
(hi1Df)(w) = —(* + 7) (5.6)
2 T\w o

Case (II) Taking o = % and B = 1, fractional Hankel transform of fractional derivative of
f(¢) is given by

11 7
h?D}? A ——. 5.7
<% 1f)(a)) 3ﬁw3 (5.7
Case (III) Taking o = % and B = 1, fractional Hankel transform of fractional derivative of
f(¢) is given by

I rcy 26 (283

(hinf) (w) = 1735—5<—) (5.8)
2 F(g)r(g) 135
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Graph(5.6)

Graph (5.7)

1

)o); u=1/2,0=1/2,3

(a) Fig.(5.6) (b) Fig.(5.7)

Graph(5.8)

(c) Fig.(5.8)

Fig. 2 Graphical representations of h%(Dg f)(w) for a signal f, in classical sense as well as in fractional
sense for ¢ = % ando = %, respectively

The results have been found quite similar to that of classical Hankel transform, which is
clear by the graphical representations of Fig. 2a—c respectively:
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