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Controlled generation of genuine multipartite entanglement in Floquet Ising spin models
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We propose a method for generation of genuine multipartite entangled states in a short-range Ising spin chain
with periodic global pulses of magnetic field. We consider an integrable and a nonintegrable Floquet system
that is periodic in time and has constant quasienergy gaps with degeneracies. We start with all spins polarized
along one direction and show that they evolve into states with high entanglement by calculating the average
entanglement entropy and geometric measure of entanglement. We show that some of these states have a high
number of parties involved in the entanglement by calculating the quantum Fisher information. Such controlled
generation of multipartite entanglement has potential applications in quantum information processing.
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I. INTRODUCTION

Genuine quantum correlations as encapsulated by quantum
entanglement give rise to effects which have no counterparts
in classical physics [1,2]. Quantum entanglement acts as a
resource in quantum information science and is exploited for
quantum teleportation [3], quantum computation [4–6], and
quantum cryptography [7–10]. Entanglement leads to under-
standing the fundamentals of various phases in many-body
systems and detection of quantum phase transitions [11–14].
The notion of multiparty entanglement, i.e., entanglement
when the system is composed of more than two subsystems,
is not straightforward and has been a field of research by
itself [15–18]. Classifications and various interpretations of
multipartite entanglement have been actively discussed in the
past [19–22]. Multipartite entanglement has proven to be a
valuable resource for quantum computation and information
[7,23]. The geometric measure of entanglement, which is
one of the many multipartite entanglement quantifiers, does
not explicitly consider subsystems and measures the overall
entanglement in the system [24–26]. However, by itself, it
fails to give information about the number of parties involved
in the entanglement. Another measure called the quantum
Fisher information, which is an indispensable part of modern
quantum metrology, gives a lower bound on the number of
parties involved in the entanglement [27–31].

The physical implementations of quantum information
technologies is carried out in cold atoms [32], optical sys-
tems [33] and various condensed matter systems such as
quantum spins, superconducting qubits, and quantum dots
[34–36]. For a large class of physical systems, there exist
effective spins models that describe the relevant processes
[37,38]. The transverse field Ising model, which is one of the
paradigmatic models of quantum phase transitions [39,40], is
exactly solvable by using the Jordan–Wigner transformations

*gautamk.naik.phy15@itbhu.ac.in
†rajeevs.phy@itbhu.ac.in
‡sunilkm.app@iitbhu.ac.in

[41,42]. But upon addition of a longitudinal magnetic field it
becomes nonintegrable as the Jordan–Wigner transformation
in this case gives an interfermionic interaction term. The
analytical study of the Ising Floquet system has been done
for the integrable cases by Prosen [43–45], Lakshminarayan
and Subrahmanyam [46], Else et al. [47].

In this article, we study the integrable periodically kicked
transverse field Ising model and the nonintegrable model with
an additional longitudinal field, both with a specific driving
period. We focus on the entanglement structure during the
time evolution of simple product initial states. We show that
these Floquet systems are periodic in time by studying their
quasienergies. We also show that the time-evolved states have
high multiparty entanglement by calculating quantifiers such
as average entanglement entropy and the geometric measure
of entanglement. We calculate the quantum Fisher informa-
tion of the time-evolved states to get the lower bound of
the number of parties involved in the entanglement. These
measures help us identify states with high genuine multiparty
entanglement that are obtained during the time evolution (such
as the Greenberger-Horne-Zeilinger, or GHZ, states). We note
that a method to prepare GHZ states and W states in a long-
range Ising spin chain has been recently proposed [48]. But
we would like to point out that our scheme uses a system with
only short-range couplings which may be easier to control.

This article is organized as follows: In Sec. II we discuss
the Floquet map of the system. Subsequently, in Sec. III we
describe the periodic nature of the system. In Sec. IV we
present the results of numerical calculations of the average
entanglement entropy, geometric measure of entanglement,
and quantum Fisher information and the implications of these
results on the nature of entanglement seen in these systems.
We summarize the main results and point out the future
directions in Sec. V.

II. MODEL

In this work we consider a periodically driven Ising system
(which will be referred to as the Ux system hereafter) whose
dynamics is given by the Floquet operator (which is the
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time-evolution operator over one period)

Ux = exp
[
−i

π

4
(Hxx + Hx )

]
exp

(
−i

π

4
Hy

)
, (1)

where Hxx = ∑L−1
i=1 σ x

i σ x
i+1 is the nearest-neighbor Ising in-

teraction term with unit interaction strength, Hx = ∑L
i=1 σ x

i

is the longitudinal field term, and Hy = ∑L
i=1 σ

y
i is the trans-

verse field in the y direction. A system with Hamiltonian given
by

H(t ) = Hxx + Hx +
∞∑

k=−∞
δ

(
t

π/4
− k

)
Hy, (2)

where the transverse magnetic field in the y direction is
applied at a regular interval of π/4 time period in the form
of delta pulses, would have states just before application of
consecutive delta pulses related by the unitary Floquet map (as
in Ref. [49]) given in Eq. (1). The presence of the longitudinal
term in the Hamiltonian ceases the possibility of finding the
exact solution by using the Jordan–Wigner transformation.
Therefore, we will explore the numerical solutions of this
model using exact diagonalization. The Floquet operator in
Eq. (1) is equivalent to the Floquet operator

Ux = exp
(
−i

π

4
Hxx

)
exp

(
−i

π

4
Hz

)
exp

(
−i

π

4
Hx

)
. (3)

We shall also consider an integrable model, termed the U0

system, with the Floquet operator given by

U0 = exp
(
−i

π

4
Hxx

)
exp

(
−i

π

4
Hz

)
, (4)

where Hxx = ∑L−1
i=1 σ x

i σ x
i+1 and Hz = ∑L

i=1 σ z
i and open

boundary conditions are considered. The above model has
been shown to be useful in generating states with multiple Bell
pairs [50].

In this article we study the entanglement structure in the
U0 and Ux systems for different initial states. Hereinafter, we
refer to the states with all individual spins being eigenstates
of σα as α states and initial states with all individual spins
being eigenstates of σα as α initial states, where α ∈ {x, y, z}.
In the subsequent sections we analyze the systems with even
system sizes having open boundary conditions unless stated
otherwise. We comment on the other cases (with different
boundary conditions and system sizes) in the Appendix.

III. PERIODICITY

There is periodicity in the entanglement profile and it is the
outcome of constant quasienergy gaps of the Floquet system.
The eigenvalues of the Floquet operator are of the form e−iθk

where θk ∈ [−π, π ] are known as the quasienergies of the
Floquet system. The degeneracy of the quasienergies of the
system is shown in Fig. 1. The U0 system with open boundary
conditions has quasienergies in multiples of π/(2L) and hence
the system is periodic with period 2L (as U2L

0 = I). The Ux

system, however, does not have a simple relation for the
quasienergies in terms of the system size but the quasienergies
are still equally spaced for a given system size. For example,
a system size of L = 10 has quasienergies which are odd
multiples of π/60.

FIG. 1. Degeneracy of quasienergies in the (a) U0 and (b) Ux

systems for system size L = 10. Both systems have equally spaced
quasienergies. The U0 system has spacings of π/(2L). The spacings
in the Ux system is not a simple function of the system size.

IV. PROBING MULTIPARTITE ENTANGLEMENT

We study two aspects of the multipartite entanglement in
the systems under consideration, the extent of entanglement
between the different particles of the system and the number
of particles that get entangled. Measuring these aspects of
multipartite entanglement are research areas in their own
respect and there are several quantifiers for the above pur-
poses, each with their own advantages and shortcomings.
Here we study the extent of entanglement through the average
entanglement entropy (AEE) and the geometric measure of
entanglement. We calculate the quantum Fisher information
(QFI) to get a lower bound on the number of particles that are
involved in the entanglement.

The average entanglement entropy (AEE) of the system
over all the partitions of subsystem size l is given by

S(l ) = 〈−Tr[ρPl log2(ρPl )]〉Pl , (5)

where ρPl represents the reduced density matrix of a partition
Pl of size l and 〈·〉Pl represents the average over all possible
partitions Pl . The AEE plots in Fig. 2 suggest that the average
entanglement is high throughout the periodic cycle and is
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FIG. 2. Variation of the normalized average entanglement en-
tropy (AEE) S(l )/l for the U0 and Ux system with successive Floquet
periods in a system size L = 10 with the z initial state.
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FIG. 3. Variation of the geometric measure of entanglement Eg

with consecutive Floquet periods for the U0 system of sizes (a), (b)
L = 10 and (c), (d) L = 8. In the case of the z initial state in panels
(a) and (c), we see here that this entanglement measure does not
distinguish between the state with L/2 Bell pairs at n = L/2 and the
other intermediary states. In the case of the y initial state in panels
(b) and (d), a drop in Eg is seen at n = L, L + 1. This is due to the
system reaching states with high number of particles involved in the
entanglement (the GHZ states).

spread out among the subsystems. A few points in the Ux

system where we find a drop in the AEE values are those
points corresponding to states that have large number of
particles involved in the entanglement (as will be shown in
the next section). The U0 system comes back to its initial state
after the 10th Floquet period while the Ux system reaches its
flipped state after the 30th Floquet period (Fig. 2). Hence the
entanglement profile repeats itself beyond these points.

A more-well-known measure of entanglement in the com-
plete system is the geometric measure of entanglement [24]
(also known as the distance measure of entanglement) and is
given by

Eg = 1 − �2, (6)

where � = max	 |〈ψ |	〉|, with the maximization done over
all the possible separable product states |	〉 = ⊗L

i=1|φi〉. The
U0 system with a z initial state after L/2 kicks gets to the
state with L/2 Bell pairs, which is expected to have high
entanglement. However, the plots of the geometric measure
of entanglement in Figs. 3(a) and 3(c) show that all the
intermediate states (from n = 1 to n = L − 1) of the system
have high entanglement. Also from the other plots in Figs. 3
and 4, we can see that, even in the other cases, the system
has states with high entanglement. At certain points [such
as n = 10, 11 in Figs. 3(b) and 4(a)], the system has smaller
values of Eg and AEE (refer to Fig. 2). Further in the paper, we
show that these are points where the system has a high number
of particles involved in the entanglement [refer to Figs. 5(b)
and 6(a)].

This suggests a variation of the principle of monogamy of
entanglement, where we would hypothesize that the higher
bound on the value of entanglement measures such as Eg and
AEE for a multipartite quantum state with n particles involved
in the entanglement decreases as n increases. A simple exam-
ple where this is evident is a system of four spins with states

|φ1〉 =
( |00〉 + |11〉√

2

)
⊗

( |00〉 + |11〉√
2

)
,

|φ2〉 =
( |0000〉 + |1111〉√

2

)
. (7)
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FIG. 4. Variation of the geometric measure of entanglement Eg

with consecutive Floquet periods in the Ux system of sizes (a),
(b) L = 10 and (c), (d) L = 8 starting from the z initial state in panels
(a) and (c) and the y initial state in panels (b) and (d). For system size
L = 10, the Eg values are high at most points. The points with low
values of Eg (n = 10, 11, . . .) are points where there is a high number
of particles involved in the entanglement. A similar plot is seen for
other even system sizes (up to L � 12) except for L = 8. For L = 8
in panels (c) and (d), the plot is similar to that seen in the U0 system
[Figs. 3(a) and 3(c)].

The state with four particles involved in the entanglement
φ1 (the four particle GHZ state shown in Ref. [24] to have
� = 1/

√
2 and Eg = 1/2) has a lower value of Eg than the

state with two particles involved in the entanglement φ2 (the
product of two Bell pairs with � = 1/2 and Eg = 3/4).

To investigate the number of particles involved in the
entanglement seen in these systems, we measure the quantum
Fisher information (QFI) of the states of the system. The
QFI of a pure state |ψ〉 associated with a linear observable
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FIG. 5. Variation of the maximum value of FQ with consecutive
Floquet periods in the U0 system of sizes (a), (b) L = 10 and (c),
(d) L = 8 starting from the z initial state in panels (a) and (c) and
the y initial state in panels (b) and (d). κ (k) is the maximum value of
QFI for k-producible states. A value of FQ greater than κ (k) indicates
that the state has at least (k + 1)-particle entanglement. In panels
(a) and (c), the system reaches states with two-particle entanglement,
while in panels (b) and (d) system reaches states with L-particle
entanglement.
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FIG. 6. Variation of the maximum value of FQ with consecutive
Floquet periods in the Ux system of sizes (a), (b) L = 10 and (c),
(d) L = 8 starting from the z initial state in panels (a) and (c) and
the y initial state in panels (b) and (d). κ (k) is the maximum value
of QFI for k-producible states. The system with even system size is
seen to have at least L/2-particle entanglement (checked for L � 12).
However, L = 8 in panels (c) and (d) is an exception as the FQ plot
suggests only at least two-particle entanglement.

Ô = 1
2

∑L
i=1 n̂i.�σi (where n̂i for 1 � i � L are unit vectors)

[27–29,51] is given by

FQ(Ô) = 4〈
Ô〉2, (8)

where 〈
Ô〉2 = 〈ψ |Ô2|ψ〉 − 〈ψ |Ô|ψ〉2. If for some linear
observable Ô, the inequality

FQ �
⌊

L

k

⌋
k2 +

(
L −

⌊
L

k

⌋
k

)2

(9)

is violated, then the state |ψ〉 has at least (k + 1)-partite entan-
glement (here 	x
 denotes greatest integer less than or equal
to x). To get an estimate of the number of particles involved in
the entanglement of a particular state, we maximize FQ over
the space of linear observables Ô (parametrized by the unit
vector n̂) and then find the largest value of k that violates the
inequality (9).

In the U0 system, with the z initial state, we see that states
of the system after n Floquet periods for 2 � n � L − 1 all
involve at least two-particle entanglement [refer to Figs. 5(a)
and 5(c)]. A peak in the QFI is seen at n = L/2 when the
system reaches the state of product of L/2 Bell pairs. The
U0 system with the initial state of spins aligned along the y
direction after L and L + 1 kicks gets to the L-particle GHZ
(Greenberger–Horne–Zeilinger) state in the y and x directions,
respectively. Hence, we see peaks suggesting L-particle entan-
glement in the QFI plots of this system [Figs. 5(b) and 5(d)].
For system size L = 8, the plots of QFI [Figs. 6(c) and 6(d)]
for the Ux system indicate that the system has states with at
least two-particle entanglement. For other even system sizes,
the QFI plots [Figs. 6(a) and 6(b)] suggest that the system has
states with at least L/2-particle entanglement (checked up to
L = 12). These are states that have high genuine multipartite

entanglement and cannot be expressed in simple forms in the
standard basis.

Reference [29] states that equality in Eq. (9) is only possi-
ble if the state is a product state of 	 L

k 
 k-particle GHZ states
and a (L − 	 L

k 
k)-particle GHZ state. However, our numerical
calculations shows many points on the QFI plots that represent
states satisfying the equality in Eq. (9) but are not a product of
GHZ states. A simple example of a non-GHZ state satisfying
the equality in Eq. (9) is the state Ux|ψo〉, where |ψo〉 is a
product of two GHZ states:

|ψo〉 =
( |0 · · · 0〉1··· L

2
+ |1 · · · 1〉1··· L

2√
2

)

⊗
( |0 · · · 0〉 L

2 +1···L + |1 · · · 1〉 L
2 +1···L√

2

)
. (10)

We know that the state |ψo〉 has FQ = 2L and satisfies equality
of Eq. (9) for k = 2. The state Ux|ψo〉 can be numerically
verified to have maximum QFI of FQ = 2L but this state
cannot be expressed as a product of two GHZ states in any
basis. This can be verified by calculating the entropy of all
possible partitions. The state Ux|ψo〉 has no partition with zero
entropy which implies that it cannot be expressed as a product
state in any basis. For L = 4,

Ux|ψo〉 =
( |00〉 + |11〉√

2

)
⊗

( |00〉 + |11〉√
2

)

+i

( |01〉 + |10〉√
2

)
⊗

( |01〉 + |10〉√
2

)
. (11)

We have considered initial product states polarized along
the x, y, or z direction for our study. However, any general
initial state may be considered and a similar study may
be carried out to identify high multiparty entangled states
obtained by time evolution using Ux and U0 operators. Since
the system is periodic in time, only a finite number of states
is obtained by the Floquet time evolution for a given initial
state. A similar study can be done for odd systems sizes and
also periodic chains (see the Appendix). The results in these
cases cannot be directly extended from the results obtained
above.

V. CONCLUSION

We have considered two Floquet systems with Floquet
operators U0 [Eq. (4)] and Ux [Eq. (1)] and initial states with
all spins polarized in a specific direction. We have shown
that these systems are periodic in time as explained by the
quasienergies of these systems that have degeneracies and a
constant gap. The quasienergies of the U0 system, which is
integrable, are seen to be of the form nπ/(2L) (where L is
the system size and n is an integer such that −2L < n � 2L).
We then evolved simple product initial states and analyzed
the average entanglement entropy and the geometric measure
of entanglement of the time-evolved states to show that they
have high multiparty entanglement. We have also calculated
the quantum Fisher information of these states to identify
those that have a high number of parties involved in the
entanglement.
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We have shown that many states with high genuine multi-
party entanglement can be obtained by the time evolution of
simple product initial states. The U0 system with the initial
state of spins aligned along the y direction (x direction)
generates L-particle GHZ states after L and L + 1 (L − 1
and L) Floquet periods. The Ux system with the initial state
of all spins aligned along one of the three directions (x,
y, or z direction) reaches a state with at least L/2 particle
entanglement for most system sizes. A summary of the mul-
tipartite entanglement generated for different initial states and
boundary conditions have been outlined in the Appendix.

We propose that these Floquet systems, which have only
nearest-neighbor interactions, can be used to generate states
with high multiparty entanglement. Recent experiments have
shown that Floquet spin systems can be realized by systems
such as trapped ions [52] and nitrogen-vacancy (NV) spin
impurities in diamond [53]. These systems can potentially be
used for the physical realization of the considered Floquet

systems to generate high multiparty entangled states which
can further be used as a resource for quantum computation,
quantum cryptography, and the quantum internet [54,55].
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APPENDIX: SUMMARY TABLE

Table I below summarizes the multiparty entanglement
seen in the Ux and U0 systems in the different cases of
boundary conditions and system sizes that have been studied.

TABLE I. Summary of multiparty entanglement for the systems studied. Here, n denotes the number of Floquet periods after which the
system is considered.

Initial State U0 system Ux system

For even system sizes with open boundary conditions.
L/2 Bell states at n = L/2. L/2 particle entanglement at certain values of n with

z Entanglement structure periodic with period 2L. an exception for L = 8 (checked up to L = 10).
System periodic with period 4L. System periodic with period not simple function of L.

L particle entanglement at n = L (GHZ state in y-basis)
and n = L + 1 (GHZ state in x basis)

L/2 particle entanglement at certain values of n with an
exception for L = 8 (checked up to L = 10).

y Entanglement structure periodic with period 2L.
System periodic with period 4L.

System periodic with period not simple function of L.

x Same as the case of y-initial state with n′ = n − 1. Same as the case of z-initial state with n′ = n − 1.

For odd system sizes with open boundary conditions.

3 particle entanglement observed till L = 9. L particle entanglement at certain values of n

z Entanglement structure periodic with period L.
System periodic with period 4L.

with a different entanglement profile (except for
L = 7)(checked up to L = 7).

System periodic with period not simple function of L.

L particle entanglement at n = L (GHZ state in y-basis)
and n = L + 1 (GHZ state in x-basis).

L particle entanglement at certain values of n (except for
L = 7) (checked up to L = 7).

y Entanglement structure periodic with period 2L.
System periodic with period 4L.

System periodic with period not simple function of L.

x Same as the case of y-initial state with n′ = n − 1. Same as the case of z-initial state with n′ = n − 1.

For even system sizes with closed boundary conditions.

2 particle entanglement in system sizes L = 4n and no L/2 particle entanglement at certain values of n with
z entanglement in L = 4n + 2 (as the FQ plot suggests). an exception for L = 8 (checked up to L = 10).

System periodic with period L. System periodic with period not simple function of L.

L/2 particle entanglement at n = L/2 and n = L/2 + 1
(superposition of ferromagnetic and anti-ferromagnetic
GHZ state in y-basis and x-basis respectively).

L/2 particle entanglement at certain values of n with an
exception for L = 8 (checked up to L = 10).

y Entanglement structure periodic with period L.
System periodic with period L.

System periodic with period not simple function of L.

x Same as the case of y-initial state with n′ = n − 1. Same as the case of z-initial state with n′ = n − 1.
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