Fig. No.	Figure Captions	Page No.
1.1	Chemical classification of NSAID's	6
1.2	Chemical structures of NSAID's	7
1.3	The conversion of arachidonic acid to prostaglandins	9
1.4	Schematic representation of the COX-2 active site	11
1.5	The structure of azapropazone	12
3.1	The design strategy for the proposed compounds under Series 1 and Series 2 using molecular hybridization approach	35
4.1	Possible mechanism of reaction for the synthesis of compounds	39
	S14a- S14o	
4.2	Possible mechanism of reaction for the synthesis of compounds S21a– S21e	42
4.3	Possible mechanism of reaction for the synthesis of compounds S22a-S22e	43
4.4	Possible mechanism of reaction for the synthesis of compounds S_23a-S_23e	43
4.5	Possible mechanism of reaction for the synthesis of compounds S24a- S24e	44
5.1	Photomicrographs (10x magnification) of [A] Control; [B] Indomethacin; [C] Compound S14d and [D] Compound S14e treated groups in rat stomach tissues	75
5.2	Photomicrographs (10x magnification) of [A] Control; [B] Indomethacin; [C] Compound S14d and [D] Compound S14e treated groups in rat liver tissues	75
5.3	Photomicrographs (10x magnification) of [A] Control; [B] Indomethacin; [C] Compound S14d and [D] Compound S14e treated groups in rat kidney tissues	76
5.4	Lineweaver–Burk plot of <i>in vitro</i> COX–2 inhibition by potential derivatives of Series 1	80
5.5	3D view of the docking study of the minimum energy structure of the complex of S14d docked in COX–2 (PDB: 1CX2), viewed using the Glide XP visualiser of the Schrödinger Maestro 9.3 module	81
5.6	3D view of the docking study of the minimum energy structure of the complex of S_14e docked in COX-2 (PDB: 1CX2), viewed using the Glide XP visualiser of the Schrödinger Maestro 9.3 module	81
5.7	Protein–ligand RMSD. RMSD evaluation of a protein (left Y–axis); the ligand RMSD (right Y–axis) indicating the stability of ligand S_14d with respect to the protein and its binding pocket	83
5.8	The detailed atomic interactions of ligand S_14d with the key	83

	amino acid residues at the active site of COX-2	
5.9	Stacked bar charts of protein interactions with ligand S_14d as monitored throughout the MD simulation	83
5.10	Photomicrographs (10x magnification) of [A] Control group; [B] : Indomethacin; [C] : Celecoxib; [D] : Compound S ₂ 2d [E] : Compound S ₂ 2e [F] : Compound S ₂ 3c treated groups in rat stomach tissues	103
5.11	Photomicrographs (10x magnification) of [A] Control; [B] Indomethacin; [C] Celecoxib [D] Compound S22d [E] : Compound S22e [F] : Compound S23c treated groups in rat liver tissues	104
5.12	Photomicrographs (10x magnification) of [A] Control; [B] Indomethacin; [C] Celecoxib [D] Compound S ₂ 2d [E] : Compound S ₂ 2e [F] : Compound S ₂ 3c treated groups in rat kidney tissues	104
5.13	Lineweaver–Burk plot of <i>in vitro</i> COX-2 inhibition by compounds S ₂ 2c-S ₂ 2e and S ₂ 3c-S ₂ 3e	109
5.14	Overlay of docked pose of celecoxib (green) with its crystallographic conformation	113
5.15	3D view of the docking study of the minimum energy structure of the complex of S_22e docked in COX-2 (PDB: 3LN1)	114
5.16	3D view of the docking study of the minimum energy structure of the complex of S_22d docked in COX-2 (PDB: 3LN1)	114
5.17	3D view of the docking study of the minimum energy structure of the complex of S ₂ 2c docked in COX-2 (PDB: 3LN1)	114
5.18	Minimum energy conformer for compounds S₂4a- S₂4e	115
5.19	Protein–ligand RMSD. RMSD evaluation of a protein (left Y–axis); the ligand RMSD (right Y–axis) indicating the stability of ligand S_22e with respect to the protein and its binding pocket	117
5.20	The detailed atomic interactions of ligand S_22e with the key amino acid residues at the COX-2 active site	117
5.21	Stacked bar charts of protein interactions with ligand $S_2 2e$ as monitored throughout the MD simulation	117