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Figure A.1: Base Plate
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Figure A.5: Die Block
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Figure A.7: Lower adaptor

184



APPENDIX A. COMPONENT DRAWINGS

109depy 1odd( :gy oIn3rg

L)oSPXT

Y-V NOILJ3S

)

Y

00

C¢ZN

Y

0L

185



APPENDIX A. COMPONENT DRAWINGS

R12.5

84°

34

Figure A.9: Punch (84°)
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Figure A.11: Spherical Cup
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Figure A.12: Spherical Punch
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Figure A.13: RBSH test set-up

Component Name

1 Press M/C Ram

2 Top Clamping Plate

3 Upper Adaptor

4 Load Cell

5 Lower Adaptor

6 Punch

7 Die Assembly

8 Bottom Clamping Plate

9 Pressure Transducer-1

10 Riser Block

11 Press M/C Guide Pillar

12 Press M/C Hydraulic Controller
13 Press Machine Bolster

14 Hydraulic Power Pack-1

15 Fluid Inlet Hose

16 Hydraulic Power Pack-2

17 Fluid outlet Hose

18 Pressure Transducer-2

19 Data Collecting Cable(Load Cell)
20 Data Collecting Cable(PT-1)
21 Data Collecting Cable(PT-2)
22 Data Acquisition System(DAS)
23 DAS Data Cable
24 Monitor(CATMAN Software)
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Appendix B

Formulation for Dynamic Explicit Finite

Element Analysis

The explicit dynamics procedure performs a large number of small time increments
efficiently. An explicit central-difference time integration rule is used in Abaqus;
each increment is relatively inexpensive (in comparison to the direct-integration
dynamic analysis) because there is no solution for a set of simultaneous equations.
The explicit central-difference operator satisfies the dynamic equilibrium equations
at the beginning of the increment, t; the accelerations calculated at time t are used
to advance the velocity solution to time ¢+ % and the displacement solution to time

t + At.

The explicit dynamics analysis procedure is based upon the implementation of an
explicit integration rule together with the use of diagonal ("lumped”) element mass
matrices. The equations of motion for the body are integrated using the explicit

central-difference integration rule

Aty + At

- N _ N (i+1) TN

Yo T T T2 e (B-1)
u]\if—i-l) = Ué\if) + At(z’+1)?lj(vi+%) (B.2)

where uv

is a degree of freedom (a displacement or rotation component) and
the subscript 7 refers to the increment number in an explicit dynamics step. The
central-difference integration operator is explicit in the sense that the kinematic
state is advanced using known values of Ué\ifq /2) and ué\zf) from the previous incre-
ment. The explicit integration rule is quite simple but by itself does not provide
the computational efficiency associated with the explicit dynamics procedure. The

key to the computational efficiency of the explicit procedure is the use of diagonal

element mass matrices because the accelerations at the beginning of the increment
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ELEMENT ANALYSIS

are computed by

. -1
iigy = (M™) (P = 1) (B-3)

where MY/ is the mass matrix, P’ is the applied load vector, and I/ is the
internal force vector. A lumped mass matrix is used because its inverse is simple to
compute and because the vector multiplication of the mass inverse by the inertial
force requires only n operations, where n is the number of degrees of freedom in the
model. The explicit procedure requires no iterations and no tangent stiffness matrix.
The internal force vector, IV | is assembled from contributions from the individual

elements such that a global stiffness matrix need not be formed.

The explicit procedure integrates through time by using many small time incre-
ments. The central-difference operator is conditionally stable, and the stability limit
for the operator (with no damping) is given in terms of the highest frequency of the
system as

2
At <

(B.4)

Wmax

With damping, the stable time increment is given by

At < 2 (\/1 + &Rax — fmax> (B.5)

wmax

where &, is the fraction of critical damping in the mode with the highest
frequency. For explicit analysis, introducing damping to the solution reduces the
stable time increment. In Abaqus/Explicit software, a small amount of damping is

introduced in the form of bulk viscosity to control high frequency oscillations.
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