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Abstract. We study the motion of an active Brownian particle (ABP) using the overdamped Langevin
dynamics on a two-dimensional substrate with periodic array of obstacles and in a quasi–one-dimensional
corrugated channel comprised of periodically arrayed obstacles. The periodic arrangement of the obstacles
enhances the persistent motion of the ABP in comparison to its motion in the free space. Persistent motion
increases with the activity of the ABP. We note that the periodic arrangement induces directionality in
ABP motion at late time, and it increases with the size of the obstacles. We also note that the ABP exhibits
a super-diffusive dynamics in the corrugated channel. The transport property is independent of the shape
of the channel; rather it depends on the packing fraction of the obstacles in the system. However, the ABP
shows the usual diffusive dynamics in the quasi–one-dimensional channel with flat boundary.

1 Introduction

Active systems [1–4] have been a frontier area of research
in the last two decades because of their unusual proper-
ties as compared to the systems in thermal equilibrium.
Natural systems like motile microorganisms, flock of birds,
school of fishes, etc. and artificial (Janus) micro-particles
are some examples of the active systems. The individual
constituents of these systems transduce their internal en-
ergy into motion, i.e., they exhibit self-propulsion charac-
teristics, and therefore, they are also called self-propelled
particles (SPPs). In addition to the extensive study of
these systems in clean environments [1–3, 5–9], recently
people have started to look for their bulk properties in
heterogeneous medium [10–19].

Active Brownian particles (ABPs) [20] are one kind of
SPPs where the particles do not have any mutual align-
ment interaction, and they exhibit many interesting phe-
nomena like motility-induced phase separation [20–23].
In a recent study, Reichhardt et al. examine a two-
dimensional system of run-and-tumble active matter disks
that can exhibit motility-induced phase separation inter-
acting with a periodic quasi–one-dimensional traveling-
wave substrate. Authors note that the collective clustering
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of run-and-tumble disks could be an effective method for
forming an emergent object that can move against gradi-
ents or drifts even when individual disks on average move
with the drift [24]. In another study, Reichhardt et al.
consider ballistic active disks driven through a random
obstacle array. The formation of a pinned or clogged state
occurs at much lower obstacle densities for the active disks
than for passive disks [25]. Very recently, the dynamics of
the ABP is shown to be sub-diffusive in the presence of
obstacles modeled as a random Lorentz gas for the den-
sity of obstacles close to the percolation threshold [26].
These ABPs are shown to attain their long-time dynam-
ics faster than the passive (Brownian) particles, because
of their persistent motion [26]. In contrast, when obstacles
are arranged periodically, it is found that the persistent
length of the active particle increases [27]. Choudhury et
al., consider chemically boosted self-propelled Janus col-
loids moving atop a two-dimensional crystalline surface.
The authors find that the dynamics of the self-propelled
colloid reflects a competition between hindered diffusion
due to the periodic surface and enhanced diffusion due to
active motion [28]. Hence, the nature of the heterogeneous
environment modifies the dynamics of the active particles.

The dynamics of the active particle is not only modi-
fied in heterogeneous substrates, but it can also be mod-
ified using a confined channel. The boundary of the con-
fined wall plays an important role in the motion of ac-
tive particles [29–32]. Recently, Dey et al. showed that the
confinement can enhance the average rate of binding of the
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motor-cargo complexes to the microtubule, which leads
to an enhancement in the average velocity [30]. Also the
asymmetric channel corrugation induces a net-flux in the
motion of microswimmers along the channel, the strength
and direction of which strongly depends on the swimmer
type [31]. Furthermore, a non-zero average drift can be
induced in ABP using potential modulation between two
directions in a 2D periodic corrugated channel [32].

Motivated by the fact that the arrangement of the ob-
stacles, and a different kind of confined channel can mod-
ify the dynamics of the active particles, in the present
work we ask the question: How does the dynamics of
the active particle varies with its activity, and the den-
sity of the obstacles arranged periodically i) on a two-
dimensional substrate and ii) along the boundary of a
quasi–one-dimensional channel?

To answer the first question, we numerically study
the dynamics of an ABP on a 2D substrate with peri-
odically arranged obstacles. The ABP shows a cross-over
from its initial super-diffusive to diffusive dynamics, and
such a cross-over is an intrinsic feature of the active par-
ticles [33, 34]. We find that, due to the steric interaction
between the ABP and obstacles, the cross-over time of
the ABP increases with its self-propulsion speed. Further-
more, we note that in a dense obstacle environment the
ABP performs a more directed motion. In the later part
of this paper, the dynamics of the ABP in a quasi–one-
dimensional corrugated channel comprised of periodically
arrayed obstacles is studied. We find that the corrugated
channel governs a super-diffusive dynamics of the ABP
along the channel without any external drive. Also the
transport is independent of the shape of the corrugated
boundary, and it only depends on the packing fraction of
the obstacles in the channel. However, we find the flat
boundary does not encourage the super-diffusive motion.

The rest of the article is organized as follows. In sect. 2
we introduce the microscopic rule based model for the
ABP in periodic geometries. The results of the numerical
simulation of a 2D substrate with periodic obstacles and
corrugated channel are given in sects. 3.1 and 3.2, respec-
tively. Finally in sect. 4, we discuss our results and future
prospect of our study.

2 Model

We consider a circular-disk–shaped active Brownian parti-
cle of radius Rp placed in a periodic obstacle environment.
Its dynamics is studied for two models: i) in model I, we
consider a 2D L × L square lattice, where circular-disk–
shaped obstacles of radius Ro are placed periodically at
the vertices, and ii) in model II, we consider a quasi–one-
dimensional corrugated channel comprised periodically ar-
ranged circular or elliptical obstacles at the boundary of
the channel. The semi-major and the semi-minor axes of
the elliptical obstacles are designated by max(a′, b′) and
min(a′, b′), respectively. a′ and b′ are always chosen along
the x and y axes, respectively, as shown in fig. 1. For a
corrugated channel with circular obstacles a′ = b′. Let
us represent the position vector of the centre of the ABP

Fig. 1. (a) The schematic picture of a square lattice with
obstacles at its vertices. Centre-to-centre distance between ob-
stacles a = 1.0. The packing fraction of the lattice is varied
from Φ = 0.125 (obstacle free substrate) to Φ = 0.39. (b) The
schematic picture of a quasi–one-dimensional corrugated chan-
nel comprised of periodically arrayed circular/elliptical obsta-
cles. The periodicity a, and width of the channel d are shown.
reff (defined in the text) is shown. The Φ of the channel is
varied from Φ = 0.10 to 0.60 by changing d or a. Boxes show
the unit cell for both cases. x and y directions for both models
are shown.

by r(t) at time t. The ABP moves along its orientation
defined by a unit vector e(t) in the x-y plane. The dynam-
ics of the ABP is governed by the overdamped Langevin
equation

dr(t)
dt

= v0e(t) + μ
∑

i

F i
0 , (1)

de(t)
dt

=
√

2DRηR(t) × e(t). (2)

The first term on the right-hand side (RHS) of eq. (1)
is due to the activity of the ABP, and its self-propulsion
speed is v0. The second term represents the steric force
acting on the ABP due to its neighboring obstacles, and
it is tuned by a parameter μ, which is 0 for the obstacle-
free substrate and 1 for all other cases. We consider F0 =
−∇V , where the steric interaction is incorporated by the
Weeks-Chandler-Anderson potential defined as

V = 4ε

[(
σ

|r − ro|

)12

−
(

σ

|r − ro|

)6
]

+ ε,

for |r − ro| < reff ,

= 0, for |r − ro| ≥ reff . (3)

Here ro represents the position vector of the centre of
a neighboring obstacle. We treat the ABP as a point
point particle in our simulation, and its size is taken
care by an effective radius reff of the obstacles. While
in model I, reff = Rp + Ro, in model II, reff = Rp +
a′b′/

√
a′2 sin2 θ + b′2 cos2 θ, where θ is the angle of r − ro

with respect to the x-axis. We consider ε = 1, and the
parameter σ = reff/(21/6).

The rate of change of the orientation e(t) of the ABP
is given by eq. (2). DR represents the rotational diffusion
constant, and ηR = ηR

z ez is the stochastic torque with
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zero mean and Gaussian white noise correlations, i.e.,

〈ηR(t)〉 = 0, (4)

〈ηR(t1) ⊗ ηR(t2)〉 = 1δ(t1 − t2). (5)

Note that the stochastic torque always points out of the
substrate, i.e., along the z-axis.

The schematic of the models I and II are shown in
fig. 1(a) and (b), respectively, and the closed boxes repre-
sents the respective unit cells. Colors in fig. 1 shows the
intensity plot of the potential. White regions are zero-
potential regions, and the repulsive potential increases
from white to dark red. Figure 1(a) depicts a square lat-
tice with spacing a = 1. We define the packing fraction Φ
of the system as the fraction of the area of a unit cell oc-
cupied by the obstacles and the ABP. Therefore, in model
I the packing fraction is given by Φ = (πRo

2 + πRp
2)/a2.

We vary Φ from 0.125 (obstacle free substrate) to 0.39 by
changing Ro so that the ABP does not get confined in a
unit cell and it can pass through the obstacles.

In fig. 1(b) a corrugated channel of width d (i.e.,
centre-to-centre separation of two neighboring obstacles
in the y-direction) is shown schematically. The channel
is composed of elliptical or circular-disk–shaped obsta-
cles arrayed along the x-direction with periodicity a. The
packing fraction for the corrugated channel is defined as
Φ = (πa′b′ + πRp

2)/ad. We vary Φ in model II from 0.10
to 0.60. The surface-to-surface separation of the obstacles
are chosen such that the ABP cannot pass through the
obstacles along the y-direction.

The dimensionless angular Peclet number is defined as
Pe = v0/DRRp. The persistent length of the particle is
defined as l = v0/DR, and the corresponding persistent
time τ = 1/DR. The rotational diffusion constant is kept
fixed at DR = 0.1, and v0 is varied in our study. Initially
the ABP is placed randomly in one of the unit cells with
random e. The dynamics of the ABP is studied using the
evolution eqs. (1), (2). Periodic boundary condition is used
in both directions for model I and in x-direction for model
II. Simulation is done for total time steps 106 and 107

for models I and II, respectively, and the smallest time
step considered is Δt = 10−3. All the physical quantities
calculated here are averaged over 10000 realizations.

3 Results

3.1 Substrate with periodic array of obstacles

We first study the dynamics of the ABP on a 2D sub-
strate with periodic array of obstacles, i.e., for model I.
Typical trajectories of the ABP are shown in fig. 2. The
ballistic motion at the beginning for four ABPs with dif-
ferent initial direction is shown in fig. 2(a). The interplay
of obstacle hindrance and DR causes the ABP to follow
the obstacle boundary, which is shown in fig. 2(b). This
phenomena are also present at late time motion. The late
time trajectories of the ABP on the 2D substrate with pe-
riodic obstacles and in the obstacle free space are shown
in fig. 2(c) and (d), respectively. An interesting point to
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Fig. 2. The plot of the ballistic trajectories of four ABPs at
the beginning and when they follow the obstacle boundary are
shown in (a) and (b), respectively. The initial coordinate for
all ABPs is (49.5, 49.5), and their directions are different. Four
different colors are used for the four ABPs. The intersection
points of the dashed lines in (b) represent the centre of an
obstacle. The boxes in (a) represent the end point of the tra-
jectories, and boxes in (b) represent the starting of the trajec-
tories. Φ = 0.39. The plot of the late time diffusive trajectory
of an ABP on the two-dimensional periodic obstacle substrate
of Φ = 0.39, and Φ = 0.125 (free substrate) is shown in (c) and
(d), respectively. The time interval is the same (100) in (c) and
(d). We consider Pe = 50.

note from these two figures is that the late time trajectory
of the ABP shows a more directional motion in a periodic
obstacle environment in comparison to the free space.

To characterize the dynamics of the ABP, we calculate
its mean square displacement (MSD) defined as

〈Δr2(t)〉 =

1
N

N∑

n=1

[
(xn(t) − xn(0))2 + (yn(t) − yn(0))2

]
, (6)

where N is the total number of realizations, xn(t) and
yn(t) represent the respective coordinates of the ABP at
time t for the n-th ensemble in the x-y plane. The MSD of
the ABP in a periodic obstacle environment and in a free
substrate for different Pe are shown in fig. 3(a) and (b), re-
spectively. The ABP performs a persistent random walk,
which is one of the common features in the active sys-
tems [26–28,33]. Therefore, the MSD can be written as

〈Δr2〉 = 2DDeff t

[
1 − exp

(
− t

tc

)]
, (7)

where D represents dimensionality of the space, Deff is
the effective diffusion constant in the steady state, and
tc is the cross-over time from the initial ballistic regime
〈Δr2〉 = 4Deff t2/tc for t � tc to the late time diffusive
regime 〈Δr2〉 = 4Deff t for t 	 tc. The two lines of slope
2 and 1 shown in fig. 3 represent the ballistic (I) and the
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Fig. 3. Plot of the mean square displacement of the ABP
〈Δr2〉 vs. time t in the periodic square lattice of Φ = 0.39 (a)
and Φ = 0.125 (obstacle free substrate) (b). Region I and III
are the ballistic and diffusive regions of the ABP, respectively.
The lines of slope 2 (magenta) and 1 (indigo) are shown. The
approximate cross-over points from super-diffusive to diffusive
dynamics for different Pe for both cases are shown by a blue
arrow. Inset of (a): 〈Δr2〉 with time t for different Pe in region
II (when ABP moves along obstacle boundary) is shown.
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Fig. 4. Plot of the scaled mean square displacement
〈Δr2〉/4Deff tc vs. scaled time t/tc of the ABP in the square
lattice of Φ = 0.39 (a) and Φ = 0.125 (obstacle free sub-
strate) (b) is shown. (c) The cross-over time tc with Pe for
Φ = 0.39 and Φ = 0.125 (obstacle free substrate) are shown by
red square boxes and black circles respectively.

diffusive (III) regimes of the ABP, respectively, for differ-
ent Pe. We estimate the effective diffusivity Deff from the
asymptotic limit of 〈Δr2〉/4t vs. t variation as shown in
fig. 5(a), and the cross-over time tc is estimated by fitting
numerical data with eq. (7). The cross-over time tc for
the obstacle free environment does not change with Pe,
but tc changes with Pe for the periodic obstacle environ-
ment. The approximate change in tc is shown by arrows
in fig. 3(a) and (b). The ABP also realizes a small con-
finement effect (regime with label II) in the presence of
the obstacles during its persistent motion, and MSD dis-
plays a plateau for that time duration, which is shown in
the inset of fig. 3(a); this kind confinement is also present
at long time. The scaled MSD 〈Δr2〉/4Deff tc vs. scaled
time t/tc for different Pe for the periodic obstacle and the
obstacle free environment is plotted in fig. 4(a) and (b),
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Fig. 5. (a) Variation of 〈Δr2〉/4t with time t for Pe = 50.
The black and green lines are for Φ = 0.125 (obstacle free
substrate) and Φ = 0.39, respectively. (b) Plot of the effective
translational diffusion constant Deff of the ABP for different
Pe. The black circles, red squares and blue triangles are for
the periodic Φ = 0.125 (obstacle free substrate), Φ = 0.25 and
Φ = 0.39, respectively. The linear slopes for Φ = 0.125, 0.25
and 0.39 are 0.0018, 0.0011, 0.0009, respectively. The plot of
P (Θ) of the ABP for Φ = 0.39 and Φ = 0.125 (obstacle free
substrate) is shown in (c) and (d), respectively. For (c) and (d)
we consider Pe = 50.

respectively. In both the cases data shows a good scaling
collapse. The plot of tc vs. Pe for the periodic obstacle
(squares) and obstacle free substrate (circles) is shown in
fig. 4(c). The tc changes with Pe for the periodic obsta-
cle substrate, whereas it is constant for the free substrate.
Also tc is larger for the periodic obstacle environment as
compared to the free case. Therefore the periodicity en-
hances the persistence motion of the ABP.

The variation in the effective diffusion constant Deff

with Pe2 for different Φ is shown in fig. 5(b). The en-
hanced diffusion is one of the intrinsic feature in the active
systems, as found before in [35]. We find that the effec-
tive diffusivity Deff of the ABP for a fixed v0 decreases
as we increase Φ. For Φ = 0.39 and 0.125, Deff ∼ Pe2

with slope 0.0009 and 0.0018, respectively. Interestingly,
Deff in the dense periodic (p) obstacle environment is ex-
actly half of its value in the obstacle free (f) space. In the
steady state, the MSD of the ABP can be expressed by
2DeffD

p/f
eff t, where Deff is the effective dimensionality

of the space and D
p/f
eff represents the effective diffusiv-

ity in the periodic obstacle / obstacle free environment.
Since Dp

eff = 1
2Df

eff , the effective dimensionality for the
system for dense periodic array of obstacles reduces to
one. To further explain this, we calculate the probability
distribution function P (Θ) of the instantaneous orienta-
tion Θ of the ABP in the steady state. The plot of P (Θ)
for the periodic obstacle and the obstacle free substrate
is shown in fig. 5(c) and (d), respectively. P (Θ) shows
peaks for the dense periodic obstacle environment and the
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magnitude of one peak is always larger. The height of the
peaks decreases as we decrease Φ (data is not shown).
However, P (Θ) becomes flat for the obstacle free envi-
ronment. Therefore the ABP moving in a dense periodic
obstacle environment shows a directional preference dur-
ing its motion. This explains why the Deff of the ABP in
a periodic environment is half of its value in free space.

The periodic arrangement of the obstacles enhances
the persistent motion of the ABP, and at late time, the
motion is more like a one-dimensional persistent random
walk. This phenomenon of the ABP is not present either in
random obstacles [26] or in free environment. The immedi-
ate question arises as to what will happen if we restrict the
motion of the ABP along one direction only. In the next
part of this paper we study the dynamics of the ABP in
a quasi–one-dimensional corrugated channel as shown in
fig. 1(b).

3.2 Corrugated channel

First we consider a corrugated channel comprised of
circular-disk–shaped obstacles with periodicity a and
width d. The radii of each obstacle and the ABP are cho-
sen as Ro = 0.29 and Rp = 0.2, respectively. The dynam-
ics of the ABP is characterized by its MSD as defined in
eq. (6) and a MSD exponent β such that 〈Δr2(t)〉 ∼ tβ .
This exponent β can also be defined as

β(t) = log10

〈Δr2(10t)〉
〈Δr2(t)〉 . (8)

The exponent β = 2 and 1 for the ballistic and the dif-
fusive dynamics, respectively. We fixed the periodicity of
the channel and changed the width of the channel to vary
the Φ of the system. The MSD for different Φ is shown
in fig. 6(a), and we calculate the β from MSD data. We
note that at early time t � 100, the exponent β < 1 for
large Φ, i.e., the ABP exhibits sub-diffusive dynamics for
high packing fraction and it exhibits diffusive dynamics
(β = 1) for low packing fraction, as shown in fig. 6(b).
However, at late time t � 100, the ABP shows a super-
diffusive behavior (β > 1) only for a high packing frac-
tion (Φ = 0.52, 0.43), whereas for a low packing frac-
tion (Φ = 0.17) of the channel, the dynamics is diffusive
(β = 1), as shown in fig. 6(c). Here we consider Pe = 100,
and we also note a similar behavior for Pe = 50.

To understand the importance of the corrugated ge-
ometry, we also calculate the MSD of the ABP in a quasi–
one-dimensional channel with flat boundary. We note that
the ABP performs diffusive motion in the flat geometry, as
is evident from fig. 6(d)–(f) drawn for the channel width
d = 0.42 and ABP radius Rp = 0.2. Therefore, the quasi–
one-dimensional corrugated channel drives the ABP to-
wards super-diffusive dynamics (β > 1) for sufficiently
large time as shown in fig. 6(c). But after very long time
(∼ 3 × 104) the ABP changes its direction due to its ro-
tational diffusion, and further moves in opposite direction
for a similar period of time. Hence, the periodicity of the
corrugated channel leads to a much larger (∼ 104) persis-
tent time/motion of the ABP for a high packing fraction
Φ of the obstacles.
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(d)–(f), respectively. For the flat channel the radius of the ABP
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Fig. 7. (a) Plot of the transport speed VT of the ABP in the
corrugated channel with packing fraction Φ. We varied Φ from
0.10 to 0.60. For filled circles, we change the channel width
d to vary Φ, and for square boxes, Φ is changed by varying
the periodicity a of the obstacles along the boundary of the
channel. (b) Plot of VT of the ABP in the corrugated channel
comprised of periodically arrayed elliptical obstacles vs. b′. We
fixed the Φ = 0.52 and a′ = 0.29. For (a) and (b) Pe = 100.
The error bar of VT is shown for all cases.

The induced directionality in the quasi–one-
dimensional corrugated channel motivates us to look
for a net transport of the ABP through the channel.
The transport is explored through statistical averages,
specifically through the absolute value of the mean
displacement, Δr(t) =

√
〈Δr2(t)〉. The transport speed is

defined as VT = 1
v0

(Δr(t)/t). The VT for different packing
fraction Φ of the obstacles in the channel are shown in
fig. 7(a). We note that VT increases with Φ. We can tune
the Φ of the channel either by decreasing the channel
width d, or by placing the obstacles more periodically
(by decreasing a). Therefore, a corrugated channel with
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closely placed circular-disk–shaped obstacles speeds up
the net transport of the ABP.

To study how the super-diffusive transport of the ABP
depends on the shape of the corrugated channel, we con-
sider a quasi–one-dimensional corrugated channel com-
prised of periodically arrayed elliptical-disk–shaped obsta-
cles, as described in sect. 2. The earlier described case of
circular-disk–shaped obstacles is a special case of the ellip-
tical obstacles when a′ = b′. We keep a′ = 0.29 fixed, and
vary b′ such that shape of the elliptical obstacles changes
from oblate to prolate. b′ has been varied by varying the
width d of the channel. b′ and width d are chosen such that
the packing fraction Φ of the channel remains constant. We
note that VT does not depend on b′ for a particular value
of Φ, as shown in fig. 7(b). Therefore, the transport speed
of the ABP in a corrugated channel does not depend on
the shape of the corrugated channel.

4 Discussion

In the first part of this paper, we have studied dynamics of
an ABP in the presence of circular-disk–shaped obstacles
arrayed periodically on a 2D substrate. In the presence
of the periodically arrayed obstacles, the cross-over time
from ballistic to diffusive dynamics of the ABP increases
with its activity. We find that the induced directional-
ity in ABP motion increases with the packing fraction of
the obstacles. The motion of the ABPs is directional in a
crowded environment when obstacles are arrayed in peri-
odic fashion.

Motivated by the induced directed motion of the ABP
in a periodic crowded environment, in the second part
of this paper, we have studied the motion of the ABP
in a quasi–one-dimensional corrugated channel, where the
motion of the ABP is confined along one direction. We find
the super-diffusive dynamics of the ABP over a long time
in the quasi–one-dimensional corrugated channel without
any external drive. This makes our study different from
the previous studies, where the net transport of the ABP
is observed with an asymmetric corrugated channel [31] or
using potential modulation in a corrugated channel [32].
The net transport of the ABP in a corrugated channel does
not depend on the shape of the wall. The transport speed
only depends on the packing fraction of the obstacles in
the system. However, the ABP shows the usual diffusive
dynamics in a channel with flat boundary.

Hence the channel with corrugated wall, the activ-
ity of the ABP lead to super-diffusive dynamics of the
ABP without any external drive. Such transport is use-
ful to understand the dynamics of biological microorgan-
isms, intercellular particles, since those often encounter
a crowded environment during their motion. This model
provides a significant understanding of the dynamics of
the self-propelled particles in confined geometry, which
can be verified in experiments and may be helpful for de-
signing an efficient transport mechanism. In our current
study, we have ignored the inter-particle interaction. It is
also interesting to study the dynamics of the interacting
ABPs in different kinds of confined geometries.
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