Fig. 2.1	Summarized representation of major metabolic pathways for synthesis of the various biopolymers	6
Fig. 2.2	Two protein components of silk fiber i.e. fibroin and sericin proteins.	13
Fig. 2.3	Structure of gellan gum	14
Fig. 2.4	Structure of chitosan	15
Fig. 2.5	Inflammation; the I st stage of wound healing	21
Fig. 2.6	New tissue formation; the II nd stage of wound healing	22
Fig. 2.7	Remodelling; the III rd stage of wound healing	23
Fig. 2.8	Some types of commercial wound dressing products	25
Fig. 2.9	Regenerative medicinal therapy for advanced wound healing without scar formation. Figure also shows the comparative difference of healed tissue in case of regenerative medicinal therapy and through classical wound healing	26
Fig. 2.10	Chemical structure of ciprofloxacin hydrochloride (cpr)	28
Fig. 3.1	Isolation of SF from <i>B. mori</i> cocoons	33
Fig. 3.2	Schematic diagram for fabrication of SF_{sc} , GG_b , GG_{sc} , SF - GG and SF - GG_b - SF .	36
Fig 3.3.	Standard curve of ciprofloxacin hydrochloride (cpr)	38
Fig. 3.4	Morphology of different scaffolds/beads, their corresponding FESEM images showing ultra-structure and EDX spectra showing elemental profile respectively: (a, b, c) SF_{sc} , FESEM image and EDX spectra (d, e, f) GG_{sc} , FESEM image and EDX spectra (g, h, i) SF-GG, FESEM image and EDX spectrra	43
Fig. 3.5	Morphology, corresponding FESEM images and EDX spectra of GG_b (a, b, c) and of SF- GG_{sc} -SF (d, e, f).	44
Fig. 3.6	Percentage loading efficiency of <i>cpr</i> in different scaffolds/beads	46
Fig 3.7	Cumulative cpr release from different scaffolds/beads viz. SF _{sc} , GG _b , GG _{sc} , SF-GG & SF-GG _b -SF at pH 6.0 in SWF	47

Fig. 3.8	Swelling ratio of different scaffolds/beads viz. SF_{sc} , GG_b , GG_{sc} , $SF-GG \& SF-GG_b-SF$ at pH 6.0 in SWF	49
Fig. 3.9	Stress <i>vs</i> strain curve for SF _{sc} , GG _b , GG _{sc} , SF-GG & SF-GG _b -SF up to 75% of compression	50
Fig. 3.10	Ultimate compressive strength of SF_{sc} , GG_b , GG_{sc} , SF -GG & SF -GG G_b -SF at 75% of compression; calculated from stress strain curve	51
Fig. 3.11	Compressive modulus of SFsc, GGb, GGsc, SF-GG & SF-GGb-SF at initial 2% strain	51
Fig. 3.12	Optical image of hemolysis activity of SF-GG _b -SF after 1h incubation at 37° C with 2% blood in physiological saline, along with +ve (blood in water) and –ve (blood in saline) controls	53
Fig. 3.13	AFM image of the SF-GG _b -SF surface (a) 2D image, (b) 3D image (c) Height profile of the corresponding AFM image	54
Fig. 3.14	Rate of dehydration (WER) of SF-GG _b -SF at 37° C and 35% relative humidity	54
Fig. 3.15	FTIR spectra of SF-GG _b -SF along with SF, GG _b and <i>cpr</i> as controls	56
Fig. 3.16	Loss of cell viabilities of <i>E. coli</i> and <i>S. aureus</i> due to antimicrobial effect of SF-GG _b -SF in the first set of experiment conducted by native scaffold	57
Fig. 3.17	Loss of cell viabilities of <i>E. coli</i> and <i>S. aureus</i> due to antimicrobial effect of SF-GG _b -SF in the second set of experiment conducted with the scaffold pre-incubated in SWF for 24h	58
Fig. 4.1	Plant of Salvinia molesta	63
Fig. 4.2	Aqueous extract of Salvinia molesta (AES)	64
Fig. 4.3	Change in color of reaction mixture recorded at different time intervals in bright sunlight and in dark conditions	69
Fig. 4.4	U.V-Visible spectra for sunlight exposed reaction mixture and for reaction mixture kept at dark condition	70

Fig. 4.5	UV–Visible absorption spectra of synthesized AgNPs recorded at different time (from 5 to 40 min) in direct sunlight exposure, conditions; AgNO ₃ conc. 5 mM, AES inoculum dose 2.5% (v/v).	71
Fig. 4.6	UV–Visible absorption spectra of AgNPs, recorded as a function of variable AgNO ₃ concentration varied from 1 mM to 10 mM,; reaction time of 35 min in sunlight and 5.0 $\%$ (v/v) AES inoculum dose	72
Fig. 4.7	UV–Visible absorption spectra of AgNPs, recorded at different inoculum doses of AES varied from 2.5% to 12.5% (v/v), conditions; AgNO ₃ concentration; 8mM and reaction time of 35 min in sunlight	73
Fig. 4.8	(a) FESEM images of AgNPs synthesized by 5.0 (v/v) % AES, 8 mM AgNO ₃ and 35 min of sunlight exposure time (b) EDX spectrum of AgNPs obtained from optimization. (c) HRTEM images of optimized AgNPs, SAED pattern of crystalline AgNPs (inset), (d) AgNPs Histogram. (e) AFM of images showing lateral view of AgNPs (f) AFM of images showing 3D view of AgNPs	76
Fig. 4.9	(a) X-ray diffraction pattern of synthesized AgNPs. (b) JCPDS data (File No.893722) for comparative analysis of XRD pattern of AgNPs	77
Fig. 4.10	Typical FTIR spectra of the AES and AgNPs	79
Fig. 4.11	UV-Visible spectra of AgNPs showing stability of AES synthesized AgNPs up to 7 days of incubation period	79
Fig. 4.11 Fig. 4.12	UV-Visible spectra of AgNPs showing stability of AES synthesized AgNPs up to 7 days of incubation period Schematic representation of probable mechanism for; (a) biosynthesis of AgNPs using AES through both photo- activated and ambient route i.e. at normal lab conditions, tannin was considered as bioreductant (b) alternative reduction route through reducing sugars of AES and stabilization of synthesized AgNPs through protein capping	79 81
Fig. 4.11 Fig. 4.12 Fig.4.13	 UV-Visible spectra of AgNPs showing stability of AES synthesized AgNPs up to 7 days of incubation period Schematic representation of probable mechanism for; (a) biosynthesis of AgNPs using AES through both photoactivated and ambient route i.e. at normal lab conditions, tannin was considered as bioreductant (b) alternative reduction route through reducing sugars of AES and stabilization of synthesized AgNPs through protein capping Antimicrobial efficacy of synthesized AgNPs against; (a) <i>Staphylococcus aureus</i> (Gram +ve) (b) <i>E. coli</i> (Gram -ve). Disc (1) Buffer solution, (2) AES (3) AgNO₃ and (4) AgNPs 	79 81 83

Fig. 5.1	Tamarindus indica leaves	86
Fig 5.2	Color variation of reaction mixture with proceeding of time in bright sunlight and in dark conditions	88
Fig 5.3	UV–Visible spectra showing effect of photo-induction on synthesis of AgNPs via AET	89
Fig. 5.4	UV–Visible spectra showing effect of time on AgNPs synthesis (conditions; AgNO ₃ conc. 1 mM, AET inoculum dose 2.5% (v/v))	90
Fig. 5.5	UV–Visible spectra showing effect $AgNO_3$ conc. on synthesis of AgNPs. (conditions; reaction time of 40 min in sunlight and 2.5% % (v/v) AET inoculum dose)	91
Fig. 5.6	UV–Visible spectra showing effect AET inoculum dose on synthesis of AgNPs. (conditions; $AgNO_3$ concentration; $5mM$ and reaction time of 30 min in sunlight)	92
Fig. 5.7	(a & b) FESEM images of AgNPs; synthesized via AET at optimum process parameters	93
Fig. 5.8	(a) FESEM image of AET synthesized AgNPs and (b) EDX spectrum of AgNPs of corresponding FESEM image	94
Fig. 5.9	(a) TEM image of AgNPs synthesized at optimum parameters(b) Size distribution histogram and curve for correspondingTEM image	94
Fig. 5.10	X-ray diffraction pattern of synthesized AgNPs through AET at optimum parameters	95
Fig. 5.11	FTIR spectra of the AET and AgNPs	97
Fig. 5.12	UV-Visible spectra of AgNPs showing stability of AET synthesized AgNPs up to 7 days of incubation period	97
Fig. 5.13	(a) Antimicrobial efficacy of synthesized AgNPs against; (a) <i>E. coli</i> (Gram -ve) (b) <i>Staphylococcus aureus</i> (Gram +ve). Disc (1) Buffer solution, (2) AET (3) AgNO ₃ and disc (4) AgNPs.	98
Fig 5.14	Cell-viability test: decrease in cell viabilities of <i>E. coli</i> and <i>S. aureus</i> (10^7 colony forming units/mL) when treated with AET synthesized AgNPs (conc. equivalent to MIC) at 37 °C for 8 h at 200 rpm shaking speed	100

Fig 6.1	AAS standard curve for estimation of concentration of silver in the sample solution	106
Fig 6.2	Schematic diagram showing methodology for designing of wound dressing	107
Fig 6.3	Optical images and FESEM images of all scaffolds (a-c) for SF _{sc} 2% w/v (d-f) for S/C/NpCp (2:1), (g-i) for S/C/NpCp (1:1), (j-l) for S/C/NpCp (1:2), (m-o) for CS _{sc} 2% w/v	112
Fig. 6.4	Swelling behavior of SF _{sc} , CS _{sc} , S/C/NpCp (1:2), S/C/NpCp (1:1) and S/C/NpCp (2:1) scaffolds in SWF at pH 6.0	113
Fig. 6.5	Degradation behavior of SF _{sc} , CS _{sc} , S/C/NpCp (2:1), S/C/NpCp (1:1) and S/C/NpCp (1:2) scaffolds in SWF (pH 6.0, Temperature 37°C) containing lysozyme (112 U/mL)	114
Fig 6.6	Ultimate compressive strengths at 75% compression (values marked as *) and compressive modulus (in inset) along with the stress strain curves of all scaffolds <i>viz.</i> SF _{sc} , CS _{sc} , S/C/NpCp (2:1), S/C/NpCp (1:1) and S/C/NpCp (1:2)	116
Fig. 6.7	Release pattern of <i>cpr</i> from SF_{sc} , CS_{sc} , $S/C/NpCp$ (2:1), $S/C/NpCp$ (1:1) and $S/C/NpCp$ (1:2) in SWF at pH 6.0 and temperature $37^{\circ}C$	117
Fig 6.8	FTIR spectra of control and blend scaffolds viz. SF_{sc} , CS_{sc} , $S/C/NpCp$ (2:1), $S/C/NpCp$ (1:1) and $S/C/NpCp$ (1:2) along with the FTIR spectra of drug <i>cpr</i> and AgNPs	119
Fig. 6.9	X-ray diffraction patterns of SF _{sc} , CS _{sc} , S/C/NpCp (2:1), S/C/NpCp (1:1) and S/C/NpCp (1:2), <i>cpr</i> and AgNPs	121
Fig 6.10	FESEM imaging of S/C/NpCp (1:1) scaffold with gradual increment in the magnification and associated EDX spectra for FESEM image at 50 KX magnification	124
Fig 6.11	Release of silver from S/C/NpCp (1:1) in SWF at pH 6.0 and temperature 37°C	125
Fig 6.12	Cell viability test for first set of experiments which were conducted through native S/C/NpCp (1:1) scaffolds against <i>E. coli</i> and <i>S. aureus</i> in MHB	126
Fig 6.13	Cell viability test for the second set of cell viability experiments against <i>E. coli</i> and <i>S. aureus.</i>	127

Fig 6.14	Visual confirmation haemocompatibility of S/C/NpCp (1:1) by hemolytic activity shown by sample after incubation in physiological saline at 37°C for 1h	128
Fig. 6.15	Water loss from swollen S/C/NpCp (1:1) during dehydration 37°C temperature and 35% relative humidity	128
Fig 6.16	AFM image of randomly selected screened area on the S/C/NpCp (1:1); (a) 2D image, (b) 3D image (c) height index curve of screened surface	129
Fig 6.17	Optical images of open excision progressive wound healing in Charles-Foster albino rats for evaluating the wound healing efficiency of developed wound dressing by S/C/NpCp (1:1) scaffold.	131
Fig 6.18	Percentage reduction in size of wound in the animals of different groups; Cg: control group, Tg-1: group treated with dressing without drug (S/C (1:1)) and Tg-2: group treated with dressing with drug (S/C/NpCp (1:1))	132
Fig 6.19	Histology of wound tissue (a) at day 0 in control group-Cg (b) at 14^{th} post surgery day in Cg (c) at 14^{th} post surgery day in group Tg-1 (d) at 14^{th} post surgery day in group Tg-2.	134