CONTENTS	
	Page No.
List of Tables	v
List of Schemes	vi
List of Figures	vii
List of Abbreviations	xiv
Preface	XV
1. INTRODUCTION	1-44
1.1 Introduction	1
1.2 Synthesis of Polyurethanes (PUs)	3
1.3 Components of Polyurethanes (PUs)	5
1.3.1 Polyols	5
1.3.2 Isocyanates	6
1.3.3 Chain extenders	7
1.4 Applications of Polyurethane	8
1.5 Graphene	10
1.6 Functionalization of graphene and its associated chemistry	12
1.6.1 Covalent functionalization	12
1.6.2 Non-covalent functionalization	15
1.7 Nanocomposites	16
1.8 Preparation of nanocomposites	17
1.8.1 Melt blending method	17
1.8.2 Solution casting method	17
1.8.3 In-situ method	18
1.8.4 Latex technique	18
1.9 Types of Nanocomposites	18
1.9.1 Flocculated nanocomposites	19
1.9.2 Intercalated nanocomposites	19
1.9.3 Exfoliated nanocomposites	19
1.10 Literature review	20
1.10.1 Dispersion and structure	20
1.10.2 Morphology	23
1.10.3 Thermal behavior	26
1.10.4 Mechanical behavior	29
1.10.5 Gas barrier and Conductivity	33
1.10.6 Biological studies	36
1.10.6.1 Drug Delivery	37
1.10.6.2 Cytotoxicity	39
1.10.6.3 Hemocompatibility	40
1.10.7 Lackuna in polyurethane graphene nanocomposites	42
1.10.8 Objectives of work	

2. EXPERIMENTAL	45-61
2.1 Synthesis	45
2.1.1 Materials	45
2.1.2 Synthesis of polyurethane	45
2.1.3 Synthesis of polyurethane / graphene nanocomposites	46
2.1.4 Synthesis of graphene oxide	47
2.1.5 Synthesis of amine modified graphene oxide	48
2.1.6 Synthesis of diamine modified graphene oxide	48
2.1.7 Synthesis of amine sulfonated graphene oxide	48
2.1.8 Synthesis of physically mixed and chemically grafted nanocomposites	49
2.1.9 Synthesis of diamine modified graphene oxide grafted nanocomposites	50
2.1.10 Synthesis of amine sulfonated graphene oxide grafted nanocomposites	51
2.1.11 Coupon Preparation	52
2.2 Characterization of polyurethane and its nanocomposites	53
2.2.1 X-ray Diffraction (XRD)	53
2.2.2 Small angle neutron scattering (SANS)	53
2.2.3 Nuclear Magnetic Resonance Spectroscopy (NMR)	54
2.2.4 Fourier Transform Infrared Spectroscopy (FTIR)	54
2.2.5 UV-Visible Spectroscopy (UV-visible)	54
2.2.6 Gel Permeation Chromatography (GPC)	55
2.2.7 Morphological observation	55
2.2.8 Mechanical behavior	55
2.2.9 Thermal studies	56
2.2.10 Contact angle measurement	57
2.2.11 Enzymatic degradation	57
2.2.12 Gravimetric Measurement	57
2.2.13 Drug assay and release	58
2.2.14 Biocompatibility of pure polyurethane and its nanocomposites	58
2.2.14.1 Cell culture	58
2.2.14.2 Cell Viability	59
2.2.14.3 Fluorescence studies	59
2.2.14.4 Cell adhesion	60
2.2.14.5 Reactive Oxygen Species (ROS)	61
2.2.14.6 Mitotracker Analysis	61

RESULTS AND DISCUSSION

3. EFFECT OF GRAPHENE ON POLYURETHANE PROPERTIES	62-87
3.1 Introduction	62
3.2 Results and discussion	65
3.2.1 Dispersion and self-assembly	65
3.2.2 Interaction	70
3.2.3 Mechanical behavior	74
3.2.4 Thermal properties	77
3.2.5 Enzymatic degradation	78
3.2.6 Drug release	80
3.2.7 Cell Viability and Fluorescence	83
3.2.8 Cell adhesion	84
3.3 Conclusion	86

4. INFLUENCE OF AMINE MODIFIED GRAPHENE ON POLYURETHANE 88-114 PROPERTIES

4.1 Introduction	88
4.2 Results and Discussion	91
4.2.1 Functionalized graphene as chain extender	91
4.2.2 Nanostructure and interactions	92
4.2.3 Effect of graphene on structure, stability and morphology	97
4.2.4 Graphene induced toughening in polyurethane	100
4.2.4 Graphene induced self-assembly in polyurethane	101
4.2.6 Enzymatic degradation	105
4.2.7 Sustained drug delivery	106
4.2.8 Cell viability	110
4.2.9 Cell adhesion	111
4.3 Conclusions	113

5. EFFECT OF DIAMINE MODIFIED GRAPHENE OXIDE ON 115-138 POLYURETHANE PROPERTIES

5.1 Introduction	115
5.2 Results and Discussion	117
5.2.1 Functionalization of graphene oxide	117
5.2.2 XRD and ¹ H-NMR of graphene oxide and modified graphene oxide	118
5.2.3 Graphene tagged polyurethanes and interactions	119
5.2.4 Morphology and structure	122
5.2.5 Effect of modified graphene tagging on thermal stability and structure	123
5.2.6 Mechanical responses - effect of graphene tagging	125
5.2.7 Functionalized graphene induced self-assembly	127
5.2.8 Sustained drug delivery - the effect of graphene tagging	130
5.2.9 Biological studies - cell viability and adhesion	133
5.2.10 Intracellular reactive oxygen (ROS) contents and mitotracker analysis	135
5.3 Conclusion	138

6. EFFECT OF SULFONATED GRAPHENE ON POLYURETHANE 139-155 PROPERTIES

7. CONCLUSION AND FUTURE WORK	156-163
6.3 Conclusion	155
6.2.8.2 Cell Adhesion	153
6.2.8.1 Cell Viability	152
6.2.8 Biocompatibility Studies	152
6.2.7 Gravimetric Measurement	151
6.2.6 Graphene induced self-assembly in polyurethane	147
6.2.5 Structure and Morphology	146
6.2.4 Dispersion and Interaction	144
6.2.3 Grafting of prepolymer chain to modified graphene	143
6.2.2 XRD and ¹ H-NMR of graphene oxide and modified graphene	142
6.2.1 FTIR and UV-visible spectra	141
6.2 Results and Discussion	141
6.1 Introduction	139

REFERENCES LIST OF PUBLICATIONS