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for the structures (a) (T3)

10 and (b) (T4)
10, where lattice parameters d1 = 7 

2  
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Figure 5.28 The distribution of omnidirectional bands as a function of temperature 
for the structures (a) (D3)

10 and (b) (D4)
10, here lattice parameters d1 = 7 

2  
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Figure 5.29 The variation of the total photonic bandwidth as a function of the (a) 
quasi-periodic generation and (b) Temperature in 1-D quasi-periodic 
multilayer structures, where lattice parameters; d1 2  
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Figure 5.30 The variation of the total omnidirectional bandwidth as a function of 
the (a) quasi-periodic generation and (b) Temperature in 1-D quasi-
periodic multilayer structures, where d1 2  
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Table 5.1 Generations of the quasi-periodic sequences. 141 

 


