List of Figures

Page No.

Fig. 1.1	Picture of cracked Liberty Ship	02
Fig. 1.2	Picture of an Airplane with fatigue crack	03
Fig. 1.3	Stress concentration around a hole in a uniformly stressed plate.	07
	The stress at the edge of the hole is three times the applied	
	uniform stress	
Fig. 1.4	Energy versus crack length showing strain energy released and	10
	surface energy required as crack length increases for a	
	uniformly applied stress.	
Fig. 1.5	Fundamental Irwin's cracking modes of fracture: (a) Mode I (b)	19
	Mode II and (c) Mode III. The figures on the right indicate	
	displacements of atoms on a plane normal to the crack near the	
	crack tip.	
Fig. 2.1	Geometry of the problem	43
Fig. 2.2	Geometry of interfacial and sub-interfacial cracks	43
Fig. 2.3	Plot of stress magnification factor M_I vs. h	49
Fig. 2.4	Plot of Stress Magnification factor M_{II} vs. h	49
Fig. 3.1	Geometry of the Problem	56
Fig. 3.2	Plots of $W/a p^2$ and $G/a p^2$ versus c for $h=5$	61
Fig. 3.3	Plots of $W/a p^2$ and $G/a p^2$ versus c for $h=10$	62
Fig. 3.4	Plots of $W/a p^2$ and $G/a p^2$ versus c for $h=15$	62
Fig. 3.5	Plots of $W/a p^2$ and $G/a p^2$ versus c for $h=20$	63
Fig. 3.6	Plots for combined mode fracture surfaces for various values of	63
	h	

Fig. 4.1	Geometry of the problem	69
Fig. 4.2	Plots of $K_I^a / \sqrt{a} p$ and $K_{II}^a / \sqrt{a} p$ vs. a/b for first pair of	78
	materials	
Fig. 4.3	Plots of $K_I^a / \sqrt{a} p$ and $K_{II}^a / \sqrt{a} p$ vs. a / b for second pair of	79
	materials	
Fig. 4.4	Plots of $K_I^b / \sqrt{a} p$ and $K_{II}^b / \sqrt{a} p$ vs. a / b for first pair of	79
	materials	
Fig. 4.5	Plots of $K_I^b / \sqrt{a} p$ and $K_{II}^b / \sqrt{a} p$ vs. a/b for second pair of	79
	materials	
Fig. 4.6	Plot of $W/a p$ vs. a/b for first pair of materials	80
Fig. 4.7.	Plot of W/ap vs. a/b for second pair of materials	80
Fig. 5.1	Geometry of the problem	85
Fig. 5.2	Plot of M_I^a vs. b/a at $a=0.5$	92
Fig. 5.3	Plot of M_{II}^{a} vs. b/a at $a=0.5$	93
Fig. 5.4	Plot of M_I^b vs. b/a at $b=0.6$	93
Fig. 5.5	Plot of M_{II}^{b} vs. b/a at $b=0.6$	93
Fig. 5.6	Plot of M_I^1 vs. b/a at $b=0.6$	94
Fig. 5.7	Plot of M_{II}^1 vs. b/a at b=0.6	94
Fig. 6.1	Plots of $K_I(t)/K_I(\infty)$ against $C_s t/a$ for various x_0/a at $h=2$	104
	for graphite epoxy	
Fig. 6.2	Plots of $K_I(t)/K_I(\infty)$ against $C_s t/a$ for various x_0/a at $h = 4$	105
	for graphite epoxy	
Fig. 6.3	Plots of $K_I(t)/K_I(\infty)$ against $C_s t/a$ for various x_0/a at $h = 6$	105

for graphite epoxy

- **Fig. 6.4** Plots of $K_I(t)/K_I(\infty)$ against $C_s t/a$ for various x_0/a at h = 2 106 for glass-epoxy
- **Fig. 6.5** Plots of $K_I(t)/K_I(\infty)$ against $C_s t/a$ for various x_0/a at h = 4 106 for glass-epoxy
- **Fig. 6.6** Plots of $K_I(t)/K_I(\infty)$ against $C_s t/a$ for various x_0/a at h = 6 107 for glass-epoxy
- **Fig. 6.7** Plots of crack opening displacement against field co-ordinate x 108 for different values of x_0 / a for graphite-epoxy material
- Fig. 6.8Plots of crack opening displacement against field co-ordinate x108for different values of x_0 / a for glass-epoxy material