
 

 

 

Chapter 6 
 
 
 
 
Study of cracked orthotropic elastic strip under normal 
impact loading conditions 

6.1 Introduction 

With the increased usage of composite materials, the researchers are very much 

attracted towards the problems of composites. Composite materials are by nature 

anisotropic. Thus, the study of an anisotropic medium with a crack is of great 

importance in fracture analysis of composites.  

The dynamic problems of singular stresses around cracks in an orthotropic medium are 

few in number. This may be due to mathematical complexity of such problems. The 

behaviour of dynamic stress intensity factor on cracked faces subject to normal impact 

loading was observed by Freund (1974). Kassir and Bandyopadhyay (1983) have 

considered the elasto-dynamic response of an infinite orthotropic solid containing a 

crack under the action of impact loading. Itou (1989) studied the dynamic stress 

intensity factors around two coplanar Griffith cracks in an orthotropic layer sandwiched 

between two isotropic elastic half planes. Due to the presence of finite boundaries, the 

problems become more complicated and analytical treatments on the transient crack 

problems for orthotropic materials including the effect of boundaries are few in number. 

Gonzalez and Mason (2000) have studied the problem of mixed mode dynamic stress 

intensity factor subjected to point loading condition. Rizza (2003) studied impact 
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response of a cracked orthotropic material. Itou (2010) had studied the dynamic stress 

intensity factors for two parallel interfacial cracks between a non-homogeneous bonding 

layer and two dissimilar elastic half planes subjected to an impact loading condition. 

Composite materials are widely used in engineering applications, so their mechanical 

behavior becomes important for the fundamental understanding. In composite materials 

dynamic crack propagation and the response of cracked composite bodies under 

concentrated point loading condition have been investigated both theoretically and 

experimentally by researchers few (Shindo et al. (1985, 1999), Ma et al. (2005), Rizza 

(2003), Hongmin et al. (2007), Freund (1973, 1990)) names working in the field of 

composite materials.  

In isotropic solids many exact solutions exist for the evaluation of stress field around 

stationary and propagating cracks but in case of anisotropic solids only few solutions 

are available for the stress field around stationary and propagating cracks. This is due to 

the mathematical complexity of such problems. Generally integral transform techniques 

are used to solve problems involving cracked orthotropic bodies subjected to impact 

loading conditions which leads to a Fredholm integral equation on the Laplace 

transform domain, rather than a Weiner-Hopf equation as is found for isotropic 

materials. The dynamic stress intensity factor on the time domain is recovered through 

numerical inversion of the solution of the Fredholm equation. This process can be 

numerically challenging and computationally intensive. 

Analytic Inversion of the Laplace transform is defined as contour integration in the 

complex plane. For simple )]([)( tfLpF  , Cauchy's residue theorem can be employed 

by taking Bromwich contour. For complicated )]([)( tfLpF  , this approach can be too 

complicated to perform even using symbolic software like Matlab or Mathematica. 
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There is no single method which works well for all the problems of Laplace inversion. 

Therefore it is necessary to study another alternative to tackle the problem. Bellman et 

al. (1966) proposed a numerical method to calculate the inverse Laplace transformation 

(see Appendix A). Beside this method there are other two methods to evaluate the 

inverse Laplace transform, first one is using numerical integration while second one is 

using fast Fourier Transform (FFT) technique algorithm. The comparison of 

applicability and accuracy among of these three methods was studied by Ueda (1988).  

The merit of the method proposed by Bellman et al. (1966) is that only a few values are 

sufficient for the inverting process. Therefore this method is useful to those problems 

that require long CPU time to calculate the values in the Laplace transformed domain. 

In case of numerical integral method and FFT method few parameters are required. But 

the Numerical integral method takes too much CPU time to calculate the inverting 

process. In the FFT method there is provision for choosing suitable parameters the 

choice of suitable parameters. If suitable parameters are obtained, this method can carry 

out the inversion process in the shortest time as compared to numerical integration 

method. This method had already been successfully used by Escobar et al. (2014), Sur 

and Kanoria (2015) and Mukhopadhyay and Kumar (2010), during handling of various 

physical and scientific problems.  

The present chapter deals with the study of an infinite orthotropic elastic strip with a 

finite crack subject to suddenly applied point load on the cracked surfaces. The problem 

under normal impact response of an orthotropic medium with a central crack has been 

investigated. Laplace and Fourier integral transforms are employed to reduce the two 

dimensional wave propagation problems to the solution of a pair of dual integral 

equations in the Laplace transformed plane. These integral equations have been reduced 
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to the solution of a set of integral equations which have further been reduced to the 

solution of an integro-differential equation. The iteration method has been used to 

obtain the low frequency solution of the problem. To determine the time dependence of 

the solution the expressions are inverted to yield the dynamic stress intensity factor and 

crack opening displacement for normal point force loading. Numerical results of these 

physical quantities for normal point loading and for a large normalized time variable 

have been calculated for graphite-epoxy and glass-epoxy composite materials for 

different particular cases, which have been depicted through graphs.  

6.2 Problem Formulation 

Consider an elaso-dynamic crack problem of a central crack 0,  yax  situated in 

an orthotropic elastic strip of thickness 2h ),( hyhx  , subject to sudden 

loading. The displacement equations of motion are given as 
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where u, v are the horizontal and vertical displacements respectively, 2
sC  is equal to 

 /12  with 12  be the shear modulus,   and )3,2,1,( jiCij are the density and elastic 

constants of the material respectively. 

In the Laplace transformed plane the field equations become  
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where u  and v  are the transformed displacement components and are the functions of 

x, y and p. Under the sudden impact loadings applied on surfaces of the crack 
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guarantees the symmetry requirements of the mathematical model considered in the half 

strip hy 0 . The boundary conditions on 0y   are taken as 

axtHxtxyy  ),()(),0,( 0 ,                                                                            (6.5)  

,,0),0,( axtxv                                                                                                 (6.6) 

,,0),0,(  xtxxy                                                                                                (6.7) 

and the boundary conditions on hy   are 

  ,,0,,  xthxu                                                                                               (6.8) 

  ,,0,,  xthxv                                                                                               (6.9) 

where  x0  is the known crack surface traction and  tH  denotes the Heaviside unit 

step function. It is considered that displacements and stresses are vanished at remote 

distances from crack. The reduced boundary conditions in the Laplace transformed 

plane are given as 
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  ,,0,0,* axpxv                                                                                                 (6.11) 

  ,,0,0,*  xpxxy                                                                                               (6.12) 

  ,,0,,*  xphxu                                                                                              (6.13) 

  .,0,,*  xphxv                                                                                               (6.14) 

To obtain the solution of the equations (6.3) and (6.4) subject to the conditions  (6.10) - 

(6.14), assume that the displacements in Laplace transformed domain are of the form 
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where 
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in which 2
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2  are the positive roots of the equation 
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The boundary conditions (6.13) and (6.14) with the aid of equation (6.12) yield 

     ,,,, 111 psCpspsA   

     ,,,, 222 psCpspsA   

where the unknown functions   )2,1(,, jpsj  are given as 
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The boundary conditions (6.10) and (6.11) with the aid of above relations give rise to 

the following pair of dual integral equations 
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6.3 Method of Solution 

Considering the state of integral equation (6.18) as 
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where  ptf ,  is an unknown function to be determined.  

The equation (6.17) finally reduces to the following singular integral equations as 
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where (.)0J  is the Bessel function of order zero and applying a contour integration 

technique (Baksi et al. (2003)), the integral in  ,vL  can be converted to the following 

finite integral  
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 where the expressions [A] and [C] are given in the Appendix B. 

The corresponding expression of  ,vL for v is obtained by interchanging v and  

in equation (6.22). Using the asymptotic expression of )(0 zI  and )(0 zK as 
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Now expressing  tf  as 
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and substituting in equation (6.20), we obtain following equations 
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Now for concentrated loading condition, taking )()( 0xxx   , equations (6.24) and 

(6.25) with the help of Cooke’s result (1970) yields unknown function ),( ptf  as     
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The stress intensity factor in the p-plane is defined as 
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Using the inverse Laplace transform, the dynamic stress intensity factor )(tK I is 

obtained as 
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The crack opening displacement (COD) in the transformed domain is given by 
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Finally the expression of COD in the time domain is obtained as 
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6.4 Results and discussion 

In this section numerical calculations of normalized SIFs )(/)( 11 KtK  and crack 

opening displacement ),0,( txv  are carried out at different concentrated loading located 

at different points on the crack surface using an efficient numerical inversion method 

for Laplace transform proposed by Bellman et al. (1966). The numerical computations 

are done for two different orthotropic materials viz., graphite-epoxy and glass-epoxy, 

and the results are described through graphs against the large normalized time variable 

atCs /  for different particular cases. 
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Fig. 6.1 Plots of )(/)( II KtK against atCs /  for various ax /0  at 2h for graphite 

epoxy 
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Fig. 6.2 Plots of )(/)( II KtK against atCs /  for various ax /0  at 4h  for graphite 

epoxy 
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Fig. 6.3 Plots of )(/)( II KtK against atCs /  for various ax /0  at 6h  for graphite 

epoxy 
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Fig. 6.4 Plots of )(/)( II KtK against atCs /  for various ax /0  at 2h  for glass-epoxy 
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Fig. 6.5 Plots of )(/)( II KtK against atCs /  for various ax /0  at 4h  for glass-epoxy 
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Fig. 6.6 Plots of )(/)( II KtK against atCs /  for various ax /0  at 6h  for glass-epoxy 

During the numerical computation the material constants for the graphite-epoxy 

composite (type-I) are taken as ,3.151 GpaE   ,1582 GpaE   Gpa52.512  , 

033.012   and the material constants for glass-epoxy (type-II) composite are taken as 

,79.91 GpaE  ,3.422 GpaE  Gpa66.312  , .063.012   It is seen from Figs. 6.1-6.6 

that initially )(/)( II KtK increases with the increase of  9.0)1.0(6.0/0 ax  but when the 

value atCs /  close to 7.5, it decreases with the increase of ax /0  for both materials. A 

close examination of these results reveal that for fixed values of ax /0  and h , and for 

the normalized time 
)1(
)1(

0

0

xc
xct

d

s




 , the dilatation wave does not reach at the crack tip 

ax   generated from  axx //0 . Some oscillation phenomena are observed which are 

caused due to arrival of the stress waves and combined effect of Rayleigh and dilatation 

waves appreciable changes. As a result the normalized dynamic stress intensity factors 

)(/)( II KtK  rise quickly with normalized time greater than or equal to 5, reaching a 

peak value in the neighbourhood of 11/ atC s  and then decrease in magnitude and 

finally after a large time it tends to the static solution just like the case of isotropic 
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material as given by Sih (1991). This behaviour can be attributed to the scattered 

Rayleigh wave at the crack tip. However, if 1/0 ax then numerical difficulties arise in 

the solution due to the discontinuity in ),( pxK I


 at .1/0 ax  Maximum values of 

)(/)( II KtK  increase with the increase in the values of h and almost no time delay is 

observed between each maximum. When depth of the material becomes large, the 

normalized stress intensity factors tend to unity for large time. This result agrees with 

the result given by Kassir and Bandyopadhyay (1983).           

 
 

Fig. 6.7 plots of displacement against field co-ordinate x for different values of ax /0    
            for graphite-epoxy orthotropic  materials 
 

               
                                                                      x 
Fig. 6.8 plots of displacement against field co-ordinate x for different values of ax /0    
            for glass-epoxy orthotropic  materials 

It is seen from Figs. 6.7 - 6.8 that the nature of variations of crack opening displacement  
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is similar with the variation of x  for various values of the concentrated loading for both 

the considered orthotropic materials. The crack opening displacement for both the 

materials is very small initially near the crack tip due to reason that dilatation waves 

have little effect on Mode-I stress intensity factor but afterwards it attains large value 

due to combined effect of elastic waves for different concentrated point loading. 

The ratio of the Rayleigh wave speed to the shear wave speed sR cc /  determines most of 

the behaviors of )(/)( II KtK  including the time of the singularities and jumps. This 

explains why the plots in Figs. 6.4 - 6.8 are so similar even though they correspond to 

different materials. Each one has a very similar sR cc /  ratio. In fact this ratio does not 

change dramatically for a wide range of materials. 

Since the above analysis is valid for large normalized time, the oscillations of the 

normalized dynamic stress intensity factor during 5/ atCs  have not been studied. 

However, the reaching of peak values of )(/)( II KtK has been noticed in our analysis. 

These situations are predominantly caused by the interaction of waves emanating from 

the crack-tip. 

6.5 Conclusion 

In this chapter the major contribution is finding the analytical expressions of the 

dynamic stress intensity factor and crack tip opening displacement of a crack embedded 

in an orthotropic elastic strip under normal impact concentration loading. The 

presentation of the singularities occurred in the form of oscillations arising due to 

arrival of the stress waves generated at crack tips )/( 0 axx   is another contribution of 

the study. The most important part of the study is the successful implementation of the 

efficient and powerful numerical technique used  to  find   the    numerical inversion  of  

Laplace transform towards finding the solution in time domain. 
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Appendix-A 

Bellman method 

The Laplace transform of a function )(tf is defined by 

    0,
0

 


 pdtetfpF pt .
                                                                                        

(A1)  

We assume that )(tf  is sufficiently smooth to permit the approximate method we apply. 

Putting tex  in equation (A1) we obtain 

   dxxCxpF p 
1

0

1 , 
                                                                                                  

(A2) 

where ))ln(()( xfxC  . 

Applying the Gaussian quadrature formula to equation (A2) yields 

   pFxCxW i
p

i

N

i
i 


 1

1

,
                                                                                                 

(A3)  

where  Nixi ,...2,1  are the roots of the shifted Legendre polynomial   0xPN and  

 NiWi ,...1  are corresponding weights 

         pFxCxWxCxWxCxWxCxW N
p
NN

ppp   1
3

1
332

1
221

1
11 ... . 

Put Np ,...,1  equation (A3) yields 

         
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.                         (A4)  

Matrix form of system of equation (A4) 
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The discrete values of )( ixC are calculated from equation (A5), i.e., )( itf and finally the 

function )(tf can be calculated using interpolation. 
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