
Chapter 5 
 
 
 
 
Interaction between interfacial collinear Griffith cracks in 
composite media under thermal loading 

5.1 Introduction 

It looks that microscopic flows do not lead to safe structure to fail. Sometimes it 

becomes very expensive to replace the component of engineering structures. In fact, on 

one hand, due to increasing demands for energy and material conservations, the safety 

margins assigned to structures have to be smaller. On the other hand, the detection of a 

flaw in a structure does not automatically mean that it is not safe to use anymore. This is 

particularly relevant in the case of expensive materials or components of structures 

whose usage it would be inconvenient to interrupt. In this setting fracture mechanics 

plays a key role during the analysis of materials which exhibits cracks and also to 

predict whether and in which manner failure may occurs. 

A property of a structure relating to its ability to sustain defects until repair is called 

damage tolerance. During design of engineering structures the damage tolerance is 

always taken in account as it is assumed that flaws can exist in any structure and such 

flaws propagate with usage. In aerospace engineering structures this approach is 

necessary to avoid the extension of cracks. In fracture mechanics crack growth is 

exponential in nature i.e., the crack growth rate is a function of an exponent of crack 

size according to the Paris law. The exponential crack growths led to the development 

of non-destructive testing methods through which the structural engineers may inspect 
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invisible cracks occur in structures which grow slowly. So amounts of maintenance 

checks are reduced by non destructive inspections. Crack propagation and arrest have 

become important topics in a structure containing isolated region of an unstable crack 

growth. So emergence of an unstable crack from bad region can still be arrested using 

the surrounding of good materials, provided good materials have sufficiently high 

fracture toughness i.e., materials have large resistance to protect the structure from 

crack propagation. This clearly exhibits the importance of studying propagation of 

cracks occur in structures and the arrest of crack propagation for the safety of the 

structure. The physical quantities like stress intensity factor, crack energy, stress 

magnification factor play important roles during the study of crack arrest (Melville 

(1977), Rose (1986), Misra and Sukere (1991), Priest (1998), Bousquet et al. (2012)).  

Problems consist of heat and deformation has attracted much interest to the scientists 

and engineers for last couple of decades. The thermal stress concentration near the crack 

tips has becomes an interesting topic of research nowadays. In the formation of 

structural members of airplanes, motor vehicles and high speed trains, composite 

materials are used widely due to their light weight and strong nature. When a cracked 

structural member is subject to different temperature fields, then the evaluation of stress 

intensity factors becomes essential due to disturbance in heat flux. The study of thermal 

stress around the cracked surface becomes important for the prediction of stability and 

service life of cracked engineering materials and structures. In linear elastic fracture 

mechanics the study of geometry of collinear cracks has practical importance as pre-

existing cracks lead to fracture due to interaction of cracks which forms a major crack in 

a medium. Noda and Wang (2002) have studied the interaction between collinear cracks 

situated in an inhomogeneous medium under transient loading. During thermo elastic 

analysis of a cracked solid, a considerable effort has been given by the researchers 
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based on the theory of the thermo-elasticity. Sih (1962) observed the singular character 

of thermal stress near a crack in an infinite plate when heat flows perpendicular to the 

crack. A solution of a thermo-elastic crack problem had been given by Atkinson and 

Clement (1977) in an anisotropic medium with single crack. Applying the method given 

by Muskhelishvili (1953), Clement (1983) solved the thermo-elastic crack problem 

bonded between dissimilar anisotropic materials. He assumed that the heat flows 

through the two surfaces of a crack equally but opposite in direction. Clement and 

Tauchert (1979) have studied thermo-elastic crack problem for an anisotropic slab. 

Sekine (1977) calculated the thermal stresses near the crack tips of an isolated line crack 

in a semi infinite medium subjected to uniform heat flow. Same author studied thermo-

elastic interaction between two cracks (1979). Itou (1991) has calculated the thermal 

stresses around an isolated crack in an infinite elastic strip in which the surfaces of the 

strip are maintained at different temperature. Itou and Rengen (1993) studied the 

thermal stresses around two parallel cracks situated at the interface positions of two 

bonded dissimilar elastic half planes. Itou and Rengen (1995) have solved a problem of 

two collinear cracks in an adhesive layer sandwiched between two dissimilar elastic half 

planes. In Thermal stresses in an infinite orthotropic plate around two parallel cracks 

under uniform heat flow were evaluated by Itou (2001). Zhou et al. (2007) have 

investigated transient two dimensional thermal crack problem in a functionally graded 

orthotropic strip using Laplace and Fourier transform technique. Baksi et al. (2007) 

have determined the thermal stresses and displacement fields in an orthotropic plane 

containing a pair of equal collinear Griffith cracks using integral transform technique 

based upon displacement potential functions under steady state temperature field. Zhong 

et al. (2013) have investigated the thermal stress around two collinear Griffith cracks in 

an orthotropic solid subjected to thermo-mechanical loading using Fourier transform 
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technique. Recently, Itou (2014) has calculated the thermal stress in an infinite 

orthotropic plane around two upper collinear cracks placed parallel to a lower crack. 

Problem related to thermal stress can also be found in the research articles of Noda et al. 

(2003) and Hetnarski and Ignaczak. But to the best of my knowledge the problem 

related to interaction between interfacial cracks under thermo-mechanical loading are 

not yet been done by any researcher.  

The main goal of this chapter is to analyze the interaction among three collinear Griffith 

cracks situated at the interface of two orthotropic thermo-elastic half planes under 

uniform heat flux. To study the effect of temperature on displacements and stresses, an 

integral technique has been applied. The problem is reduced to a dual form of the 

integral equations, which is solved numerically using Jacobi polynomials. The 

expressions of SIFs at the tips of the cracks are found analytically. The graphical 

presentations of the effect of outer cracks on the propagation of central crack and also 

the propagation tendency of outer crack due to presence of central one for different 

particular cases are the key feature of the present chapter. 

5.2 Problem formulation 

Consider two bonded homogeneous orthotropic elastic half planes 0y and 0y  

containing three collinear Griffith cracks at the interface 0y  when Cartesian co-

ordinate axes coincide with the axes of symmetry of the elastic material. Here the 

geometry of this chapter is different from the previous one. The temperature distribution 

functions ),()( yxT i , )2,1( i  under the steady state condition are assumed to satisfy the 

heat conduction equation (4.1) in the considered orthotropic media. The resultant 

temperature distribution under the prescribed heat source )(x  is given in equation 

(4.8).The  relations  between  plane  stress  induced  by  the  distributions  of   
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temperature and displacement components ),()( yxu i  and ),()( yxv i  along x  and y  

directions are given in equations (4.9)-(4.11). 

The displacement equations of equilibrium are as given in equations (4.12) and (4.13). 

It is assumed that at the interface ,0y  the central crack defined by andax   the 

outer defined by 1 xb  are opened by internal normal and shearing tractions 

)(and)( 21 xpxp respectively (Fig. 5.1). The boundary conditions on 0y  are given by 

,)()0,( 1
)1( xpxyy   1,0  xbax ,                                                                      (5.1) 

),()0,( 2
)1( xpxxy   1,0  xbax ,                                                                      (5.2) 

),0,()0,( )2()1( xuxu   bxa  ,  x1 ,                                                                    (5.3) 

),0,()0,( )2()1( xvxv    bxa  ,  x1 ,                                                                    (5.4) 

),0,()0,( )2()1( xx yyyy           x ,                                                                             (5.5) 

),0,()0,( )2()1( xx xyxy           x ,                                                                            (5.6) 

 

Fig. 5.1 Geometry of the problem 

In the Fig. 5.1, the inclined arrows denote the regions for the semi infinite half planes, 

the vertical arrows denote the direction of the applied normal stress and the horizontal 
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arrows denote the direction of shearing stress for our considered mixed Mode type 

problem. 

5.3 Solution of the problem 

During solution of the problem, let us first consider the displacement potentials as given 

in equation (4.20) and potential functions ),()( yxi
j for the half planes as given in 

equations (4.21)-(4.22). 

The displacement components ),()( yxu i , ),()( yxv i  and the thermal stresses may be 

written as equations (4.23) and equations (4.24)-(4.26). 

Here potential functions ),()( yxi
j satisfy the differential equation 

,2,1;2,1,0),()(
2

2

2

2
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where )(
1

i and )(
2
i  are the real roots of the equation (4.29) with )(i

jk  are given in 

equation (4.30). 

Boundary conditions (5.3) and (5.4) with the help of the boundary conditions (5.5) and 

(5.6) and the above mentioned equations give rise to 
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and after lengthy process of mathematical manipulations, boundary conditions (5.1) and 

(5.2) finally lead to the following singular integral equations 
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Equations (5.9) and (5.10) are reduced to the following singular integral equations for 
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The solution of above integral equations (5.11) may be assumed as  
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with knc are unknown constants. Now using equation (5.12), we get 
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From equations (5.11) and (5.13), we get 
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Multiplying the above equation by )()( ),(1 xPx kk
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  and integrating from -1 to 1with 
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with .1,0,2,1  jk   

Finally the stress intensity factors at the crack tips at ax  , bx   and 1x are 

calculated as 
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Now stress magnification factors (SMF) are defined by  *a
I

a
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IIb

II
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1
1

II

II
II

K

KM  , where **
and a

II
a
I KK  are the Mode-

I and Mode-II stress intensity factors at ax   due to presence of only central crack 

situated at the interface of two half planes. **
, b

II
b
I KK  and *1*1 , III KK  are the stress 

intensity factors at bx   and 1x  respectively due to presence of only outer cracks  

situated at the interface of two half planes. 

5.4 Results and discussion 

In this section, the numerical computations have been done to find stress intensity 

factors and stress magnification factors for three collinear cracks situated at the interface 
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of two orthotropic materials as  -Uranium and Epoxy Boron, whose elastic constants 

are already given in section 4.4 in the chapter 4. 

During computations the loadings are considered to be 0)(,)( 21  xppxp . The 

dimensionless stress magnification factors for both the types Mode-I and Mode-II at the 

tip of the central crack ax   are described through Fig. 5.2 and Fig. 5.3 respectively for 

different values of dimensionless quantity ab / keeping 5.0a  and 

varying 9.0)1.0(6.0b . Again keeping the outer crack length fixed 6.0b  and varying 

5.0)1.0(1.0a , the stress magnification factors at the outer crack tips bx   and 1x  

are depicted through Figs. 5.4 - 5.5 and Figs. 5.6 - 5.7 respectively for various values of 

ab /  for Mode-I and Mode-II types.   

It is seen from Fig. 5.2 that as the length of the outer crack increases, then stress 

magnification factor a
IM  decreases. This is due to the formation of large plastic zone 

with the increase of crack length at the vicinity of the crack tip which resists the 

propagation of the crack. To overcome the effect of the plasticity, we have either to 

increase the crack length or have to apply more thermo- mechanical load. If we further 

increase the crack length then stress magnification factor oscillates which shows the 

plastic behavior i.e., crack reaches in plastic region causes crack propagation tendency. 

Same type of behavior is observed through Fig. 5.4 for stress magnification factor b
IM . 

It is seen from the Fig. 5.3 and Fig. 5.5 that there is a possibility of shielding with 

increase in crack length whereas Fig. 5.6 and Fig. 5.7 show that there is a possibility of 

amplification. Thus the propagation tendency at 1x  of outer interfacial crack increases 

with increase of central crack length. 

The variations of Mode-II stress magnification factor depend upon the crack separation 

distance and crack length. Fig. 5.3 shows that central crack experiences shielding effect 

due to the presence of outer crack. This effect is maximum when outer crack size is 
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minimum and crack separation distance between the outer crack and central crack is 

maximum. As the length of the outer crack decreases together with simultaneous 

increase in crack separation, the shielding effect increases gradually. When the outer 

crack size is 40% and crack separation distance is 10% of main crack size then shielding 

is about 45%. When the size of the outer cracks are one- twentieth and crack separation 

is nine –twentieth to the central crack then shielding is about 80%. 

Fig. 5.5 reveals that outer crack experiences shielding effect due to the presence of 

central crack. This effect is maximum when central crack size is maximum and crack 

separation distance between the outer crack and central crack is minimum. As the length 

of the central crack decreases together with simultaneous increase in crack separation 

distance, the shielding effect gradually decreases.  When the central crack size is 120% 

and crack separation distance is 25% to the outer crack size then shielding is about 80%. 

When the size of the central crack is half and crack separation is five-forth to the outer 

crack then shielding is about 60%. 

 

 

 

Fig. 5.2 Plot of a
IM  vs. b/a at a=0.5 
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Fig. 5.3 Plot of a
IIM  vs. b/a at a=0.5 

 

Fig. 5.4 Plot of b
IM  vs. b/a at b=0.6 

   

Fig. 5.5 Plot of b
IIM  vs. b/a at b=0.6 
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Fig. 5.6 Plot of 1
IM  vs. b/a at b=0.6 

 

  Fig. 5.7 Plot of 1
IIM  vs. b/a at b=0.6       

 

5.5 Conclusion 

In the present chapter three important goals have been achieved. The first one is the 

investigation of three collinear cracks at the interface of two orthotropic media under 

thermo- mechanical loading. Second one is finding the analytical form of the stress 

intensity factors at the vicinity of the crack tips. Third one is the graphical presentations 

of amplification and shielding effect through the stress magnification factors which help 

to find the possibilities of arrest of central crack due to the presence of outer cracks and 

vice-versa. 


