
 

 

Chapter 4 
 
 
 
 
Two interfacial collinear Griffith cracks in thermo-elastic 
composite media  

4.1 Introduction 

In many engineering disciplines viz., electronics, aerospace and nuclear energy, lot of 

research has already been done during the study of the behavior of stress and 

displacement fields at the vicinity of the crack tip situated at the interface of the 

composite materials subject to thermal loading. Orthotropic composite materials are 

widely used in structural materials due to their light weight and strong in nature. When 

a cracked orthotropic composite material is used in high or low temperature region, then 

heat flows through material. In this case it is important to determine the thermal stress 

intensity around the crack, which occurs due to the disturbance in heat flux. The 

investigation of thermo-elastic field and thermal stress concentration around the crack 

help to understand the stability and life of the cracked engineering materials and 

structures. According to linear elastic fracture mechanics stress at the vicinity of the 

crack tip is singular. It is directly proportional to the inverse of square root of distance 

from the crack tip. Many observations of thermo-elastic cracked surfaces show that the 

thermal stress singularity at the vicinity of the crack tips are same as those with 

mechanical stresses. But the nature of singularity becomes different for an interfacial 

crack. The occurrence of the interfacial cracks at the surface of structural components 
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due to thermal and mechanical loading becomes an important research topic in fracture 

mechanics. For analyzing interfacial cracks, many studies were conducted under 

thermal steady state condition for orthotropic composite materials. 

Sih (1962) determined the stress intensity factor of a crack in an infinite plate when heat 

flows perpendicular to the crack surface. Later, Sekine (1977) determined the stress 

intensity factor of a crack due to heat flux. The thermal stresses in an infinite plate due 

to heat flux for two cracks have been determined by the same author. Stress intensity 

factors around two collinear cracks were evaluated by Chen and Zhang (1988) in an 

orthotropic plate under heat flux. Thermal stress for a single crack in an infinite elastic 

layer and thermal stress around two parallel cracks had been determined by Itou and 

Rengen ((1993, 1995)). Chen and Zhang (1993) have determined the thermal stress in 

an orthotropic strip containing two collinear cracks. Itou (2001) evaluated stress 

intensity factors for two parallel cracks in an infinite orthotropic plate due to heat flux. 

Baksi et al. (2007) have solved the problem of determining the thermal stresses and 

displacement fields in an orthotropic plane containing a pair of equal collinear Griffith 

cracks using integral transform technique based upon displacement potential under 

steady state temperature field. Zhong et al. (2013) examined the behavior of two 

collinear cracks embedded in an orthotropic solid using Fourier integral transform 

technique, under uniform heat flux and mechanical loading on the cracked surfaces. 

Problem related to thermal stress and strain can also be found in the research chapters 

(Thakur (2014a, 2014b), Zhu et al. (2014), Sills and Dolev (2004), Itou (2000), De and 

Patra (1992) and Itou (1993)). 

In the present chapter an endeavour has been taken to determine the stress intensity 

factors at the tips of a pair of collinear Griffith cracks situated at the interface of two 
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orthotropic thermo-elastic half planes subject to uniform heat flux and also to determine 

the energy required for creating two new surfaces and plastic deformation of the cracks 

under steady-state temperature field. The problem has been reduced to a pair of second 

kind Fredholm integral equations, which are solved numerically using Jacobi 

polynomials. Numerical values of the stress intensity factors at the tips of the cracks for 

different prescribed crack lengths are presented through graphs for different particular 

cases. Numerical values of other physical quantity crack energy obtained through 

different forms of the displacement potential functions are also presented graphically. 

4.2 Problem Formulation 

Let us consider a mathematical model of two bonded homogeneous orthotropic elastic 

half planes  y0  and 0 y  containing a pair of collinear Griffith cracks 

situated symmetrically at the interface 0y  when Cartesian co-ordinate axes coincide 

with the axes of symmetry of the elastic material. When thermal conditions are applied 

to the surface of an arbitrary two dimensional orthotropic half planes, the temperature 

field only depends upon in- plane co-ordinates under steady state condition. The 

temperature distribution functions ),()( yxT i  are assumed to satisfy the following heat 

conduction equation in the orthotropic media. 
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where )()(2)( /)( i
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i KKK   and )(i
yK , )(i

xK  )2,1( i  are the thermal conductive 

coefficients along y and x directions  respectively for each half plane. The general 

solution of ),()( yxT j  is (Akoz and Tauchert (1972)) 
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where 1i , 2,1j  and )(and)(
)()( pApA

jj
 are the arbitrary functions of  p.  

Here we have assumed that  

)()0,( )()( xhxT ii                                                                                                            (4.3)  

and hence the Fourier integral form of temperature distribution may be written as  
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From equations (4.2) and (4.4), we get 
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From equations (4.2) and (4.5), the temperature distribution ),()( yxT i  is obtained as  
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If we consider )()()( xxh i  ,                                                                                       (4.7) 

where h(x) is the prescribed temperature distribution become line source along y-axis 

and )(x  is Dirac delta function, the resultant temperature distribution is obtained as 
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The relations between plane stress induced by the distribution of temperature and 

displacement components ),()( yxu i  and ),()( yxv i  along x and y directions are given by 
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to those for the half plane-1 and half plane-2 respectively. It is to be noted that the unit 
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Fig. 4.1 Geometry of the Problem 

The displacement equations of equilibrium are given by 
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The quantities with superscripts 2,1i refer to those for the half plane-1 and half plane-

2 respectively. It is assumed that at the interface ,0y  the cracks defined by 

bxa   are opened by internal normal and shearing tractions )(and)( 21 xpxp  

respectively (Fig. 4.1). For the described problem the boundary conditions on 0y  are 

given by 
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4.3 Solution of the problem 

During solution of the problem, we first introduce displacement potentials ),()( yxi  

and ),()( yxi
j   (Sharma (1958)) as 
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Potential functions for the half planes are given by 
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The displacement components ),()( yxu i and ),()( yxv i  are written as 
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The corresponding thermal stresses are  
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The displacement equations (4.12)-(4.13) are satisfied by equation (4.20) for non trivial 
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Here potential functions ),()( yxi
j  satisfy the following differential equations 
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 )2,1( i  are the undetermined functions. Applying the boundary 
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and after lengthy process of mathematical manipulations, boundary conditions (4.14) 

and (4.15) finally lead to the following singular integral equations 
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Equations (4.31) and (4.32) are reduced to the following singular integral equations for 

the determination of unknown functions )(xf i . 
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Multiplying the above equation by )(),( xP kk
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is considered as zero.  

Finally the stress intensity factors at the crack tips ax   and bx   are calculated as 
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The expression of the crack energy is given by  

.)]0,()0,()[( )2()1(
1 dxxvxvxpW
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4.4 Results and discussion 

In this section, the numerical computations have been done to find physical quantities 

viz., stress intensity factors and crack energy for two collinear cracks situated at the 

interface of two pairs of orthotropic materials with first one as  -Uranium and Epoxy 

Boron, and the second one as Beryllium and Epoxy Boron. In each case first type of 

material is taken as half plane-1 and second type of material as half plane-2.  During 

computations crack length is considered as 1b  and 9.0)1.0(1.0a  and also the 

loadings are considered as 0)(,)( 21  xppxp . The ratios of the stress temperature 

coefficients )1()1( / xy   and )2()2( / xy   are taken as 0.67 and 0.5 respectively for first pair 

of materials, and 0.7 and 0.5 respectively for second pair of materials. The elastic 

constants of the orthotropic material  -Uranium have been taken as 

,)03.148(1047.21 6
11 GPapsiC  psiC 6

12 1065.4  ),06.32( GPa psiC 6
22 1036.19   

,)48.133( GPa )22.51(1043.7 6
66 GPapsiC  (Das and Patra (2005)). The elastic 

constants of the other considered orthotropic material Boron-Epoxy has been taken as 

,)91.208(103.30 6
11 GPapsiC  ),06.26(1078.3 6

12 GPapsiC  psiC 6
22 1004.4   
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)85.27( GPa , )79.7(1013.1 6
66 GPapsiC   (Sih and Chen (1978)), and those of 

orthotropic material Beryllium are taken as 

),22.61(1088.8 6
12 GPapsiC  psiC 6

22 1049.36  ),58.251( GPa psiC 6
66 1024.11   

)4.77( GPa (Das and Patra (2005)). For first and second pair of materials, the stress 

intensity factors at the tip ax   are described through Fig. 4.2 and Fig. 4.3 respectively 

for different values of a/b, whereas the physical quantities at the tip bx   for both the 

pair of materials are depicted through Figs. 4.4 - 4.5 for various a/b. The numerical 

values of crack energies for two pair of materials are shown through Figs. 4.6 - 4.7 for 

different values of a/b.  

It is seen from Figs. 4.2 that as the length of the crack decreases, both a
IK  and a

IIK  

decrease. Same nature is followed for second pair of materials (Fig. 4.3) with only 

difference is that the values of stress intensity factors change as it completely depends 

on material constants. 

As the lengths of the cracks decrease (Figs. 4.4 - 4.5) i.e., cracks separation distance 

increases, then b
IK  decreases, b

IIK  increases under thermo-mechanical loading for both 

the pair of materials. This shows that there is a least possibility of crack propagation 

at bx  , even when the tips of the cracks come very close to each other. The decreases 

of Mode II stress intensity factor justifies that as the distance between two cracks 

decreases, the effect of their propagation tendency in sliding mode will be decreased. 

The nature of behavior of crack energy for first pair of materials is same as the second 

pair of materials with the difference is that in first case the nature of the decrease is very 

fast as compared to the gradually decrease of the second case. 
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In the numerical computation it is also given special emphasis to determine other 

physical quantity crack energy W  to determine the energy required by the crack per unit 

increase in area. Figs. 4.6 and 4.7 shows that crack energy increases with increase of 

crack length. The increment of crack energy represents that as crack advances then 

plastic zone size becomes large due to which more energy will be required for the crack 

propagation after attaining its critical value.   

 It is seen from the Figs. 4.2 - 4.5 that first pair of materials can sustain more stress 

intensity compared to second pair of materials without fracture and it is also justified 

from Figs. 4.6 - 4.7 that for the first pair of materials the crack energy is higher 

compared to second pair of materials due to formation of large plastic zone at the crack 

tips with increase of crack length. 

 

 

 

Fig. 4.2 Plots of paKpaK a
II

a
I /and/  vs. a/b for first pair of materials 
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Fig. 4.3 Plots of paKpaK a
II

a
I /and/  vs. a / b for second pair of materials 

    

Fig. 4.4 Plots of paKpaK b
II

b
I /and/ vs. a / b for first pair of materials 

    

Fig. 4.5 Plots of paKpaK b
II

b
I /and/  vs. ba /  for second pair of materials 
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Fig. 4.6 Plot of paW /  vs. a / b for first pair of materials 

 

Fig. 4.7 Plot of paW /  vs. a / b for second pair of materials  

4.5 Conclusion 

In the present chapter four important goals are achieved. The first one is the 

investigation of a pair of collinear Griffith cracks at the interface of two orthotropic 

media under thermo-mechanical loading. Second one is finding the analytical form of 

the stress intensity factors at the vicinity of the crack tips. Third one is the successful 

presentation of variations of the stress intensity factors with crack separation distance. 

Fourth one is the increase of crack energy due to increase of length of the cracks 

showing the possibility of the formation of large plastic zone at the vicinity of the crack 

tip. 

ba /  

ba /  


