
Secure and Efficient Federated Transfer Learning
Shreya Sharma∗, Chaoping Xing†, Yang Liu‡ and Yan Kang‡

∗Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, India
Email: shreyas.cd.ece17@iitbhu.ac.in

†School of Electronics, Information & Electrical Engineering, Shanghai Jiao Tong University, China
School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

Email: xingcp@ntu.edu.sg
‡Webank, Shenzhen, China

Email: yangliu@webank.com, yangkang@webank.com

Abstract—
Machine Learning models require a vast amount of
data for accurate training. In reality, most data is
scattered across different organizations and cannot
be easily integrated under many legal and practi-
cal constraints. Federated Transfer Learning (FTL)
was introduced in [1] to improve statistical models
under a data federation that allow knowledge to be
shared without compromising user privacy, and enable
complementary knowledge to be transferred in the
network. As a result, a target-domain party can build
more flexible and powerful models by leveraging rich
labels from a source-domain party. However, the ex-
cessive computational overhead of the security protocol
involved in this model rendered it impractical.
In this work, we aim towards enhancing the efficiency
and security of existing models for practical collabora-
tive training under a data federation by incorporating
Secret Sharing (SS). In literature, only the semi-
honest model for Federated Transfer Learning has
been considered. In this paper, we improve upon the
previous solution, and also allow malicious players who
can arbitrarily deviate from the protocol in our FTL
model. This is much stronger than the semi-honest
model where we assume that parties follow the protocol
precisely. We do so using the one of the practical MPC
protocol called SPDZ, thus our model can be efficiently
extended to any number of parties even in the case of
a dishonest majority.
In addition, the models evaluated in our setting signifi-
cantly outperform the previous work, in terms of both
runtime and communication cost. A single iteration
in our model executes in 0.8 seconds for the semi-
honest case and 1.4 seconds for the malicious case for
500 samples, as compared to 35 seconds taken by the
previous implementation.

I. INTRODUCTION

The application of Artificial Intelligence (AI) is driven by
big data availability. To calibrate the performance of real-
life complex models such as AlexNet [2] with 60 million
parameters and 650,000 neurons, large datasets providing
millions of samples are used. AlphaGo [3], was trained on a
collection of 29.4 million moves from 160,000 actual games.
However, high quality data is not readily available to meet
such extensive requirements. Across various organisations,
data is present in small quantities (i.e. few samples and

labels) and is not heavily supervised (i.e. exists in unlabeled
form). Thus, data needed for a particular task might not be
present in a single place. Such a scenario can be dealt with
by the unification of datasets from different platforms for
better statistical modelling. But this approach lacks practicality
due to the privacy concerns involved. The datasets available
might contain sensitive information such as medical-records or
financial data. Strict legislative laws that require explicit user
approval before data usage further bound the merging of data.
Apart from this, any form of well-supervised (labelled) data
might require confidentiality because it constitutes a monetary
or competitive advantage for the parties that own it. Thus arises
the need for AI models that comply with both security and
accuracy.

One solution to the above problem can be Federated Learn-
ing [4]. This system enables parties to learn a shared prediction
model while keeping all the training data locally stored. A
prerequisite for this framework is data being horizontally
partitioned (i.e. sharing a common feature space). As an
alternative, secure machine learning on vertically partitioned
data (i.e. data partitioned in the feature space) has also been
studied in depth [5], [6]. Since these approaches require data to
either have common samples or common features, they leave
majority of the non-overlapping data underutilized.

In this paper, we work on Federated Transfer Learning,
where the target-domain party builds a prediction model by
leveraging rich labels from a source-domain. This framework
provides results for the entire feature and sample space as
it doesn’t place any restrictions on the distribution of data
and thus can find applicability in diverse fields. For instance,
many businesses can rely their decisions on the financial
activities of different customers and since banks own authentic
labels on such financial activities, a collaborative model trained
using the datasets of two such organizations can benefit
such businesses. In this case, due to involvement of different
institutions for training, a small portion of the feature space
will overlap, and only a part of the entire user space would
intersect. Thus, here FTL becomes an important extension of
Federated Learning. Additional security protocols are needed
to maintain privacy in the case of FTL as the training involves
collaborative calculations using the parameters related to data
of both source and target domain. Although our work focusses

978-1-7281-0858-2/19/$31.00 ©2019 IEEE

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 2569

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 17,2020 at 05:03:59 UTC from IEEE Xplore. Restrictions apply.

on a two-party case, we discuss the importance of its scala-
bility in the last section of the paper.

A. Our Contribution

Our work takes the FTL model introduced in [1], and:
• Enhances the efficiency by an order of magnitude in the

semi-honest security setting by implementing the model
using Multi-Party Computation (MPC) as opposed to the
previous Homomorphic Encryption (HE) based approach.

• Introduces active security to it, dealing with the case
where m − 1 out of the m parties can deviate from
the protocol. We do so using the SPDZ protocol[7], thus
our model can be efficiently extended to any number of
parties. To the best of our knowledge, ours is the first
work to achieve active security for any non-linear deep
learning based model for a dishonest majority.

• We present extensive experimental results that underscore
the practicality of secure ML even in the active setting.
We investigate different aspects related to scalability of
the model and also highlights a comparison between
the performance in our setting versus the previous work
on secure FTL in the semi-honest setting. Our model
significantly outperforms this HE-based implementation
in terms of both communication cost and runtime.

B. Related Work

Federated Learning can be seen as decentralized machine
learning, and thus is closely related to multi-party privacy
preserving machine learning. This field has undergone ex-
tensive research in recent years due to its vast applicability.
CryptoNets [8] based on Leveled Homomorphic Encryption
(LHE), enabled encrypted prediction on a server-side model.
But the use of LHE results in high computational overhead
and since LHE restricts the degree of the polynomial used
in the approximation of non-linear activation functions, the
model wasn’t accurate enough. SecureML [9] focuses on
private training and inference of various ML models involving
multiple parties. The approach provides security in the semi-
honest model and incurred a loss of accuracy due to the crypto-
friendly techniques involved. For the evaluation of certain
non-linear activation functions like softmax, it proposes an
expensive switch between arithmetic secret shares and Garbled
circuits. Recent state-of-the-art work in the realm of privacy
preservation in ML do so by outsourcing computation to a
non-colluding server, and fail to achieve active security in the
case of a dishonest majority.

There aren’t many instances of work on actively secure ML,
as this setting is far less efficient as compared to its semi-
honest counter parts. [10] showed promising results for ML
training in an actively secure setting, but this framework is
only applicable for linear regularized models. [11] is another
work in the active setting that shows linear regression and
logistic regression using SPDZ can match similar latency as
SecureML.

All the frameworks so far do not consider the cases where
data sets are small or have weak supervision. To address this

scenario, secure Federated Transfer Learning was explored in
[1]. It was the first framework enabling federated learning
to benefit from transfer learning in a secure way. The work
presented experimental results for a model based on HE and
provided security in the semi-honest setting, with the major
drawback being a lack of efficiency.

II. PROBLEM DEFINITION

Consider DS and DT are two datasets owned by two
different parties and need to be kept private. The label rich
source domain dataset can be defined as DS := {(xSi , ySi)}NS

i=1,
where xSi ∈ R

d is the ith sample and ySi ∈ {0, 1} is the
ith label. And the target domain dataset can be defined as
DT := {(xTj }NT

j=1 where xTj ∈ R
d is the jth sample. We work

on the case where there is a co-occurrence of certain samples
i.e. DST := {(xSTk , xSTk)}NST

k=1 and, certain samples in DT
have a label in DS i.e. DL := {(xLk , yLk)}NL

k=1. The sample
IDs are masked with an encryption scheme which enables the
sharing of set of common IDs. We assume that both parties
already know the commonly shared IDs.

In this paper, we aim to enable the two parties to build
a transfer learning model to predict accurate labels for the
target domain dataset while keeping their data private against
an adversary. We work on two threat models i.e. semi-honest
and malicious. In the former, an adversary can corrupt one
of the two parties, and try to know more information about
the private data of the other party than what can be inferred
from the output, while following the protocol. In the latter, the
adversary can corrupt one of the parties and make it deviate
randomly from the protocol specification in order to falsify the
output or learn private data of the other party. In the malicious
case, we assume that for every iteration the local computations
by the adversary on its own data are honest, and it tries to
cheat during the interactive calculations on the joint data of
the parties. This assumption is reasonable since any MPC
protocol guarantees security against an adversary trying to
know additional information from the visible messages during
protocol execution and not for the case where the protocol
starts with false inputs.

III. PRELIMINARIES

(Additive) Secret Sharing protocols rely on splitting ev-
ery private value involved in the computation (of arithmetic
circuits) into additive secret shares. Such a sharing enables
linear operations (i.e. addition and scalar multiplication) on
the actual values, to be performed locally (without interaction)
on the shares in order to obtain the corresponding shares of
the output. In contrast, each multiplication of shared values
requires a unique multiplication triple [12]. These triples are
input-independent and can be generated at any time before the
execution of the protocol. Thus these protocols are executed
in two phases, the computationally expensive offline phase
and a relatively cheap (information-theoretic) online phase.
The offline phase is run to generate raw material, which is
consumed later by the online phase.

2570

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 17,2020 at 05:03:59 UTC from IEEE Xplore. Restrictions apply.

We implement the secret sharing component of our protocol
in the ABY framework [13] for the semi-honest setting, and
in the SPDZ framework [14] for the malicious setting. In this
section, we summarize these two frameworks.

A. ABY

ABY is a mixed-protocol framework that combines various
secret sharing schemes in a two-party setting, namely Arith-
metic, Boolean and Yao Sharing. Our work is based on Arith-
metic Sharing i.e. the values are additively shared in a ring
Z2l , in a semi-honest threat model. The offline phase in this
framework involves generation of multiplication triples using
Oblivious Transfer (OT). An efficient way to perform many
OTs is to extend a small number of expensive baseOTs (based
on asymmetric cryptographic operations) using OTExtension
(based on much faster symmetric cryptographic primitives) in
a constant number of rounds [15]. The online protocol for
arithmetic sharing in ABY is described in Figure 1.

Fig. 1: ΠABY
Online - ABY Online Protocol

Input: To input a value x, Party Pi chooses r ∈ Z2l , sets
its share 〈x〉i = x − r and sends r to P1−i, who sets
〈x〉1−i = r.
Add: 〈z〉 = 〈x〉+ 〈y〉: Pi locally computes 〈z〉i = 〈x〉i+
〈y〉i.
Multiply: 〈z〉 = 〈x〉·〈y〉 : a multiplication triple generated
of the form 〈c〉 = 〈a〉 · 〈b〉 during offline phase is taken.
Pi sets 〈ε〉i = 〈x〉i − 〈a〉i and 〈ρ〉i = 〈y〉i − 〈b〉i. Parties
output ε and ρ. Pi sets 〈z〉i = i·ε·ρ+ρ·〈a〉i+ε·〈b〉i+〈c〉i
Output: To output a value x to Pi, P1−i sends its share
〈x〉1−i to Pi who computes x = 〈x〉0 + 〈x〉1.

B. SPDZ

SPDZ is a family of Multi-Party Computation (MPC) proto-
cols for arbitrary number of parties, providing active security
with information theoretic MACs, in the case where majority
of the parties are corrupted. More specifically, every party Pi
has an additive share of the fixed MAC key i.e. αi ∈ Fp

such that α = α1 + ... + αn. A data-item is 〈·〉-shared,
if every Party Pi has a tuple (ai, γ(a)i) such that ai is an
additive share of a i.e. a = a1+ ...an and γ(a)i is an additive
share of the corresponding MAC γ(a) i.e. γ(a) = αa and
γ(a) = γ(a)1 + .. + γ(a)n. The online-phase of the SPDZ
protocol is given in Figure 2.

IV. SECURE FTL INTERFACE

In this section, we explain the FTL model used for our work
and then present an algorithm to train this model using Secret
Sharing.

We assume that the parties S and T have produced a hidden
representation of their data using neural networks NetT and
NetS i.e. uSi = NetS(xSi) and uTi = NetT (xTi), where uS ∈

Fig. 2: ΠSPDZ
Online - SPDZ Online Protocol

The set P is the complete set of parties.
Initialise: The parties call preprocessing functionality to
obtain enough multiplication triples (〈a〉, 〈b〉, 〈c〉) and
input mask values (rj , 〈rj〉) according to the function
being evaluated. If the functionality aborts, the parties
output ⊥ and abort.
Input: To input xj , party Pj ∈ P takes a mask value
(rj , 〈rj〉), then:

1) Broadcasts Δ ← xj − rj
2) Parties compute 〈xj〉 ← 〈rj〉+Δ

Add: On input (〈x〉, 〈y〉), locally compute 〈x + y〉 ←
〈x〉+ 〈y〉
Multiply: On input (〈x〉, 〈y〉), the parties:

1) Take a multiplication triple (〈a〉, 〈b〉, 〈c〉), compute
〈ε〉 ← 〈x〉 − 〈a〉 and 〈ρ〉 ← 〈y〉 − 〈b〉 and partially
open them to obtain ε and ρ.
Partially opening a share involves each party sending
its own share of the value to every other party and
computing the sum of all the shares available to it,
while the corresponding MAC value γ(xi) is kept
secret.

2) Set 〈z〉 ← ε · ρ + ε · 〈a〉 + ρ · 〈b〉 + 〈c〉.
Output: To output a share 〈x〉:

1) Check all partially opened values since the last
batched MAC-check, as follows:

• The parties have ids id1, ... idk corresponding
to opened values x1, .. xk

• Parties agree on a random vector r ← FRand

(
F
k
q

)

• Party Pi computes c ← ∑k
j=1 rj · xj and γ(c)i ←

∑k
j=1 rj · γ (xj)i

• Parties run batched MAC-check on c, where party Pi

inputs c and γ(c)i.

2) If the MAC-check fails, output ⊥ and abort.
3) Open each party Pi’s input sent to every other party

Pj , to compute x← ∑
i∈P xi. Run MAC-check with

party Pi’s input x and γ(xi), to verify 〈y〉. In case
this check fails, output ⊥ and abort; otherwise output
x.

R
NS×d and uT ∈ R

NT×d, d is the dimension of hidden layer.
In order to generate labels for target domain the following
translator function from [16] is used:

ψ(uTj) =
1
NS

∑NS

i ySi · uSi · (uTj)′

For simplification, translator function is seen to be of the
form, ψ(uTj) = ΛSC(uTj), where ΛS = 1

NS

∑NS

i ySi · uSi and
C(uTj) = (uTj)

′.
Then for training purpose, we follow:

argmin
ωS ,ωT

L1 =
∑NL

i=1 �1(y
S
i , ψ(u

T
i))

2571

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 17,2020 at 05:03:59 UTC from IEEE Xplore. Restrictions apply.

In the above equation, ωS and ωT are training parameters of
NetS and NetT respectively. If NetS has lS layers, ωS =
{ωSl }lSl=1, similarly if NetT has lT layers, ωT = {ωTl }lTl=1,
where ωSl and ωTl are training parameters for the lth layer. �1
is loss function used i.e. �1(y, ψ) = log(1 + exp(−yψ)). In
order to achieve feature transfer learning in federated learning
setting, we follow:

argmin
ωS ,ωT

L2 = −∑NST

i �2
(
uSi , u

T
i

)
,

where �2 is alignment loss, i.e. �2
(
uSi , u

T
i

)
= κuSi

(
uTi

)′
and

κ = −1.
By combining the two loss equations with regularization

terms, the objective of training becomes:

argmin
ωS ,ωT

L = L1 + γL2 +
λ

2

(
LS3 + LT3

)
, (1)

where the weight parameters are given by λ and γ, and the
regularization terms are given as, LS3 =

∑lS
l

∥∥ωSl ∥∥2

F
and

LT3 =
∑lT
l

∥∥ωTl ∥∥2

F
.

The relation followed for back-propagation:

∂L
∂ωil

=
∂L1

∂ωil
+ γ

∂L2

∂ωil
+ λωil . (2)

In order to prevent leakage of any data for both parties A
and B, we use secret sharing to collaboratively compute Eq.
1 and Eq. 2. For better suitability to the framework used, we
use second order Taylor approximation for the �1 function i.e.

�1(y, ψ) ≈ �1(y, 0) +
1

2
T1(y)ψ +

1

8
T2(y)ψ2. (3)

where, T1(y) = ∂�1
∂ψ

∣∣∣
ψ=0

, T2(y) = ∂2�1
∂ψ2

∣∣∣
ψ=0

.

∂�

∂ψ
=

1

2
T1(y) +

1

4
T2(y)ψ (4)

For logistic loss, T1(y) = y, T2(y) = y2. This approximation
helps avoid the use of expensive techniques for division by a
secret value, as required in the calculation of (exp(−yψ)) for
�1.

Hence the final loss and gradient equations become:

L =

NL∑
i

(
�1

(
ySi , 0

)
+

1

2
T1

(
ySi

)
ΛSC

(
uTi

)

+
1

8
T2

(
ySi

)
ΛSC

(
uTi

) (
ΛSC

(
uTi

)))

+ γ

NST∑
i

(
�T2 (u

T
i) + �S2

(
uSi

)
+ κuSi

(
uTi

)′)

+
λ

2
LS3 +

λ

2
LT3

(5)

∂L
∂ωTl

=

NL∑
i

(
1

4
T2

(
ySi

)
ΛSC

(
uTi

) (
ΛS

∂C
(
uTi

)
∂ωTl

)

+
1

2
T1

(
ySi

)
ΛS

∂C
(
uTi

)
∂ωTl

)

+

NST∑
i

(
γκuSi

∂uTi
∂ωTl

+ γ
∂�T2

(
uTi

)
∂ωTl

)
+ λωTl

(6)

∂L
∂ωSl

=

NL∑
i

(
1

4
T2

(
ySi

)
ΛSC(uTi)

(∂ΛS
∂ωSl

C
(
uTi

))

+
1

2
T1

(
ySi

)
C
(
uTi

) ∂ΛS
∂ωSl

)

+ γ

NST∑
i

(
κuTi

∂uSi
∂ωSl

+
∂�S2

(
uSi

)
∂ωSl

)
+ λωSl

(7)

The components of the Eq. 5, 6, 7 can be divided into three
categories according to the ones that can be locally computed
by S and T, and the ones that are to be computed on the joint
data of both parties.

For Eq. 5:

LST1 =

NL∑
i

1

8
T2

(
ySi

)
ΛSC

(
uTi

) (
ΛSC

(
uTi

))

+
1

2
T1

(
ySi

)
ΛSC

(
uTi

)
+

NST∑
i

κuSi
(
uTi

)′ (8)

LS1 =

NL∑
i

�1
(
ySi , 0

)
+

NST∑
i

�S2
(
uSi

)
+
λ

2
LS3 (9)

LT1 = γ

NST∑
i

�T2 (u
T
i) +

λ

2
LT3 (10)

For Eq. 6:

LST2 =

NL∑
i

1

4
T2

(
ySi

)
ΛSC

(
uTi

) (
ΛS

∂C
(
uTi

)
∂ωTl

)
+

1

2
T1

(
ySi

)
ΛS

∂C
(
uTi

)
∂ωTl

+

NST∑
i

(
γκuSi

∂uTi
∂ωTl

) (11)

LT2 =

NST∑
i

γ
∂�T2

(
uTi

)
∂ωTl

) + λωTl (12)

For Eq. 7:

LST3 =

NL∑
i

(
1

4
T2

(
ySi

)
ΛSC(uTi)

(∂ΛS
∂ωSl

C
(
uTi

))

+
1

2
T1

(
ySi

)
C
(
uTi

) ∂ΛS
∂ωSl

)
+ γ

NST∑
i

κuTi
∂uSi
∂ωSl

(13)

LS3 = γ

NST∑
i

(
∂�S2

(
uSi

)
∂ωSl

)
+ λωSl (14)

2572

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 17,2020 at 05:03:59 UTC from IEEE Xplore. Restrictions apply.

Using the notations stated above, we construct Algorithm 1
to execute the FTL training, where ΠSS

Online can be ΠABY
Online or

ΠSPDZ
Online. Once the model has been trained, party T can use it to

obtain predictions for its data samples. This would involve the
parties computing ψ(xT) collaboratively, and then S sending
the predicted label for this entry by the federated model to T.

Although the collaborative computations are secured by
the secret-sharing schemes we use, our protocol does involve
revealing some values after each iteration, which would have
compromised privacy. To combat any corrupt move based
on the information attained from this part of the training,
we reveal whether Lprev − L < ε follows or not, rather
than revealing the value of L itself. This comparison can
performed in a secure way on the shares itself in both
our frameworks, without having to reveal the actual value.
Moreover, we reveal the respective gradients of the parties
only to them, thereby ensuring privacy.
Theorem 1: Algorithm 1 using ΠABY

Online is information
theoretically secure against a semi-honest adversary.
Proof ABY guarantees that no additional information is
revealed except for the outputs. The loss function being
revealed after each iteration is masked and the gradients of
each party are only revealed to that particular party, thereby
maintaining privacy.

Theorem 2: Algorithm 1 using ΠSPDZ
Online for interactive

calculation is information theoretically secure against a
malicious adversary.
Proof Given that the SPDZ protocol is secure against active
adversaries in the two-party setting, the proof for active
security follows exactly like that of Theorem 1.

V. EXPERIMENTS

A. Setup

We run all experiments by simulating both parties on a
single Intel i5 machine with 16 GB memory. The MP-SPDZ
Library [14] is used to implement actively secure FTL training.
The computation is conducted in a 64-bit prime field with
statistical security parameter σ = 40. The offline phase of
the protocol is based on LowGear version of Overdrive [17],
which is the most efficient preprocessing protocol for two
parties. The online version is based on SPDZ-2 [18]. The
semi-honest version of FTL training based on Secret Sharing
is implemented using ABY Framework[19]. The ring size
was chosen to be 64 bits i.e. l = 64, symmetrical security
parameter to be κ = 128 and σ = 40. Apart from this, the
encrypted version introduced in [1] is emulated using FATE
Framework [20].

B. Model Specifications

For our experiments related to scalability, we work on
the Kaggle’s Default-of-Credit-Card-Clients [21] is used. This
dataset contains credit card records of the users with the user’s
default payment as labels. The dataset offers 33 features and
30,000 samples after applying one-hot encoding to categorical
features. To simulate the federation setting, the dataset is split

Input : learning rate η, weight parameter γ, λ, max
iteration m, tolerance ε

Output : Model parameters ωS , ωT

S, T initialize ωS , ωT

iter = 0;
while iter ≤ m do

S do:
uSi ← NetS(ωS , xSi) for i ∈ DS ;
T do:
uTi ← NetT (ωT , xTi) for i ∈ DT ;
S, T do:
Obtain 〈LST1 〉k using ΠSS

Online, where k = {S, T} ;
S, T do:
Set 〈L〉k = Lk1 + 〈LST1 〉k, where k = {S, T} ;
for l ← 0 to lS by 1 do

S, T do:
Obtain 〈LST2 〉k using ΠSS

Online, where k = {S, T} ;
S, T do:
Set

〈
∂L
∂ωT

l

〉
S

= 〈LST2 〉S and
〈
∂L
∂ωT

l

〉
T

= 〈LST2 〉T
+ LT2 . Output the value ∂L

∂ωT
l

to T ;
T do:
Update ωTl ;

end
for l ← 0 to lT by 1 do

S, T do:
Obtain 〈LST3 〉k using ΠSS

Online, where k = {S, T} ;
S, T do:
Set

〈
∂L
∂ωS

l

〉
T

= 〈LST3 〉S and
〈
∂L
∂ωS

l

〉
S

= 〈LST3 〉S
+ LS3 . Output the value ∂L

∂ωS
l

to S ;
T do:
Update ωSl ;

end
Output the binary value Ldiff = (Lprev − L < ε)

using ΠSS
Online ;

if Ldiff == 1 then
Stop the protocol ;

else
Set 〈Lprev〉 = 〈L〉 ;
iter ← iter + 1 ;

end
end

Algorithm 1: FTL Training

in both samples and feature space. Party S, simulating the
source domain, is given all the labels. Each sample is assigned
to party T or S or both, wherein the co-occurring samples are
termed as overlapping samples. For realistic experimentation
we derive from our bank-business company example in the
first section, the demographic features such as age, education
etc. are provided to party T emulating business company, and
features relating to financial activity such as bill balance data,
six months of payment etc. to party S emulating the bank.

2573

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 17,2020 at 05:03:59 UTC from IEEE Xplore. Restrictions apply.

0 25 50
0

2

4

6

8

Total Samples

Ti
m

e[
s]

(a) Run-Time vs Total Samples

aby
aby(b)

HE
spdz(4)

spdz

0 10 20 30 40 50
0

1

2

Samples

C
om

m
un

ic
at

io
n

[M
B

]

(b) Communication vs Samples

Semi-Honest
Malicious

HE (per sample)

Fig. 3: Comparison in Performance

TABLE I: Online-Phase runtime for varying sample size (Malicious)

Process Time[ms]
10 20 50 100 500

Initialize 5.3 8.7 19 44 205
Computation 6.2 6.9 16 29 332

Reveal 15 22 36 53 292

TABLE II: Runtime for varrying sample size (Semi-Honest)

Phase Process Time[ms]
10 20 50 100 500

Setup BaseOT 190.94 190.1 194.7 201.4 196.3
Offline OTExtension 38.18 55.7 106.1 182.4 780.1
Online Computation 4.1 7.8 21.55 44.3 220.6

For FTL Training, tests were conducted on NUS-WIDE
dataset [22], which consists of Flickr images with 634 low-
level image features and their associated 1000 tag features and
81 ground truth labels. One-vs-all classification problem is
considered with a data federation formed between party S and
party T, where S has text tag features and image labels, and
T has low-level image features. For training FTL, the three
most frequently occurring labels in the NUS-WIDE dataset
are picked i.e., water, person and sky. The training iterates
until convergence or reaches the maximum iteration, i.e., 50,
where γ = 0.05 and λ = 0.005. The local model we use for
evaluation is a single layer stacked auto-encoder with domain
invariant hidden layer representation d = 32.

C. Results and Analysis

Figure 3 compares the performance of different settings
discussed for a single iteration, in terms of runtime and com-
munication cost. Here aby and aby(b) stand for the runtime in
semi-honest setting excluding and including baseOTs. Figure
4 further highlight results pertaining to the online SPDZ-based
evaluation for a single iteration. All experiments were run
on a single thread. Table III highlights the accuracy results
comparing SS-based FTL (SST) with the ones of HE-based
FTL with Taylor loss (TLT) and FTL with logistic loss (TLL)
in [1]. Experimental results can be summarized as:
COMPARISON WITH HE-BASED IMPLEMENTATION:

– For 500 samples, the HE-based model takes around 35
seconds to evaluate where as our model takes 1.4 seconds

in the malicious case and 0.8 seconds in the semi-honest
case (excluding offline phase).

– Even after including the time for preprocessing, our
model outperforms the HE-based model, as evident in
Figure 3.(a)

– In contrast to the online communication cost for different
sample sizes have been highlighted in Figure 3.(b), the
HE-based model has a communication cost of about 0.50
MB per sample.

– For the offline phase in malicious setting, generation of
each triple requires sending 13.71 kbit of data, where
using a single thread 8856 triples can be generated per
second. The performance can be drastically improved by
increasing the number of threads. The performance with 4
threads is highlighted in Figure 3.(a) labelled as spdz(4).

– The offline phase of the semi-honest version sends (� +
1)(κ+ �)/2 to generate an � bit multiplication triple.

– SS-based schemes can attain plain-text level accuracy
whereas HE-based scheme incur a loss in accuracy, thus
our model shows more accurate results on the NUS-
WIDE dataset, as evident from Table III.

SECRET SHARING BASED EVALUATION:
– Table I and II highlight that the runtime increases linearly

with the increase in samples, since the number of inner
products involved in the online phase is proportional to
(aNST + bNL), where a and b are two constants.

– Revealing outputs is a bottleneck for small sample size
in case of the SPDZ-based online evaluation (Table
I). Since all the online communication stems from the
multiplication gates evaluated, and the loss and gradient
values revealed; for small sample sizes both the costs are
comparable but as on increasing sample size the cost of
evaluating multiplication gates shoots up and surpasses
the cost of revealing.

– Figure 4.(a) suggests that on increasing features and
overlapping samples, rate of increase in runtime becomes
narrow i.e. training time will converge if we keep in-
creasing features or overlapping samples. Figure 4.(b)
highlights the quadratic growth in runtime of with respect
to hidden layer dimension.

SCALABLITY SPDZ:

2574

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 17,2020 at 05:03:59 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100

180

190

200

210

220

Overlapping Samples [Total=100]

Ti
m

e[
m

s]

Runtime vs Overlapping samples

featuresT=5
featuresT=10
featuresT=20

0 5 10 15 20
50

54

58

62

d [Total=20]

Ti
m

e
[m

s]

(b) Runtime vs d

Overlapping samples = 5
Overlapping samples = 10
Overlapping Samples = 15

Fig. 4: Scalability in Malicious Setting

– We focus on a two-party case which is a highly favourable
setting since instances of a two-party interaction are
extensively available on the Internet in the form of
client-server based protocols. Since this model requires
domain-independent common representation layer, it is
only applicable to a subset of transfer mechanisms. But
the techniques use by us are flexible enough to implement
any other model, and can be efficiently extended to
arbitrary number of parties while guaranteeing strong
security.

– Preprocessing throughput can further be increased upto
100000 triples per second by increasing the number of
threads used to 16.

– Merging communication for multiple operations in a
single round is the major reason behind the improvements
achieved by this setting. Vectorizing more operations and
increasing threads can lead to improvements in perfor-
mance.

Tasks NL SST TLT TLL
water vs. others 100 0.698± 0.011 0.692± 0.062 0.691± 0.060
water vs. others 200 0.707± 0.013 0.702± 0.010 0.701± 0.007
person vs. others 100 0.703± 0.015 0.697± 0.010 0.697± 0.020
person vs. others 200 0.735± 0.004 0.733± 0.009 0.735± 0.010

sky vs. others 100 0.708± 0.015 0.700± 0.022 0.713± 0.006
sky vs. others 200 0.724± 0.014 0.718± 0.033 0.718± 0.024

TABLE III: Comparison of weighted F1 scores.

As compared to other privacy preserving work on ML,
secure FTL training highly benefits due to local evaluation
of the neural network, as:

1) Due to the restrictions on division and exponentiation,
many MPC-based solutions require approximation of the
non-linear activation function for each layer of the model
in each iteration, leading to loss of accuracy. For instance,
SecureML incurs a 1% loss in the evaluation of a 2 layer
Fully-Connected Neural Network with 128 neurons in
each layer. Since in our case, the model evaluation is
local and approximations are made for evaluation of a
comparatively low depth circuit once after each iteration,
higher level of accuracy is observed.

2) ML platforms like Tensorflow can be used for the evalu-
ation. In contrast to this, most MPC-based solutions for
secure self learning models, including use of MP-SPDZ
Framework, are not compatible with such ML platforms.

3) Security needs to be adapted for low depth circuits of
gradients and loss calculation, yielding highly practical
implementations even with malicious security.

VI. CONCLUSION

In this paper, we establish the practicality and scalability of
secure FTL for both semi-honest and malicious setting. Our
techniques for training bring multifold improvement in the run-
time and communication cost as compared to the previous on
HE-based approach. Given the lack of actively secure machine
learning protocols, we hope this paper would pave the way for
future works that guarantee strong security.

A. Future Work

For the actively secure case, in contrast to our work over
fields i.e. modulo prime, another direction can be an imple-
mentation over rings of the form 2k using SPDZ-2k protocol
[23]. Such an setting can leverage the efficiency of native
operations in a 32-bit/64-bit standard CPU to show efficient
results.
While the security we introduce for collaborative calculation
of gradients will suffice for many real-life scenarios, some
applications might require a stronger security guarantee. Since
trained model parameters are a function of training data, in
some cases they can reveal private information about the
datasets involved in training [24]. For security against such
attacks, our techniques can be merged with secure aggregation
techniques introduced in [25]. As secure aggregation involves
revealing the aggregation of trained parameters from multiple
parties for updation of a shared global model, SPDZ remains a
sound option for a FTL model involving more than two parties
and secure aggregation, because of its efficient scalability.
The online phase of SPDZ scales linearly as the number of
participants are increased, thus leading to an even more robust
yet practical system. Apart from this, guarding of revealed
gradients in the current model with differential privacy [26]
can be a considered as a solution.

REFERENCES

[1] Y. Liu, T. Chen, and Q. Yang, “Secure federated transfer learning,”
CoRR, vol. abs/1812.03337, 2018, http://arxiv.org/abs/1812.03337.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds., 2012, pp. 1097–1105.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–503, 2016, http://www.nature.com/nature/
journal/v529/n7587/full/nature16961.html.

[4] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Fed-
erated learning of deep networks using model averaging,” ArXiv, vol.
abs/1602.05629, 2016.

[5] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Za-
hur, and D. Evans, “Secure linear regression on vertically partitioned
datasets,” IACR Cryptology ePrint Archive, vol. 2016, p. 892, 2016.

[6] R. Nock, S. Hardy, W. Henecka, H. Ivey-Law, G. Patrini, G. Smith, and
B. Thorne, “Entity resolution and federated learning get a federated
resolution,” CoRR, vol. abs/1803.04035, 2018. [Online]. Available:
http://arxiv.org/abs/1803.04035

2575

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 17,2020 at 05:03:59 UTC from IEEE Xplore. Restrictions apply.

[7] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty Com-
putation from Somewhat Homomorphic Encryption,” in Advances in
Cryptology – CRYPTO 2012, R. Safavi-Naini and R. Canetti, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 643–662.

[8] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, ,
and J. Wernsing, “CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy,” in Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, pp. 201–210.

[9] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-
Preserving Machine Learning,” 2017 IEEE Symposium on Security and
Privacy (SP), pp. 19–38, May 2017.

[10] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Maliciously
Secure Coopetitive Learning for Linear Models,” 2019.

[11] V. Chen, V. Pastro, and M. Raykova, “Secure Computation for Machine
Learning With SPDZ,” 2019.

[12] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Proceedings of the 11th Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’91. London, UK, UK:
Springer-Verlag, 1992, pp. 420–432.

[13] D. Demmler, T. Schneider, and M. Zohner, “ABY - A Framework
for Efficient Mixed-Protocol Secure Two-Party Computation,” in NDSS,
2015.

[14] N1 Analytics. MP-SPDZ - Versatile framework for multi-party compu-
tation. https://github.com/n1analytics/MP-SPDZ.

[15] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, ser. CCS ’13. New York, NY, USA:
ACM, 2013, pp. 535–548. [Online]. Available: http://doi.acm.org/10.
1145/2508859.2516738

[16] X. Shu, G.-J. Qi, J. Tang, and J. Wang, “Weakly-shared deep transfer
networks for heterogeneous-domain knowledge propagation,” 10 2015,
pp. 35–44.

[17] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making SPDZ Great
Again,” in Advances in Cryptology – EUROCRYPT 2018, J. B. Nielsen
and V. Rijmen, Eds. Cham: Springer International Publishing, 2018,
pp. 158–189.

[18] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical Covertly Secure MPC for Dishonest Majority – Or: Breaking
the SPDZ Limits,” in Computer Security – ESORICS 2013, J. Crampton,
S. Jajodia, and K. Mayes, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 1–18.

[19] encryptogroup. ABY - A Framework for Efficient Mixed-protocol Se-
cure Two-party Computation. https://github.com/encryptogroup/ABY.

[20] WeBank. FATE - Federated AI Technology Enabler. https://github.com/
WeBankFinTech/FATE.

[21] Kaggle. (2019) Default of credit card clients dataset. https://www.kaggle.
com/uciml/default-of-credit-card-clients-dataset.

[22] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng, “NUS-
WIDE: a real-world web image database from national university of
singapore,” in Proc. of ACM Conf. on Image and Video Retrieval
(CIVR’09), 2009.

[23] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing, “SPDZ2k:
efficient MPC mod 2k for dishonest majority,” in Advances in Cryptol-
ogy - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II,
2018, pp. 769–798.

[24] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP), May 2017, pp. 3–18.

[25] A. Segal, A. Marcedone, B. Kreuter, D. Ramage, H. B. McMahan,
K. Seth, K. Bonawitz, S. Patel, and V. Ivanov, “Practical secure
aggregation for privacy-preserving machine learning,” in CCS, 2017.

[26] A. Rajkumar and S. Agarwal, “A differentially private stochastic gradient
descent algorithm for multiparty classification,” in Proceedings of the
Fifteenth International Conference on Artificial Intelligence and Statis-
tics, ser. Proceedings of Machine Learning Research, N. D. Lawrence
and M. Girolami, Eds., vol. 22. La Palma, Canary Islands: PMLR,
2012, pp. 933–941.

2576

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on December 17,2020 at 05:03:59 UTC from IEEE Xplore. Restrictions apply.

