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Abstract
In this article, a variable-order operational matrix of Gegenbauer wavelet method based on
Gegenbauer wavelet is applied to solve a space–time fractional variable-order non-linear
reaction–diffusion equation and non-linear Galilei invariant advection diffusion equation for
different particular cases. Operational matrices for integer-order differentiation and variable-
order differentiation have been derived. Applying collocation method and using the said
matrices, fractional-order non-linear partial differential equation is reduced to a system of
non-linear algebraic equations, which have been solved using Newton iteration method. The
salient feature of the article is the stability analysis of the proposed method. The efficiency,
accuracy and reliability of the proposed method have been validated through a compari-
son between the numerical results of six illustrative examples with their existing analytical
results obtained from literature. The beauty of the article is the physical interpretation of the
numerical solution of the concerned variable-order reaction–diffusion equation for different
particular cases to show the effect of reaction term on the pollution concentration profile.
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1 Introduction

Fractional calculus is an ancient topic of mathematics with history as ordinary or integer
calculus (Machado et al. 2011). It is developing progressively now. The theory of fractional
calculuswas developed byAbel andLiouville. The details can be found inKilbas et al. (2006),
Podlubny (1998). In the last few years, fractional calculus has attracted the attention of the
researchers of medical physics, chemistry, biology, engineering and mathematics. Fractional
calculus and fractional differential equation are found in many applications in different fields
(Milici et al. 2019). Many different forms of fractional-order differential operators were
introduced as the Grunwald–Letnikov, Riemann–Liouville, Hadamard, Caputo, Riesz and
variable-order fractional operators. Due to its increasing applications, researchers have paid
their attention to find numerical and exact solutions of the fractional-order differential equa-
tions. As there are many difficulties in solving a fractional-order differential equation by
analytic method, there is a need of seeking numerical solutions. There are many numer-
ical methods available in literature, viz., eigenvector expansion, Adomain decomposition
method (Suarez and Shokooh 1997), fractional differential transform method (Darania and
Ebadian 2007), homotopy perturbation method (Hashim et al. 2009), predictor–corrector
method (Diethelm et al. 2002) and generalized block pulse operational matrix method (Li
and Sun 2011), etc. Some numerical methods based upon operational matrices of fractional-
order differentiation and integration with Legendre wavelets (Jafari et al. 2011), Chebyshev
wavelets (Yuanlu 2010), sine wavelets, and Haar wavelets (Li and Zhao 2010) have been
developed to find the solutions of fractional-order differential and integro-differential equa-
tions. The functions which are commonly used include Legendre polynomial (Odibat 2011),
Laguerre polynomial (Gürbüz and Sezer 2016), Chebyshev polynomial and semi-orthogonal
polynomial such as Genocchi polynomial.

Samko and Ross (1993) have investigated fractional operator when the order is variable
during many physical processes. This generalization of fractional derivative to be a non-
constant depending on time and space is very interesting. This approach of variable-order
fractional calculus has numerous applications in physics, mechanics, control and signal pro-
cessing (Soon et al. 2005; Valério and Sá da 2013; Ortigueira et al. 2019). There are many
definitions of variable-order fractional derivative and integration. The variable-order opera-
tors have too complex kernel for having a variable exponent. So, to find numerical solution of
variable-order fractional differential equation (VOFDE) is a little bit tough task as compared
to constant-order differential equation. In article Coimbra (2003), a consistent approxima-
tion is used to solve VOFDE. A finite difference scheme to find the solution of VOFDE
and convergence analysis is used in article (Lin et al. 2009). Some latest and updated
methods are discovered to find the numerical solution of VOFDE, viz., finite difference
method (Moghaddam and Machado 2017b; Moghaddam and Mostaghim 2017), B-linear
spline method (Machado and Moghaddam 2018), cubic spline method (Moghaddam and
Machado 2017a, c), integro quadratic spline interpolations (Moghaddam et al. 2017; Keshi
et al. 2018) and spectralmethod (Moghaddam et al. 2019). Analytic solution of variable-order
differential equation is given in article Malesza et al. (2019). Variable-order fractional Lapla-
cian equation with variable growth has been solved in article Xiang et al. (2019). In article
Zayernouri and Karniadakis (2015), spectral collocation method is proposed to solve some
linear and non-linear VOFPDE. An accurate discretization technique has been developed in
Hajipour et al. (2019) to solve variable-order fractional reaction–diffusion problems.

Reaction–diffusion process has been investigated for a long time. In the process of
reaction–diffusion, reacting molecules are used to move through space due to diffusion.
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This definition excludes other modes of transports such as convection and drift that may
arise due to the presence of externally imposed fields.

When a reaction occurswithin an element of space,molecules can be created or consumed.
These events are added to the diffusion equation and lead to reaction–diffusion equation of
the form

∂c

∂t
= D∇2c + R(c, t), (1)

where R(c, t) denotes the reaction term at time t . The extension of the reaction–diffusion
equation in fractional-order system can be found in the articles (Das et al. 2011; Jaiswal
et al. 2018; Das et al. 2018; Tripathi et al. 2016). In nature, many of the beautiful systems in
biology, physics,chemistry, and physiology can be described by reaction–diffusion equations.
For example, the distribution and organization of vegetation-like bushes in arid ecosystems
(Couteron and Lejeune 2001), the stripes and spots on fish (Kondo and Asai 1995), snakes
(Murray 1981) and the skin or fur of mammals (Kondo 2009) have been studied by the
standing waves which are produced by reaction–diffusion equations.

The advection–diffusion equation is a combination of diffusion and convection. The trans-
port ofmaterial by a knownvelocity field can be described by the reaction–advection diffusion
equation (RADE). The general form of this equation is

∂u(x, t)

∂t
= ∇.(C∇u) − ∇.(νu) + R,

where u(x, t) is a variable representing the concentration of mass transfer and temperature of
heat transfer. C is the diffusion coefficient and ν is the velocity of the fluid flow as a function
of time and location.

The fractional-order reaction advection–diffusion equation (RADE) is a generalized ver-
sion of classical RADE. Many physical phenomena such as transport dynamics in complex
system, glassy and porous media, geological and geophysical processes can be modeled by
the advection–diffusion equation. Einstein’s theory of Brownian motions reveals that the
mean square displacement of a particle moving randomly is proportional to time. Thus in the
fundamental solution of the integer-order transport equation, the probability density function
governing the Brownian motion will be Gaussian type whose mean square displacement is
〈X2(t)〉 ∼ t, and if the integer-order transport equation is extended to the time-fractional-
order system, then the phenomena of anomalous diffusion are observed. Therefore after
the advancement of fractional calculus, it is seen that the mean square displacement for an
anomalous diffusion equation having time-fractional derivative grows slowly with time. For

the simple fractional-order diffusion equation ∂αu
∂tα = ∂2u

∂x2
, the mean square displacement is

X2(t) ∼ tα, where α is the anomalous diffusion exponent. An important characteristic of
this evolution equation is that it generates the fractional Brownian motion, a generalization
Brownian motion. Thus if we replace the integer-order derivative with the fractional one, it
changes the fundamental concept of time and the concept of evolution in the foundations
of physics. The fractional-order derivative has a physical meaning related to the statistics of
waiting times according to theMontroll–Weiss theory. It can also be shown that for fractional-
order reaction advection–diffusion equation (RADE), the mean square displacement will be

〈X2(t)〉 ∼ t
3α
2 , 0 < α < 1 and thus we can say that the transportation equation of the form

of RADE follows the evolutionary process.
In the last two decades, fractional differential equation have been widely used by

researchers not only in science, engineering, economics and finance, but also helps in mod-
eling multiscale problems, characterized by wide or length scale. The excellence of the
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fractional-order differential operator is its nonlocal property, which takes into account the
fact that the future state not only depends upon the present state, but also upon all the his-
tory of its previous states. Nowadays, the fractional-order system has gained popularity in
the investigation of dynamical system, since it allows greater flexibility in the model. The
main advantage of the fractional calculus is that it provides an excellent instrument for the
description of the memory effect of various physical processes. The derivatives and integrals
of fractional order are useful to explore the characteristic features of anomalous diffusion,
transport and fractal walks through setting up of fractional kinetic equations, which are useful
in anomalous sub-diffusion. Stability analysis of the variable-order FDE is complex, but the
authors have made an endeavor to show the stability of ultraspherical wavelets expansion
used to solve the concerned problem. Recent studies of fixed-order FDEs show that they
are unable to characterize the adequate information on complex natural phenomena, viz,
complex diffusion occurring in heterogeneous disordered porous media. So there are a lot of
limitations of applying fractional differential order during modeling. To overcome the lim-
itations, the concept of variable-order operators has been introduced. Thus, generalization
of fixed order to VO operator provides a new perspective to describe the said mathematical
complex systems (Dabiri et al. 2018).

The Gegenbauer polynomial and wavelet (Rehman and Saeed 2015; Elgindy and Smith-
Miles 2013) are generalization of Legendre and Chebyshev polynomials and wavelet, which
have been used in the present article to solve non-linear variable-order reaction–diffusion
equation and non-linear variable-order Galilei invariant advection–diffusion equation. After
finding the operational matrix of fractional differentiation of integer and variable order, we
collocate the given non-linear fractional-order model and boundary conditions. By collocat-
ing we get a non-linear system of algebraic equations which are solved by using an iteration
method called Newton method. To validate the accuracy and efficiency of the proposed
method, the numerical results obtainedby solvingdifferent particular formsof twogivenmod-
els under the prescribed initial and boundary conditions are comparedwith the exact solutions
and the results are presented through graphs and tables. The article is organized as follows.

In Sect. 2, the definitions, mathematical preliminaries of fractional calculus, Gegenbauer
polynomial, Gegenbauer wavelet and their properties are given. Section 3 continues with
function approximation. In Sect. 4, the error bound and convergence analysis for the proposed
method have been investigated. In Sect. 5, the operational matrices of differentiation for
integer and variable orders by Gegenbauer wavelet have been derived. The validation of the
method through a comparison of the numerical results with the existing analytical results for
the six particular cases of two given models is given in Sect. 8. The conclusion of over all
work is presented in Sect. 9.

2 Preliminaries

Here, few definitions and important properties of fractional calculus have been introduced. In
literature, definitions of two types of variable-order derivative have been introduced. These
two definitions are named as variable-order derivative type 1 (V1) and variable-order deriva-
tive type 2 (V2). Here, the definition suggested inCoimbra (2003),Moghaddam andMachado
(2017a) has been used.
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2.1 Definitions of variable-order derivatives of type 1 (V1) and type 2 (V2)

Type 1 (V1) variable-order fractional derivative of order q − 1 < ϑ(t) ≤ q of a function
u(x, t) with respect to variable t is defined as (Lv and Xu 2016)

0D
ϑ(t)
t u(x, t) =

⎧
⎪⎨

⎪⎩

1

Γ (q − ϑ(x, t))

∫ t
0 (t − s)q−ϑ(x,t)−1 ∂qu(x, t)

∂sq
ds, q − 1 < ϑ(t)<q,

∂qu(x, s)

∂sq
, ϑ(t) = q.

(2)

Here ifϑ(t) is constant, then this definition is equivalent to constant-order fractional derivative
in Caputo sense (Tavares et al. 2016). From this definition, it can be shown that memory
effect of a given system is changed with time and can be determined by its current state.
So, variable-order definition is useful to characterize variable memory effect of the system.
Type 1 (V1) form of variable-order operator is useful to depict properly different real-world
diffusion processes. From the definition, it can be easily seen that the variable-order fractional
derivative follows the linear property

0D
ϑ(t)
t (c1 f (x, t) + c2g(x, t)) = c1 0D

ϑ(t)
t f (x, t) + c2 0D

ϑ(t)
t g(x, t). (3)

It has the following useful property:

0D
ϑ(t)
t tm =

⎧
⎨

⎩

Γ (m + 1)

Γ (m − ϑ(t) + 1)
tm−ϑ(t), q ≤ m,

0, otherwise.
(4)

The type V2 of variable-order differential operator is defined as

0D
ϑ(t)
t u(x, t) =

{∫ t
0

(t−s)q−ϑ(x,s)−1

Γ (q−ϑ(x,s))
∂qu(x,t)

∂sq ds, q − 1 < ϑ(t) < q,
∂qu(x,s)

∂sq , ϑ(t) = q.
(5)

In article Sun et al. (2011), it is shown that fractional derivative shows the long memory
effect of a system and memory effect is reduced as the order approaches the integer order.
The consequences represent that memory effect depicted by V1 type operator model changes
with fast rate as compared to the model containing V2 type operator model. Since a model
of V2 type contains the memory of its history, it prevents the system behavior from changing
sharply. When defining the variable-order operational matrix, we use the relation (4). If we

choose the V2 type operator, then due to the integrand (t−s)q−ϑ(x,s)−1

Γ (q−ϑ(x,s))
∂qu(x,t)

∂sq , the integration
in the definition becomes too complicated to solve analytically. Thus, the operational matrix
of operator V1 is easy to compute as compared to V2 type and saves a lot of computational
time. On the other hand, if we use type 2 derivative, thenwe have to adopt a suitable numerical
integration scheme to compute the complicated integration, which may give us less accurate
results as compared to the results obtained by using V1 type derivative.

2.2 Gegenbauer polynomial and Gegenbauer wavelet

The Gegenbauer polynomials also known as ultraspherical harmonics polynomials denoted
by Gn

λ(x), for λ > −1
2 , satisfy the following singular Sturm–Liouville equation on [−1, 1]

as

d

dy

[

(1 − y2)λ+ 1
2
d

dy
Gn

λ(y)

]

+ n(n + 2λ)(1 − y2)λ− 1
2 Gn

λ(y) = 0. (6)
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These polynomials can also be derived by the following recurrence relations

G0
λ(y) = 0,G1

λ(y) = 2λy,

Gn+1
λ (y) = 1

n + 1
[2y(λ + n)Gn

λ(y) − (2λ + n − 1)Gn−1
λ (y)].

The Rodrigues formula to compute the Gegenbauer polynomials is given by

Gn
λ(y) =

(−1

2

)n Γ (λ + 1
2 )Γ (n + 2λ)

n!Γ (2λ)Γ
(
n + λ + 1

2

) (1 − y2)−λ+ 1
2
dn

dyn
(1 − y2)n+λ− 1

2 . (7)

TheGegenbauer polynomials are orthogonal on the interval[−1, 1]with respect to the weight
function w(x) = (1 − y2)λ− 1

2 .

∫ 1

−1
(1 − y2)λ− 1

2 Gm
λ (y)Gn

λ(y)dy = Lλ
mδmn, λ >

−1

2
, (8)

where Lλ
m = π21−2λΓ (m+2λ)

m!(m+λ)(Γ λ)2
is the normalizing factor and δ is the Kronecker delta function.

This following inequality holds for Gegenbauer polynomials:

|Gn
λ(cos θ)|(sin θ)λ <

Γ (n + 3λ
2 )21−λ

Γ (λ)Γ (1 + n + λ
2 )

, 0 ≤ θ ≤ π. (9)

Another recurrence relation with integration is

∫

Gn
λ(x)w(x)dx = −2λ(1 − x2)

1
2+λ

n(n + 2λ)
Gn−1

λ+1(x). (10)

We can define Gegenbauer wavelet on [0, 1]by

ψλ
n,m(x) =

⎧
⎨

⎩

1
√
Lλ
m

2
k
2 Gm

λ (2k x − n̂), n̂−1
2k

< x < n̂+1
2k

0 otherwise,
(11)

where k = 1, . . ., n = 1, . . . 2k−1, n̂ = 2n − 1 is translation parameter, m in the order of
Gegenbauer wavelet. For each λ a different family of wavelets can be generated. If we put
λ = 0 and λ = 1, we get Chebyshev wavelets of the first and second kinds, respectively.
Putting λ = 1

2 , we get the family of Legendre wavelets.

3 Function approximation

We can use Gegenbauer wavelet to expand any function f (x) defined over [0, 1] as

f (x) =
∞∑

n=0

∞∑

m=0

cnmψλ
n,m(x), (12)

where cpq = ∫ 1
0 f (x)ψλ

n,m(x)wλ
n (x)dx .

Here, wλ
n (x) = (1 − (2k x(2n − 1))2)λ−1/2 is the weight function. The truncated form of

the above infinite series is

f (x) =
2k−1
∑

n=0

M−1∑

m=0

cnmψλ
n,m(x) = CTΨ (x), (13)
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where C and Ψ (x) are column vector of order 2k−1M . We can rewrite the above equation as

f (x) =
m̂∑

k=0

ckψ
λ
k (x) = CTΨ (x), (14)

where m̂ = 2k−1M and k = Mn + m + 1.
Similarly, an arbitrary function of two variables can be expanded in terms of Gegenbauer

wavelet as

f (x, t) =
m̂∑

k=0

m̂∑

l=0

cklψ
λ
k (x)ψλ

l (t) = Ψ T (x)VΨ (t), (15)

where V = [ci j ] and ci j = ∫ 1
0

∫ 1
0 f (x, t)ψλ

i (x)ψλ
j (t)w

λ
n (x)w

λ
n (t)dxdt .

4 Error bound and stability analysis

In this section, we discuss the error analysis and derive an upper bound for the truncation
error and also discuss convergence of the Gegenbauer wavelet.

Theorem 1 A function g(x) ∈ L2[0, 1] can be approximated as an infinite series of
Gegenbauer wavelets. This series will converge uniformly to g(x), with given condition
|g′′(x)| ≤ M . Moreover, expansion coefficient given in Eq. (11) satisfies the inequality

|cnm | <
4M(1 + λ)2(1 + m + λ)2

n
5
2 (m − 2)4

, ∀n ≥ 1,m > 2. (16)

Proof With the help of the definition given in Eq. (10) and by the properties of the inner
product, we can write coefficients cnm as

cnm = 1
√
Lλ
m

2
k
2

∫ n
2k−1

n−1
2k−1

g(x)Gm
λ (2k x − 2n + 1)w(2k x − n)dx . (17)

Integrating by parts of the right hand side of the above equation along with the property (9)
of Gegenbauer wavelets, we get

cnm = λ2
6−k
2

m(m + 2λ)
√
Lλ
m

∫ n
2k−1

n−1
2k−1

g′(x)Gm−1
λ−1 (2k x − 2n + 1)

(2k x − n)(1 + n − 2k t)w(2k x − n)dx .

(18)

Again integrating by parts and substituting 2k t − 2n + 1 = cos θ, we can rewrite the above
equation as

cnm = 2−2λ− 5k−5
2 (λ)2

√
2

(m − 1)2(m − 1 + 2λ)2
√
Lλ
m

∫ π

0
g′′

(
cos θ + 2n + 1

2k

)

Gm−2
λ−2 (sin θ)2λ+4 cos θdθ.

(19)

Now, considering inequality (9) and assumption |g′′(x)| ≤ M, we get

|cnm | ≤ 2−2λ− 5k−5
2 |(λ)(λ + 1)|√2

(m − 1)2(m − 1 + 2λ)2|
√
Lλ
m |
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×
∫ π

0
|g′′(cos θ + 2n + 1

2k
)||Gm−2

λ−2 (sin θ)2λ+4 cos θ |dθ.

<
M2−2λ− 5k−5

2 |(λ)(λ + 1)|√2

(m − 1)2(m − 1 + 2λ)2|
√
Lλ
m | ×

∫ π

0
|Gm−2

λ−2 (sin θ)2λ+4 cos θ |dθ. (20)

Putting the value of
√
Lλ
m, we have

|cnm | <
4M(λ + 1 + m)2(1 + λ)2

(m − 2)4n
5
2

,

which completes the proof of the theorem. 
�
Next for the error bound, let us consider a function u(x, t) ∈ CM [0, 1] where (x, t) ∈

[0, 1] × [0, 1]. Consider
ΘM = Span{Gλ

i G
λ
j , i, j = 0, 1 . . . M − 1}. (21)

Assuming ‖u(x, t) ∈ ΘM is a better approximation of u(x, t), we obtain

‖u(x, t) − ũ(x, t)‖ ≤ ‖u(x, t) − w(x, t)‖,∀w(x, t) ∈ ΘM . (22)

Now following the procedure as given in De Villiers (2012), Gasca and Sauer (2001), we
have

u(x, t) − w(x, t) = 1

M !
∂Mu(ς, t)

∂xM

M−1∏

i=1

(x − xi ) + 1

M !
∂Mu(x, τ )

∂t M

M−1∏

i=1

(t − t j )

− 1

(M !)2
∂2Mu(ς ′, τ ′)

∂xM∂t M

M−1∏

j=1

(t − t j )
M−1∏

i=1

(x − xi ),

where ς , τ , ς ′,τ ′ ∈ [0, 1], xi and t j are roots of Gλ
M .

Now,

‖u(x, t) − w(x, t)‖ ≤ 1

M ! max
(x,t)

∣
∣
∣
∣
∂Mu

∂xM

∣
∣
∣
∣

�
�
�
�
�

M−1∏

i=1

(x − xi )

�
�
�
�
�

+ 1

M ! max
(x,t)

∣
∣
∣
∣
∂Mu

∂t M

∣
∣
∣
∣

�
�
�
�
�

M−1∏

i=1

(t − t j )

�
�
�
�
�

− 1

(M !)2 max
(x,t)

∣
∣
∣
∣

∂2Mu

∂xM∂t M

∣
∣
∣
∣

�
�
�
�
�
�

M−1∏

j=1

(t − t j )

�
�
�
�
�
�

�
�
�
�
�

M−1∏

i=1

(x − xi )

�
�
�
�
�

.

(23)

As u(x, t) ∈ CM [0, 1], we can say that there exist N1, N2 and N3 such that

max
(x,t)

∣
∣
∣
∣
∂Mu

∂xM

∣
∣
∣
∣ ≤ N1,max

(x,t)

∣
∣
∣
∣
∂Mu

∂t M

∣
∣
∣
∣ ≤ N2,max

(x,t)

∣
∣
∣
∣

∂2Mu

∂xM∂t M

∣
∣
∣
∣ ≤ N3. (24)

By minimizing the factor ‖ ∏M−1
i=1 (x − xi )‖, we have

‖u(x, t) − ũ(x, t)‖ ≤ N3
4

(M !)242M + (N1 + N2)
4

(M !)4M = H(N1, N2, N3, M). (25)

Thus, we have derived an upper bound of the Gegenbauer polynomial for the absolute error.
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Theorem 2 Let u(x, t) ∈ CM [0, 1] be defined on domain (x, t) ∈ [0, 1] × [0, 1] with

max
(x,t)

∣
∣
∣
∣
∂Mu

∂xM

∣
∣
∣
∣ ≤ N1,max

(x,t)

∣
∣
∣
∣
∂Mu

∂t M

∣
∣
∣
∣ ≤ N2,max

(x,t)

∣
∣
∣
∣

∂2Mu

∂xM∂t M

∣
∣
∣
∣ ≤ N3, (26)

where N1, N2 and N3 are constants. If u(x, t) has Gegenbauer wavelet expansion as
Ψ T (x)VΨ (t) then error bound is given by

‖u(x, t) − Ψ T (x)VΨ (t)‖ ≤ H(N1, N2, N3, M)

√
π

2
k+1
2

Γ ( 12 + λ)

Γ (1 + λ)
. (27)

Proof By the orthogonality condition of Gegenbauer wavelet, we have

‖u(x, t) − Ψ T (x)VΨ (t)‖2 =
∫ 1

0

∫ 1

0
wλ
n (x)w

λ
n (t)(u(x, t) − Ψ T (x)VΨ (t))2dxdt .

Since we have divided the domain into 22k subdomains, we get

‖u(x, t) − Ψ T (x)VΨ (t)‖2 =
2k−1
∑

n=0

2k−1
∑

n′=0

∫ n
2k−1

n−1
2k−1

∫ n′
2k−1

n′−1
2k−1

wλ
n (x)w

λ
n (t)(u(x, t)

− Ψ T (x)VΨ (t))2dxdt

≤
2k−1
∑

n=0

2k−1
∑

n′=0

∫ n
2k−1

n−1
2k−1

∫ n′
2k−1

n′−1
2k−1

wλ
n (x)w

λ
n (t)(u(x, t)

− ũ(x, t)2dxdt,

where ũ(x, t) satisfies the error bound given in Eq. (26). So we have

‖u(x, t) − Ψ T (x)VΨ (t)‖2

≤ (H(N1, N2, N3, M))2
2k−1
∑

n=0

2k−1
∑

n′=0

∫ n
2k−1

n−1
2k−1

∫ n′
2k−1

n′−1
2k−1

wλ
n (x)w

λ
n (t)dxdt

≤ (H(N1, N2, N3, M))2
π

2k+1

Γ ( 12 + λ)2

Γ (1 + λ)2
,

which completes the proof of the theorem. 
�

5 Operational matrix of the derivative

Theorem 3 If Ψ (t) denotes the Gegenbauer wavelet, then the derivative of Ψ (t) can be
written as

d

dx
Ψ (t) = DΨ (t), (28)

where D is an operational matrix of order 2k−1M which can be defined as

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

θ 0 0 · · · 0
0 θ 0 · · · 0
0 0 θ · · · 0
...

... · · · ...

0 0 0 · · · θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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where θ is a matrix of order M × M having (l,m)th elements defined as

θh,k =
⎧
⎨

⎩

2m+1(m+λ−1)√
(m−1+λ)Γ (m)Γ (h−1+2λ)
(l−1+λ)Γ (l)Γ (m−1+2λ)

, l = 2, . . . , M, k = 1, . . . , l − 1 and (l + m)odd

0, otherwise.
(29)

In general, n-times derivative of vector Ψ (x) is expressed by

dn

dxn
Ψ (x) = DnΨ (x), (30)

where Dn is the n-th power of D.

5.1 Gegenbauer wavelet operational matrix of variable-order fractional derivative

Type 1 fractional derivative of variable-order (q − 1) < γ (x, t) ≤ q of a Gegenbauer vector
Ψ (t) can be defined as

0D
γ (x,t)
t Ψ (t) � Qγ (x,t)

t Ψ (t), (31)

where Qγ (x,t)
t is an m̂ × m̂ operational matrix of variable order for Gegenbauer wavelet. To

derive explicit form of this matrix we introduce another family of piecewise functions, which
are defined on [0, 1] as

ωnm(t) =
{
tm, t ∈ [ n

2k
, n+1

2k
],

0, otherwise,
(32)

for n = 0, 1, . . . , 2k−1, m = 0, 1, . . . , M − 1. An m̂ set of these non-normalized functions
can be expressed as

Ω(t) = [ω1(t), ω2(t), . . . , ωm̂(t)]T , (33)

where ωi (t) = ωnm(t) and index i can be determined by i = Mn +m + 1. If Ω(t) and Ψ (t)
are vectors defined in Eqs. (13) and (32), then

Ω(t) = PΨ (t), (34)

where P = [pi j ] is m̂ × m̂ order matrix whose elements are determined by pi j =
〈ωi (t), ψ j (t)〉.
Lemma Let Ω(t) be the vector defined in Eq. (25) and (q − 1) < γ (x, t) ≤ q be a positive
function defined on [0, 1]. Then V1 type fractional derivative of variable-order γ (x, t) of
ωnm(t) can be expressed as

0D
γ (x,t)
t ωnm(t) =

{
m!

Γ (m−γ (x,t)+1) t
m−γ (x,t), m = q, q + 1, . . . , M − 1, t ∈ [ n

2k
, n+1

2k
],

0, otherwise.

(35)

Proof Using relation (4) it can be proved easily. 
�
Theorem 4 Let us assume Ω(t) to be the vector which is defined in Eq. (25) and (q − 1) <

γ (x, t) ≤ q a positive function defined over [0, 1]. Then fractional derivative of variable
order of type 1 of Ω(t) can be defined as

0D
γ (x,t)
t Ω(t) = V γ (x,t)

t Ω(t), (36)
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where V γ (x,t)
t is a matrix of order m̂ × m̂ which can be defined by

V γ (x,t)
t =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sγ (x,t)
t 0 0 · · · 0

0 Sγ (x,t)
t 0 · · · 0

0 0 Sγ (x,t)
t · · · 0

...
... · · · ...

0 0 0 · · · Sγ (x,t)
t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where Sγ (x,t)
t is an M × M matrix given by

Sγ (x,t)
t = t−γ (x,t)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0
.
.
.

.

.

. · · ·
.
.
.

0 0 · · · 0
0 · · · 0 q!

Γ (q−γ (x,t)+1) 0 0 · · · 0

0 · · · 0 0 (q+1)!
Γ (q−γ (x,t)+2) 0 · · · 0

.

.

.
.
.
. · · ·

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(M−1)!
Γ (M−γ (x,t)+2) 0

0 0 0 0 · · · 0 0 M !
Γ (M−γ (x,t)+1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Proof By using the above lemma, the proof becomes very straightforward. 
�
Theorem 5 LetΨ (t) be the Gegenbauer vector defined in Eq. (10) and (q−1) < γ (x, t) ≤ q
be a positive function defined on [0, 1]. Then the variable-order fractional derivative ofΨ (t)
is given as

0D
γ (x,t)
t Ψ (t) = Qγ (x,t)

t Ψ (t) = (P−1V γ (x,t)
t P)Ψ (t). (37)

Proof By considering Eq. (33) and Theorem 4,

Ψ (t) = P−1Ω(t), (38)

and thus

0D
γ (x,t)
t Ψ (t) = P−1

0D
γ (x,t)
t Ω(t) = P−1V γ (x,t)

t Ω(t) = (P−1V γ (x,t)
t P)Ψ (t), (39)

which shows the proof of theorem. 
�

6 Proposedmodel

In the past decades, constant-order fractionalmodel of diffusion equation has been considered
and achieved success in many fields. For more complicated and realistic stochastic diffusion
process (Chechkin et al. 2005), it became clear thatmore theoretical and numerical studies are
needed. Many problems of physical, biological and physiological diffusion phenomena are
not equipped to be characterized by the CO fractional diffusion equation. These phenomena
are complex and analysis and diffusion behaviors are changed with time evolution, space
variation or on system parameters. Such kind of phenomena exist in various fields such as
plasma physics, biophysics, protein dynamics (Anh et al. 2005) and econophysics (Chechkin
et al. 2008). In several diffusion processes, the diffusion rate decreases with the increase
in time from normal diffusion to subdiffusion. So, to characterize for this type of diffusion
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phenomena, a time-dependent variable-order model is a good choice. Diffusion in complex
medium is a fast developing issue of research.Constant-order diffusionmodel candescribe the
diffusion phenomena in homogeneous medium. But in complex medium, the heterogeneities
of the medium cause variations of permeability in different spatial positions. For this type
of situation, variable-order model with space dependence is best approached, by which we
can explain the location-dependent diffusion process. In addition, when studying diffusion
process in a porous media when external field or medium structure varies with time, then the
constant-ordermodel cannot be used to characterize this phenomenon.When the groundwater
problem is considered in a medium through which heterogeneous flow occurs and changes
with time, VO reaction diffusion model is suggested. In this article as a first model we take
space time variable-order reaction diffusion equation given by the following equation

0D
γ (x,t)
t u(x, t) =0 Dμ(x,t)

x u(x, t) + κ(u(x, t)) + f (x, t), (40)

with initial and boundary conditions as

u(x, 0) = f1(x), u(0, t) = g1(t), u(1, t) = g2(t), (41)

where κ(u(x, t)) is a source term. We take Galilei invariant advection–diffusion with a non-
linear source term as a second model given by

∂u(x, t)

∂t
+ ∂u(x, t)

∂x
= D1−γ (x,t)

t

(
∂2u

∂x2

)

+ R(x, t, u), (42)

with initial and boundary condition as

u(x, 0) = f2(x), u(0, t) = g3(t), u(1, t) = g4(t). (43)

This variable-order advection–diffusion model can present a more effective mathematical
framework for description of different real-world anomalous diffusion process.

7 Description of the proposedmethod

In this section, Gegenbauer wavelet and their operational matrices are used to solve model
(40) and (42). First, we approximate the unknown function u(x, t) by Gegenbauer wavelet
as

u(x, t) = Ψ (x)T .U .Ψ (t). (44)

Differentiating Eq. (36) with respect to x and t, we get

∂

∂x
u(x, t) = (D.Ψ (x))T .U .Ψ (t), (45)

∂

∂t
u(x, t) = Ψ (x)T .U .D.Ψ (t), (46)

∂2

∂x2
u(x, t) = Ψ (x)T .U .D2.Ψ (t). (47)

Applying variable-order fractional derivative of order γ (x, t) with respect to t in Eq. (44),
we obtain

0D
γ (x,t)
t u(x, t) = Ψ (x)T .U .Qγ (x,t)

t .Ψ (t), (48)
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and also applying with respect to x,

0D
γ (x,t)
x u(x, t) = (Qγ (x,t)

x .Ψ (x))T .U .Ψ (t). (49)

Putting thevalues ofu(x, t), ∂
∂x u(x, t), ∂

∂t u(x, t), ∂2

∂x2
u(x, t),0 D

γ (x,t)
t u(x, t) fromEqs. (44)–

(47) in the given first model (40), we get

ξ1(x, t) = Ψ (x)T .U .V γ (x,t)
t .Ψ (t) − (D2Ψ (x))T .U .Ψ (t) − f (x, t), (50)

and substituting those in the second model we get

ξ2(x, t) = (Ψ (x))T .U .D.Ψ (t) + (D.Ψ (x))T .U .Ψ (t) − (D2Ψ (x))T .U .V 1−γ (x,t)
t .Ψ (t)

− R(x, t, Ψ (x)T .U .Ψ (t)).
(51)

Using Eq. (44) in the prescribed initial and boundary conditions given in Eq. (41), we get

Ψ (x)T .U .Ψ (0) − f1(x) = 0,

Ψ (0)T .U .Ψ (t) − g1(t) = 0,

Ψ (1)T .U .Ψ (t) − g2(t) = 0, (52)

and from initial and boundary conditions given in Eq. (42), we get

Ψ (x)T .U .Ψ (0) − f2(x) = 0,

Ψ (0)T .U .Ψ (t) − g3(t) = 0,

Ψ (1)T .U .Ψ (t) − g4(t) = 0. (53)

To obtain an approximate solution, we have to find out the unknown matrixU . We collocate
Eqs. (50) and (52) at points x, t = 0, 1

m̂ , 2
m̂ . . . , m̂−1

m̂ , and solve this non-linear system of
equations to find U . After finding U , we can easily get the numerical solutions of both the
models up to the desired degrees of accuracy.

8 Results and discussion

In this section, the validity of the method is shown through applying it on various examples
of both the types of models having exact solutions with prescribed initial and boundary
conditions. All numerical computations are done using WolframMathematica version-11.3.

Example 1 We consider γ (x, t) = 2+sin(xt)
4 , f (x, t) = 20x2(1 − x)

(
t2−γ (x,t)

Γ (3−γ (x,t)) +
t1−γ (x,t)

Γ (2−γ (x,t))

)
, κ(u) = 0 and μ(x, t) = 2 so that our model (40) is reduced to

0D
γ (x,t)
t u(x, t) = ∂2u(x, t)

∂x2
+ f (x, t). (54)

Equation (54) with the aid of initial and boundary conditions

u(x, 0) = 10x2(1 − x), u(0, t) = 0, u(1, t) = 0 (55)

gives the exact solution as u(x, t) = 10x2(1 − x)(t + 1)2 (Shen et al. 2012).

The graphs of numerical and exact solutions for m̂ = 4 are shown in Fig. 1. The absolute error
for various m̂ is shown in Table 1. The results clearly predict that our numerical results are in
complete agreement with the existing results. From Table 2, it is found that the error obtained
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Fig. 1 Plots of u(x, t) for m̂ = 4 and λ = 2 in case of numerical and exact solution for t = 0.5

Table 1 Variations of absolute
error for different x at t = 0.5
,λ = 2 and various m̂

x ↓ m̂ = 4 m̂ = 6 m̂ = 8

0.2 3.2 × 10−14 4.4 × 10−15 1.88 × 10−15

0.4 2.1 × 10−14 1.7 × 10−15 2.2 × 10−15

0.6 1.2 × 10−14 1.8 × 10−15 3.1 × 10−15

0.8 6.7 × 10−15 2.2 × 10−15 2.67 × 10−15

Table 2 Comparison of absolute
error for the method given in
Shen et al. (2012) and our
method for different x at t = 1

x ↓ Method in Shen et al. (2012) Our method

0.2 5.9 × 10−5 4.4 × 10−16

0.3 8.8 × 10−5 1.3 × 10−15

0.4 1.1 × 10−4 8.8 × 10−16

0.6 1.3 × 10−4 1.7 × 10−15

0.7 1.2 × 10−4 1.8 × 10−15

0.8 1 × 10−4 8.8 × 10−16

0.9 5.6 × 10−5 7.5 × 10−15

by our proposed method is more accurate compared to the existing numerical method (Shen
et al. 2012).

Example 2 If we consider γ (x, t) = 1, μ(x, t) = 6+xt
4 so that our model (40) is reduced to

∂u

∂t
− 0D

μ(x,t)
x u(x, t) + x sin u = f (x, t), (56)

which under the prescribed initial and boundary conditions

u(x, 0) = 6, u(0, t) = 6, u(1, t) = 6 + t, (57)

gives the exact solution as u(x, t) = (x3.2 −2x4.2 + x5.2)(t + t2)+ xt +6 (Li andWu 2018)
by choosing the proper value of f (x, t).
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Fig. 2 Plots of u(x, t) for m̂ = 4 and λ = 2 in case of numerical and exact solution for t = 0.5

Table 3 Variations of absolute
error for different x at t = 0.5,
λ = 2 and various m̂

x ↓ m̂ = 4 m̂ = 6 m̂ = 8

0.2 3.4 × 10−13 2.6 × 10−14 4.8 × 10−15

0.4 9.7 × 10−13 5.4 × 10−14 4.0 × 10−15

0.6 1.5 × 10−12 7.7 × 10−14 1.4 × 10−15

0.8 2.1 × 10−12 9.2 × 10−14 2.4 × 10−15

Table 4 Comparison of absolute
error for method given in Li and
Wu (2018) and our method

(x, t) ↓ Method given in Li and Wu (2018) Our method

(0.1, 0.1) 2.65 × 10−6 2.1 × 10−15

(0.3, 0.3) 5.67 × 10−5 2.4 × 10−15

(0.5, 0.5) 6.22 × 10−5 2.9 × 10−15

(0.7, 0.7) 3.75 × 10−4 7.4 × 10−15

(0.9, 0.9) 4.16 × 10−4 9.9 × 10−15

The absolute error for various m̂ is shown in Table 2. The graphs of numerical and exact
solutions for m̂ = 4 are shown in Fig. 2 which clearly predict that our numerical results are
in complete agreement with the existing results (Tables 3, 4).

Example 3 If we take γ (x, t) = 2+sin(t)
400 , f (x, t) = Γ (β+1)

Γ (β+1−γ (x,t)) , κ(u) = u
4 and μ(x, t) =

2, then our model (40) is reduced to

0D
γ (x,t)
t u(x, t) = ∂2u(x, t)

∂x2
+ u

4
+ f (x, t). (58)

Equation (58) with initial and boundary conditions

u(x, 0) = 0, u(0, t) = 0, u(1, t) = tβ, (59)

gives the exact solution u(x, t) = tβ sin( x2 ) (Hajipour et al. 2019).

The graphs of numerical and exact solutions for m̂ = 4 are shown in Fig. 3 and the absolute
error is shown in Table 5. The results clearly predict that our numerical results are in complete
agreement with the existing results. It is seen from the Table 6 that our proposed method is
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Fig. 3 Plots of u(x, t) for m̂ = 4 and λ = 2 in case of numerical and exact solution for t = 0.5

Table 5 Variations of absolute
errors for different x at t = 0.5,
λ = 2 and various m̂

x ↓ m̂ = 4 m̂ = 6 m̂ = 8

0.2 1.9 × 10−3 2.8 × 10−5 1.8 × 10−7

0.4 1.6 × 10−3 2.1 × 10−5 1.5 × 10−7

0.6 1.9 × 10−3 2.3 × 10−5 1.6 × 10−7

0.8 2.6 × 10−3 3.3 × 10−5 2.2 × 10−7

Table 6 Comparison of L∞
errors for the method given in
Hajipour et al. (2019) and our
method

M ↓ Method in Hajipour et al. (2019) Our method

4 3.86 × 10−2 2.8 × 10−3

8 4.23 × 10−3 3.1 × 10−7

much superior as compared to the existing numerical method (Hajipour et al. 2019) when
maximum absolute error is computed for the given example.

Example 4 Taking γ (x, t) = 2x, κ(u) = cu(1 − u3
3 ) and μ(x, t) = 2t so that we get the

following variable-order space and time, both fractional example

0D
2x
t u(x, t) =0 D2t

x u(x, t) + cu

(

1 − u3

3

)

+ f (x, t), (60)

with initial and boundary condition as

u(x, 0) = 0, u(0, t) = 0, u(1, t) = t, (61)

and f (x, t) is chosen such that the exact solution of the above the problem is u(x, t) = xt .
The graphs of numerical and exact solutions for m̂ = 4 are shown in Fig. 4. The results of
absolute error given in Table 7 clearly predict that the error between the numerical solution
and the exact solution decreases as the degree of approximation increases.

The VORDE characterizes the behavior of reaction and diffusion of pollutants in ground-
water. Here, we assume that the concentration of pollutants is zero at time t = 0. At the initial
boundary x = 0, the concentration of the pollutant is zero and increases linearly toward the
boundary x = 1. From Fig. 5, the case c = 0 represents when the pollutant has no reaction
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Fig. 4 Plots of u(x, t) for m̂ = 4 and λ = 2 in case of numerical and exact solution for t = 0.5

Table 7 Variations of absolute
error for different x at t = 0.5,
λ = 2 and various m̂

x ↓ m̂ = 4 m̂ = 6 m̂ = 8

0.2 1.7 × 10−6 1.2 × 10−10 1.3 × 10−12

0.4 5.8 × 10−6 4.9 × 10−10 4.9 × 10−12

0.6 1 × 10−5 9.7 × 10−9 9.5 × 10−11

0.8 1.4 × 10−5 1.4 × 10−9 1.8 × 10−11

Fig. 5 Behavior of u(x, t) for
m̂ = 4 and λ = 2 at t = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

x

u(
x,
t)

c=1
c=0
c=- 1

with groundwater, while c = 1 (source term) and c = −1 (sink term) represent the cases
when it reacts with groundwater. It is observed that in case of c = 1, the concentration of the
pollutant is more than when the pollutant has no reaction with groundwater, while in case of
c = −1 the behavior of the solution is opposite. Figure 5 also shows that the concentration
decreases at invasive fronts of the site. Figure 6 depicts that at time t = 0, the concentration
is zero and its growth increases with time.

Figure 7 depicts the fact that the pollutant concentration decreases when we add an acces-
sion to the variable-order exponent of time(γ (x, t)), while the concentration is more if we
give a shrinkage of amount 0.4 to γ (x, t)). It also shows that this growth and reduction of
concentration are higher around the middle of the site as compared to the invasive fronts.

Example 5 If we take γ (x, t) = 10−t x
300 , R(x, t, u) = u−u2+ex t

(
2 + ex t3 − 2 tγ (x,t)

Γ (2+γ (x,t))

)
,

our model (42) is reduced to
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Fig. 6 Behaviour of u(x, t) for
m̂ = 4 and λ = 2 at x = 0.5
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Fig. 7 Behaviour of u(x, t) for
m̂ = 4 and λ = 2 at x = 0.5
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x

u(
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γ[x,t]+0.4

γ[x,t]

γ[x,t]- 0.4

∂u(x, t)

∂t
+ ∂u(x, t)

∂x
= D1−γ (x,t)

t

(
∂2u

∂x2

)

+ R(x, t, u), (62)

which with the aid of initial and boundary conditions as

u(x, 0) = 0, u(0, t) = t2, u(1, t) = et2, (63)

gives the exact solution as u(x, t) = t2ex (Abd-Elkawy and Alqahtani 2017).

The graphs of numerical and exact solutions for m̂ = 4 are shown in Fig. 8. Here, the absolute
error decreases steadily as the degree of approximation increases. The results clearly predict
that our numerical results are in complete agreement with the existing results (Table 8).

Example 6 Themodel (34) with γ (x, t) = 1
500

(
(t x)2−sin3t x+cos4t x+266

)
, R(x, t, u) =

u − u2 + te−2x
(
t3 − 2(t − 1)ex − 2ex tγ (x,t)

Γ (2+γ (x,t))

)
is reduced to

∂u(x, t)

∂t
+ ∂u(x, t)

∂x
= D1−γ (x,t)

t

(
∂2u

∂x2

)

+ R(x, t, u). (64)

Equation (57) with initial and boundary conditions as

u(x, 0) = 0, u(0, t) = t2, u(1, t) = e−1t2, (65)

gives the exact solution as u(x, t) = t2e−x (Abd-Elkawy and Alqahtani 2017).

The graphs of numerical and exact solutions for m̂ = 4 are shown in Fig. 9. The results
clearly predict that our numerical results are in complete agreement with the existing results.
The absolute error between the exact and numerical solution is given in Table 9.
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Fig. 8 Plots of u(x, t) for m̂ = 4 and λ = 2 in case of numerical and exact solution for t = 0.5

Table 8 Variations of absolute
error for different x at t = 0.5,
λ = 2 and various m̂

x ↓ m̂ = 4 m̂ = 6 m̂ = 8

0.2 5.7 × 10−4 3.3 × 10−6 9.1 × 10−9

0.4 5.6 × 10−4 3.2 × 10−6 8.8 × 10−9

0.6 5.8 × 10−4 3.3 × 10−6 9.1 × 10−9

0.8 6.4 × 10−4 3.6 × 10−6 9.6 × 10−9

Fig. 9 The plots of u(x, t) for m̂ = 4 and λ = 2 in case of numerical and exact solution for t = 0.5

Table 9 Variations of absolute
error for different x at t = 0.5,
λ = 2 and various m̂

x ↓ m̂ = 4 m̂ = 6 m̂ = 8

0.2 2.3 × 10−4 1.2 × 10−6 3.4 × 10−9

0.4 2.1 × 10−4 1.1 × 10−6 3.0 × 10−9

0.6 1.9 × 10−4 1 × 10−6 2.9 × 10−9

0.8 1.9 × 10−4 1.1 × 10−6 3 × 10−9

9 Conclusion

In this article, we have achieved four important consequences. The first one is that the opera-
tional matrix for variable order is derived. The second one is the successful implementation of

123



162 Page 20 of 22 S. Kumar et al.

the collocation method based on Gegenbauer wavelets to solve the variable-order non-linear
reaction–diffusion equation and non-linear Galilei-invariant advection diffusion equation.
The third one is finding the error bound and stability analysis of the proposed method. The
last one is the graphical and tabular exhibitions to validate the effectiveness of the proposed
method used for solving various linear/non-linear problems derived from two considered
mathematical models for different particular cases. The beauty of the present contribution
is the showing of the effect of the reaction term on the solute concentration for different
particular cases.
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