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Abstract

Our motive in this scientific contribution is to deal with nonlinear reaction–diffusion equa-
tion having both space and time variable order. The fractional derivatives which are used are
non-singular having exponential kernel. These derivatives are also known as Caputo–Fabrizio
derivatives. In our model, time fractional derivative is Caputo type while spatial derivative is
variable-order Riesz fractional type. To approximate the variable-order time fractional deriva-
tive, we used a difference scheme based upon the Taylor series formula. While approximating the
variable order spatial derivatives, we apply the quasi-wavelet-based numerical method. Here,
double-quasi-wavelet numerical method is used to investigate this type of model. The discretiza-
tion of boundary conditions with the help of quasi-wavelet is discussed. We have depicted the
efficiency and accuracy of this method by solving the some particular cases of our model. The
error tables and graphs clearly show that our method has desired accuracy.

Keywords: Fractional PDE; Diffusion Equation; Caputo–Fabrizio Fractional Derivative;
Variable-Order Derivatives; Riesz Derivative; Quasi-Wavelets.

1. INTRODUCTION

Fractional calculus is a new branch of mathemat-
ics which originates from the classical one.1 The
integral and derivative in fractional calculus are
obtained from the integer order by replacing inte-
ger order exponent by real or arbitrary order. In
recent time, we are observing that fractional calcu-
lus, a branch of mathematics, has emerged as new
applicable branch whose application can be found
in many areas of physics, chemistry biology, bio-
mathematics and medical sciences. The behavior
of diffusion process of contaminants in the ground-
water through the medium having pour has been
investigated by taking the fractional model of diffu-
sion equation. And the transport of contaminants in
groundwater is represented by advection diffusion
equation in fractional environment. The develop-
ment and basics of fractional calculus can be found
in the literature.2,3 We can extend the real order
to variable-order in differentiation or integration
with the help of theory given in fractional calcu-
lus. There are many physical phenomena that can-
not be represent by classical derivative so we need
the differential equation having fractional order.
These fractional differential equations have a lot
of applications in control theory, biology, physics
and medical science. Initially, only fractional deriva-
tive with power law kernel was investigated. These
types of fractional derivative include Caputo defini-
tion, Riemann Liouville definition, Hadamard and
Grunwald–Letnikov definition. The theory of frac-
tional differential equation boosts the application
and research in many fields of science and engi-
neering. But the main difficulty was to find out

the solution of these FPDEs. By analytical meth-
ods such as Laplace transform method, homotopy
analysis methods and Fourier transform method, it
is too difficult to solve every linear and nonlinear
FPDEs. So the researchers started to find out the
method to solve these equations numerically. There
are many methods available in the literature such as
eigen-vector expansion, fractional differential trans-
form method,4 Adomain decomposition method,5

predictor–corrector method,6 homotopy perturba-
tion method7 and generalized block pulse opera-
tional matrix method,8 etc. A method named as
operational matrix method is so popular due to
its simplicity and good accuracy. Many numeri-
cal methods using the method based upon oper-
ational matrices of integration and differentiation
with Legendre wavelets,9 Chebyshev wavelets,10

sine wavelets, Haar wavelets11 are given in the lit-
erature to derive the numerical solution of frac-
tional PDEs and integro-differential equations. Leg-
endre polynomial,12 Laguerre polynomial,13 Cheby-
shev polynomial and semi-orthogonal polynomial as
Genocchi polynomial14 are commonly used polyno-
mials in deriving the operational matrix and then
numerical solution of FPDEs.

Diffusion process is a process in which the fluid
flows from higher concentration to low concentra-
tion. Diffusion equation is a PDE that describes
the physical behaviors of many diffusion phenom-
ena occurring in physics, chemistry, biology and
earth science. Reaction–diffusion process is pro-
cess in which diffusion and reaction both are
included. Many phenomena such as diffusion of pol-
lutant in groundwater diffusion process and reaction
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of pollutant with groundwater are performed simul-
taneously. In the process of reaction molecules are
either created or consumed. The classical form of
diffusion equation is represented as

∂θ

∂t
= D∇2θ +R(θ, t). (1)

Here, D is diffusive coefficient and the first term
on right-hand side represents the diffusion process
while the term R(θ, t) represents the reaction term.

Nowadays, many different fractional operators
which are generalization of classical ones are devel-
oped. The classical derivative such as Caputo and
Riemann–Liouville have power kernel. If we replace
this kernel with exponential kernel and Mittag-
Leffler kernel, then we get a new generalized class
of fractional derivative. The derivative having expo-
nential kernel is known as Caputo–Fabrizio deriva-
tive while that having Mittag-Leffler is known as
Atangana–Baleanu derivative.

In the previous, few decades fractional differen-
tial equation had a lot of application in economics,
engineering and science. It is very helpful in the
analysis of multi- scale problems having length and
wide scale. The beauty of these fractional operator
is their nonlocal property which clearly shows that
future state not only is a function of the present
state but also a function of previous history. It is
an excellent instrument for the explanation of frac-
tal and transport walk and characteristic features
of anomalous sub-diffusion. The memory effect of
many physical process can easily be shown by frac-
tional nonlocal operators.

The characterization of memory property of a
system is a tough task in modeling and analysis
of complex system. The variable-order fractional
derivatives properly describe the memory property
of a system which vary with space and time loca-
tion. We have used the variable-order C-F deriva-
tive in our work which is a non-local fractional
derivative. These nonlocal derivatives can depict the
material heterogeneities and structures with differ-
ent scales. The classical or local fractional deriva-
tives are not able to describe such behavior. When
we study the diffusion process in porous media hav-
ing variable external field or heterogeneous flow
changing with time the constant order diffusion
model cannot depict this phenomenon. The study of
groundwater flow with variable-order derivatives is
given in Ref. 15. The limitation of fixed order frac-
tional calculus is that they cannot characterize the
adequate information on complex phenomena such

as complex diffusion process occurring in heteroge-
neous porous medium. To get rid of these difficulties
occurring in modeling, the theory of variable-order
operators is introduced. The application of variable-
order derivatives over the fixed order to a complex
system is shown in Ref. 16.

The origin of diffusion equation with Caputo–
Fabrizio derivative from statistics. By using contin-
uous time random walk, fractional diffusion equa-
tion and Riesz fractional diffusion equation can
be derived. Now, we consider the probability den-
sity function (PDF) which follows the exponential
Debye pattern. Let us consider the following waiting
time:

φ(t) = σ(1 + σ − δ(t))e−σt,

σ =
γ

1− γ
, γ ∈ [0, 1]

(2)

and taking Gaussian length PDF

µ(x) = (4π)
−1
2 e
−x2
4 . (3)

The Laplace and Fourier transform of above equa-
tions are

φ(p) = 1− p

γ + (1− γ)p
,

µ(k) = 1− k2 +O(k4).
(4)

After plugging φ(p) and µ(k) we find the following
specific expression:17

u(k, p) =
1− φ(p)

p
× u0(k)

1− µ(k)φ(p)

∼ u0(k)

p+ [γ + (1− γ)p]k2
.

(5)

Taking inverse Fourier and Laplace transform we
get the following diffusion equation with C-F deriva-
tive:

CFC
0 Dγ

t u(t, x) =
∂2u(t, x)

∂x2
+ f(t, x). (6)

If we take waiting time as in Eq. (2) and heavy
failed jump length PDF

µ(x) =
1

|x|1+α
, 0 < α < 2, (7)

then the same procedure which was applied to
derive C-F diffusion equation leads to

rmCFC
0 Dγ

t u(t, x) = Kα
∂αu(t, x)

∂|x|α
+ f(t, x), (8)

where the coefficient Kα depends upon α.
We organize our paper as follows. The defini-

tions of variable-order RL, Caputo and Caputo–
Fabrizio is given in Sec. 2. We also discuss about
quasi wavelet and quasi- wavelet-based numerical

2040047-3

Fr
ac

ta
ls

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
03

.1
51

.2
09

.9
1 

on
 1

2/
14

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



September 16, 2020 12:44 0218-348X 2040047

S. Kumar et al.

method. In Sec. 3, a difference scheme is devel-
oped for the discretization of variable-order time
and space fractional derivatives. The error bound
and convergence is given in Sec. 5. In Sec. 4, we
described the proposed method for solving FPDEs
with C-F derivative. In Sec. 6, some numerical
examples and results are presents including the
variation of different parameters. The conclusion is
given in Sec. 6.

2. PRELIMINARY DEFINITIONS

In the last few years, many definitions of fractional
integration and differentiation have been come to
light. All of them have own special properties and
applications. Caputo definition is more reliable as
compared to Riemann–Liouville definition from an
application point of view. These definitions are
with power or singular kernel law. Nowadays, many
generalized definitions of fractional derivative with
exponential and Mittag–Leffler kernel law have been
introduced. We discuss brief definitions and proper-
ties of RL, Caputo and recently developed Caputo–
Fabrizio derivative.

2.1. Definition of Variable-Order
Derivative of Type 1 (V1) and
Type 2 (V2)

The definition of Type 1 (V1) variable-order frac-
tional type derivative having order q−1 < θ(t, x) ≤
q of a function v(t, x) with respect to variable t is
defined as18

0D
θ(t,x)
t v(t, x) =



1

Γ(q − θ(x, t))
×
∫ t

0 (t− s)q−θ(x,t)−1 ∂
qv(t,x)
∂sq ds,

q − 1 < θ(t, x) < q,
∂qv(x, t)

∂sq
, θ(t, x) = q.

(9)

The above definition of fractional derivative is
equivalent to the definition in Caputo sense if θ(t, x)
is constant.

The definition of Type 2 (V2) variable-order frac-
tional derivative having order q− 1 < θ(x, t) ≤ q of
a function v(x, t) is given by18

0D
θ(t,x)
t v(t, x) =



1

Γ(q − θ(t, x))

∂q

∂tq

×
∫ t

0 (t− s)q−θ(x,t)−1v(t, x)ds,

q − 1 < θ(t) < q,
∂qv(x, t)

∂sq
, θ(x, t) = q.

(10)

This definition is equivalent to Riemann–
Louisville definition if the order ϑ(x, t) is constant.
These variable-order derivatives are all linear func-
tion as they follow the following property:

0D
ϑ(x,t)
t (Af(x, t) +Bg(x, t)) = A0D

ϑ(x,t)
t f(x, t)

+B0D
ϑ(x,t)
t g(x, t).

(11)

2.2. Definition of Caputo–Fabrizio
Derivative in Caputo Sense

Considering a function g(t) belonging to Sobolev
space H1(0, 1) then Caputo–Fabrizio derivative in
RL sense of order ϑ(x, t) is defined by

CFC
0 D

ϑ(x,t)
t g(t) =

B(ϑ(x, t))

q − ϑ(x, t)

×
∫ t

0
exp

[
−ϑ(x, t)

q − ϑ(x, t)
(t− s)

]
× ∂qg(s)

∂tq
ds,

q − 1 < ϑ(x, t) ≤ q, (12)

where B(ϑ(x, t)) is a normalization function. In all
our calculations we have taken B(ϑ(x, t)) = 1.

2.3. Caputo–Fabrizio Derivative in
Riemann–Liouville Sense

Considering a function g(x) belonging to Sobolev
space H1(0, 1) then the definition of Caputo-
Fabrizio derivative in RL sense of order ϑ(x, t) is
given by19

CFR
0 Dϑ(x,t)

x g(x) =
B(ϑ(x, t))

n− ϑ(x, t)

dq

dxq

×
∫ x

0
exp

[
−ϑ(x, t)

n− ϑ(x, t)
(x− s)

]
× g(s)ds,

q − 1 < ϑ(x, t) ≤ q, (13)

where B(ϑ(x, t)) is a normalization function. Here
we have taken B(ϑ(x, t)) = 1.
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2.4. Riesz Derivative

Riesz fractional derivative of order q−1 < ϑ(x, t) ≤
q is given by20

∂ϑ(x,t)u(x, t)

∂|x|ϑ(x)
=

−1

2 cos πϑ(x,t)
2

×
[

CFR
a Dϑ(x,t)

x u(x, t)

+ CFR
xD

ϑ(x,t)
b u(x, t)

]
, (14)

where aD
ϑ(x,t)
x u(x, t) and xD

ϑ(x,t)
b u(x, t) are left and

right variable-order Caputo–Fabrizio derivatives in
RL sense.

2.5. Why We are Using C-F
Derivative?

The operators play an important role in science
and the interchange of these operators, which is an
important property. Let us consider two operators
A and B; we say these two commute if they follow
the property AB = BA. Many operators arising in
physics, biology, statistics and mathematics do not
follow the property of commutativity and are called
non-commutative operators. We give some exam-
ples of non-commutative operators:

(1) Product of two matrices.
(2) Division operator on real numbers as 3

4 6=
4
3 .

(3) Linear operators like z and d
dz do not follow the

commutative property on wave function Ψ(y)
in the case when we formulate the Schrodinger
equation in quantum mechanics.

(4) Lie bracket of Lie ring.
(5) Lie bracket of a Lie algebra.

The general form of fractional type derivatives in
Caputo and Riemann–Liouville form is defined as:

RL
0 Dϑ

z g(z) =
d

dz

∫ z

0
κ(z − x)g(z)dz

d

dz
κ ∗ g,

C
0 D

ϑ
z g(z) =

∫ z

0
κ(z − x)

d

dz
g(z)dz

=κ ∗ d

dz
g.

In fractional calculus, many forms of kernel are
discovered as κ(z − x) = 1

Γ(1−ϑ)(z − x)−ϑ and

κ(z − x) = M(ϑ)
(1−ϑ) exp

(
−ϑ
1−ϑ(z − x)−ϑ

)
. The kernel

κ(z−x) = 1
Γ(1−ϑ)(z−x)−ϑ is known as power kernel

law which has been used in classical fractional cal-
culus and the kernel κ(z− x) = M(ϑ)

(1−ϑ) exp
(
−ϑ
1−ϑ(z−

x)−ϑ
)

is exponential kernel law which is newly dis-

covered. The general derivatives having exponential
kernel are known as Caputo–Fabrizio derivatives.
In statistics, Pareto distribution describes the fit-
ting of the shape of a large portion of wealth for a
small number of portion of the population and the
wealth in our society corresponds to power law ker-
nel. The negative exponential distribution is mainly
used in statistics as probability distribution. This
type of distribution is used to characterize the time
between events in Poisson point distribution. The
important property of this distribution is that its
depicts infinite divisibility and infinite divisible dis-
tribution shows an important role in the context
of limit theorem and Levy process. This type of
derivatives is beneficial when distribution of a wait-
ing time is not dependent upon elapsed time.21 Here
we give some properties of C-F derivative:

(1) The mean square displacement associated with
Caputo–Fabrizio fraction derivative is usually a
sub-diffusion crossover.

(2) The Caputo–Fabrizio distribution follows the
rule from Gaussian to non-Gaussian crossover.

(3) The asymptotic behavior of Caputo–Fabrizio
satisfies the power law behavior and connects
the theory of fading memory concept with ker-
nels which are non-singular.22

Nowadays the derivative with exponential ker-
nel law has become very popular and captured
the attention of researchers. This derivative has
many applications which can be found in elasticity,
Keller–Segel equation, flow of complex rheological
medium and flow of ground water in mass-spring
damped system.23

2.6. Approximation of Function by
Quasi-Wavelets

In the literature there are many polynomials and
wavelets which are used to approximate an arbi-
trary function. But the procedure based upon the
quasi-wavelets is growing rapidly as spectral collo-
cation method, which is local. It is very useful to
solve different types of space-time fractional FPDEs
and partial integro-differential equation of differ-
ent order. We define a mathematical transforma-
tion known as the singular discrete convolution in
distribution theory

Φ(v) = (F ∗ s)(z) =

∫ ∞
−∞

F (−t+ z)s(t)dt, (15)
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where s(t) is called a test function and F is rec-
ognized as a singular kernel. We can find a family
of wavelet by a function which is known as mother
wavelet ς using operations of dilation and transla-
tion.

ςβ,δ(z) = β
−1
2 ς

(
z − δ
β

)
. (16)

The parameter δ represents the translation pro-
cess while β represents the process of dilation. An
orthonormal wavelet base generates any arbitrary
subspace by using orthogonal scaling functions. A
Shannon’s delta sequence kernel is used in our work
which is defined as

δα(z) =
1

π

∫ π

0
cos(zy)dy =

sin(αz)

πz
, (17)

where limα→α0 δα(z) = δ(z). δ is discussed by Dirac
and so known as Dirac delta function.

For a α > 0, Shannon’s delta sequence kernel
generates a basis for the Paley–Wiener reproduc-
ing kernel Hilbert space B2

α (Ref. 24) which is a
subspace of L2(R). We can reproduce the function
g(z) ∈ B2

α as follows:

g(z) =

∫ ∞
−∞

g(z)δα(z − t)dt

=

∫ ∞
−∞

g(z)
sin((z − t)α)

(z − t)π
dt,

∀g(z) ∈ B2
α. (18)

This sampling scaling function can be put in
another form in reproducing kernel of Paley–Wiener

δα,k = δα(z − zk) =
sin((z − zk)α)

(z − zk)π
, (19)

the point {xk} is known as collection of sampling
points which is placed around x. We can put all
functions ∀g ∈ B2

α in discrete form using Eqs. (11)
and (12)

g(z) =

∞∑
k=−∞

g(zk)δα(z − zk). (20)

The Shannon sampling theorem states that samples
for uniform spatial discrete in a given band-limited
signal in B2

γ can be depicted as the sampling at the
Nyquist frequency γ. We represent ∆ by grid size

in spatial direction and γ = π
∆ . So,

g(z) =
∞∑

k=−∞
g(zk)δα(z − zk)

=
∞∑

k=−∞
g(zk)

sin(π(z−zk)
∆ )

π(z−zk)
∆

. (21)

A method for the improvement of kernel Dirichlet’s
delta type is given by Wan. Rσ(y)is a regularizer.
It is used to increase the regularity

δα(z)→ δα,σ = δα(z)Rσ(z). (22)

Here Rσ satisfies

lim
σ→∞

Rσ(z) = 1

and ∫ ∞
−∞

lim
σ→∞

Rσ(y)δα(y)dy = Rσ(0) = 1.

Many regularizers satisfy the two conditions as
given above. But Gaussian type regularizer is very
commonly used

Rσ(z) = e

(
−z2

2σ2

)
, σ > 0. (23)

Here σ is width parameter. The relation between ∆
and σ is σ = r×∆, where r is a computation param-
eter. We can define regularized orthogonal sampling
scaling function, which is Gaussian type, as

δ∆,σ(z) =
sin(πz∆ )

πz
∆

exp

(
−z2

2σ2

)
. (24)

Here

lim
σ→∞

δ∆,σ(x) =
sin(πx∆ )

πx
∆

.

Gaussian regularized sampling scaling function has
no property of orthonormal wavelet scaling function
so it is called a quasi-scaling function.

By using quasi-scaling function, we can approxi-
mate a function θ ∈ B2

α

θ(z) =
∞∑

k=−∞
θ(zk)δα(z − zk)

=

∞∑
k=−∞

θ(zk)δα(z − zk)Rα(z − zk). (25)

For computation purpose we have to take finite
sampling points. The reason behind this is that in
computation using infinite sampling point is impos-
sible. We choose 2W + 1 sampling points in our
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work. All sampling points are chosen close to x. We
can rewrite Eq. (18) as

θ(z) =

W∑
k=−W

θ(zk)δ∆,σ(z − zk). (26)

The nth order derivatives of a function θ(z) is

θn(z) =
W∑

k=−W
θ(zk)δ

n
∆,σ(z − zk), n = 1, 2, . . . .

(27)

We have chosen the computational width equal to
2W + 1. We present the description of formulas of
δ∆,σ, δ

1
∆,σ and δ2

∆,σ (Ref. 25) which are helpful in
calculation as follows:

δ∆,σ(y) =


exp{− y2

2σ2 } sin
(πy

∆

)
πy
∆

, y 6= 0,

1 y = 0,

(28)

δ1
∆,σ(y) =



(
−

sin
(πy

∆

)
πy2

∆

−
∆ sin

(πy
∆

)
πσ2

∆

+
cos
(πy

∆

)
y

)
× exp

(
− y2

2σ2

)
, y 6= 0,

0 y = 0,

(29)

δ2
∆,σ(y) =



(
2∆ sin

(yπ
∆

)
πy3

−
2 cos

(πy
∆

)
y2

+
∆y sin

(yπ
∆

)
πσ4

+
∆ sin

(πy
∆

)
πσ2y

−
2 cos

(πy
∆

)
σ2

−
π sin

(yπ
∆

)
y∆

)
× exp

(
− y2

2σ2

)
, y 6= 0,

0, y = 0.

(30)

3. PROPOSED ALGORITHMS

In this section, we will use the finite difference
scheme and quasi-wavelet-based numerical method
for our Riesz fractional reaction–diffusion model.
Here time fractional derivative is of Caputo–
Fabrizio type in Caputo sense and space fractional

derivative is of Riesz Caputo–Fabrizio type. We con-
sider the following model of Riesz fractional diffu-
sion equation,

CFC
0 D

α(x,t)
t u(t, x) =

∂ϑ(x,t)u(t, x)

∂|x|ϑ(x,t)

+ au(t, x)(1− u(t, x))

+ f(t, x), (31)

along with boundary conditions

u(0, t) = f1(t), u(1, t) = f2(t), (32)

and the initial condition

u(x, 0) = f3(x), (33)

where 0 < α(x, t) ≤ 1, 1 < ϑ(x, t) ≤ 2 and f(x, t) is
the forced term.

3.1. Approximation of Time
Fractional Caputo–Fabrizio
Derivative

In this section, we develop a new difference scheme
in the time direction of FPDE. For discretizing of
Caputo–Fabrizio time fractional derivative, we use
the Taylor series expansion. We denote the time
step by ∆t and tn = n×∆t. The notations un and
fn are used for the value of u(x, t) and f(x, t) at
time tn = n×∆t.

The function h′(t) can be expanded if we use the
Taylor series expansion formula in interval (tn, tn+1)

h′(t) =h′(tn) + h′′(tn)(t− tn)

+ h′′′(tn)
(t− tn)2

2!
+O((t− tn)3). (34)

The following expression can be obtained by the
above formula as follows:

h′(tn) =
h(tn+1)− h(tn−1)

2∆t

− h(3)(tn)

3!
× (∆t)2, (35)

and

h′′(tn) =
h(tn+1)− 2h(tn) + h(tn−1)

(∆t)2

− h(4)(tn)

4!
× (∆t)2 +O(∆t)4. (36)
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When the values of h′(t) and h′′(tn) are used in the
above equation we get the following expression:

h′(t) =
h(tn+1)− h(tn−1)

2∆t

+
h(tn+1)− 2h(tn) + h(tn−1)

(∆t)2
(t− tn)

− h(3)(tn)

3!
× (∆t)2 − h(4)(tn)

4!
× (∆t)2

+ h′′′(tn)
(t− tn)2

2!
+O((t− tn)3).

(37)

The approximation of C-F derivative of function
u(x, t) at point (t = tn) is derived as follows:

CFC
0 D

α(x,t)
t u(tn, x)

=
B(α(x, t))

Γ(−α(x, t) + 1)

×
∫ tn

0
exp

[
−α(x, tn)

1− α(x, tn)
(tn − s)

]
× ∂u(x, s)

∂s
ds

=
B(α(x, t))

Γ(−α(x, t) + 1)

×
n−1∑
j=0

∫ tj+1

tj

(
u(x, tj+1)−2u(x, tj)+u(x, tj−1)

(∆t)2

× (s− tn) +
u(x, tj+1)− u(x, tj−1)

2∆t

)

× exp

[
−αn

1− αn
(tn − s)

]
ds

=
B(αn)

Γ(−αn + 1)

n−1∑
j=0

uj+1 − uj−1

2∆t

×
∫ tj+1

tj

exp

[
−αn

1− αn
(tn − s)

]
ds

+
n−1∑
j=0

u(x, tj+1)− 2u(x, tj) + u(x, tj−1)

(∆t)2

×
∫ tj+1

tj

(s− tn) exp

[
−αn

1− αn
(tn − s)

]
ds

=
B(αn)

Γ(−αn + 1)

n−1∑
j=0

uj+1 − uj−1

2∆t

×

[
αn − 1

αn

(
exp

[(tn − tj)(−αn)

−1 + αn

]

− exp

[
(tn − tj+1)(−αn)

αn − 1

])]

+
B(αn)

Γ(−αn + 1)

n−1∑
j=0

uj+1 − 2uj + uj−1

(∆t)2

×
∫ tj+1

tj

(s− tn) exp

[
−αn

1− αn
(tn − s)

]
ds.

Now on simplifying
CFC
0 D

α(x,t)
t u(tn, x)

=
B(αn)

Γ(−αn + 1)

n−1∑
j=0

uj+1 − uj−1

2∆t

[
αn − 1

αn

×

(
exp

[
(tn − tj)(αn)

−1 + αn

]

− exp

[
(tn − tj+1)(αn)

αn − 1

])]
+

B(αn)

Γ(−αn + 1)

×
n−1∑
j=0

uj+1 − 2uj + uj−1

(∆t)2

[
αn − 1

(αn)2

×

[
(−1 + αn(1− tj − tn))

exp

[
(tn − tj)(αn)

−1 + αn

]
+ (1 + αn(−1− tj+1 + tn))

exp

[
(tn − tj+1)(αn)

αn − 1

]]]
, (38)

a semi-discrete form of our proposed model can be
found by using Eq. (38)

B(αn)

Γ(−αn + 1)

n−1∑
j=0

uj+1 − uj−1

2∆t

×

[
αn − 1

αn

(
exp

[
(tn − tj)(αn)

−1 + αn

]

− exp

[
(tn − tj+1)(αn)

αn − 1

])]

+
B(αn)

Γ(−αn + 1)

n−1∑
j=0

uj+1 − 2uj + uj−1

(∆t)2
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×

[
αn − 1

(αn)2

[
(−1 + αn(1− tj − tn))

× exp

[
(tn − tj)(αn)

−1 + αn

]
+(1+αn(−1−tj+1 + tn))

× exp

[
(tn − tj+1)(αn)

αn − 1

]]]

=
∂ϑ(x,t)un(x)

∂|x|ϑ(x,t)
+ aun(x)(1− un(x)) + fn. (39)

3.2. Discretize the Equation for
Spatial Points With the Help of
Quasi-Wavelet

We have discussed about the quasi-wavelet-based
numerical method in Sec. 2. Now we use it to deal
with spatial derivatives and unknown function. We
take ∆x = 1

N as spatial step. We assume uni is the
approximation of unknown function u(t, x) at point
x = xi and t = tj . In approximation of deriva-
tive and unknown function we take 2W neighboring

points around. The mth order derivative u
(m)
x (xi) of

a function u(x) at the point xi is approximated by

um(xi) =
i+W∑
s=i−W

u(xs, tn)δm∆,σ(xi − xs),

n = 0, 1, 2, . . . ,

i = 0, 1, 2, . . . , N − 1. (40)

Now for the approximation of the term ∂ϑ(x,t)un(x)

∂|x|ϑ(x,t) ,

we use the definition of Riesz fractional derivative

∂ϑ(x,t)un(x)

∂|x|ϑ(x,t)

=
−1

2 cos πϑϑ(x,t)
2

×

[
0D

ϑ(x,t)
x un(x) + xD

ϑ(x,t)
1 un(x)

]
=

c(x)

Γ(2− ϑn(x))

×

[
d2

dx2

∫ x

0
exp

[
−αn

1− αn
(x− η)

]
u(η, t)dη

+
d2

dx2

∫ 1

x
exp

[
−αn

1− αn
(η − x)

]
u(η, t)dη

]
,

(41)

where c(x) = −1

2 cos
πϑϑ

n+1
2 (x)

2

.

For Eq. (41) we assume

I1 =
c(x)

Γ(2− ϑn(x))

d2

dx2

∫ x

0

× exp

[
−αn

1− αn
(x− η)

]
u(η, t)dη,

I2 =
c(x)

Γ(2− ϑn(x))

d2

dx2

∫ 1

x

× exp

[
−αn

1− αn
(η − x)

]
u(η, t)dη. (42)

Then by using Eq. (40) and considering the value
of Eq. (42) at point x = xi, let xj = xs − xi for all
n ≥ 0, i = 0, 1, . . . , N − 1 we have

I1 =
cni

Γ(2− ϑni )

i+W∑
s=i−W

δ2
∆,σ(xi − xs)

×
∫ xs

0
exp

[
−αni

1− αni
(xs − η)

]
u(η, t)dη

=
cni

Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

×
∫ xi+j

0
exp

[
−αni

1− αni
(xi+j − η)

]
u(η, t)dη

=,
cni

Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

×
i+j−1∑
l=0

∫ xl+1

xl

exp

[
−αni

1− αni
(xi+j − η)

]
u(η, t)dη.

(43)

Let u(η) =
∑W1

q=−W1
δ∆,σ(η − xq)u(xq) in Eq. (43)

we obtain

I1 =
cni

Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

×
i+j−1∑
l=0

∫ xl+1

xl

exp

[
−αni

1− αni
(xi+j − η)

]

×
W1∑

q=−W1

δ∆,σ(η − xq)un(xq)dη

2040047-9

Fr
ac

ta
ls

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
03

.1
51

.2
09

.9
1 

on
 1

2/
14

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



September 16, 2020 12:44 0218-348X 2040047

S. Kumar et al.

=
cni

Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

i+j−1∑
l=0

W1∑
q=−W1

un(xq)

×
∫ xl+1

xl

exp

[
−αni

1− αni
(xi+j − η)

]
× δ∆,σ(η − xq)dη. (44)

Integral term in Eq. (45) is approximated using
Simpson 1

3 rule. After evaluate the integration and
using property of gamma function we attain the full
discrete form of I1 for n ≥ 0, i = 1, . . . , N − 1

I1 =
cni ∆x

6Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

i+j−1∑
l=0

W1∑
q=−W1

un(xq)

×

[
exp

[
−αni

1− αni
(xi+j − xl)

]
× δ∆,σ(xl − xq)

+ 4 exp

[
−αni
1−αni

(xi+j−xl+ 1
2
)

]
×δ∆,σ(xl+ 1

2
−xq)

+ exp

[
−αni

1− αni
(xi+j−xl+1)

]
×δ∆,σ(xl+1−xq)

]

+
cni ∆x

Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

W1∑
q=−W1

un(xq)

×

[
exp

[
−αni

1− αni
(xi+j − xi+j−1)

]

× δ∆,σ(xi+j−1 − xq)

]
. (45)

Similarly, full discrete form of I2 can be obtained as

I2 =
cni ∆x

6Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

×
M−1∑

p=i+j+1

W1∑
q=−W1

un(xq)

×

[
exp

[
−αni

1− αni
(xp − xi+j)

]
× δ∆,σ(xp − xq)

+ 4 exp

[
−αni

1− αni
(xp+ 1

2
− xi+j)

]

× δ∆,σ(xp+ 1
2
− xq)

+ exp

[
−αni

1− αni
(xp+1 − xi+j)

]

× δ∆,σ(xp+1 − xq)

]

+
cni ∆x

Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

×
W1∑

q=−W1

un(xq)[δ∆,σ(xp − xq)]. (46)

By substituting the value of I1 and I2 we attain the
full discrete form of Eq. (31)

B(αn)

Γ(−αn + 1)

n−1∑
j=0

uj+1
i − uj−1

i

2∆t

×

[
αn − 1

αni

(
exp

[
(tn − tj)(αni )

−1 + αni

]

− exp

[
(tn − tj+1)(αni )

αni − 1

])]

+
B(αni )

Γ(−αni + 1)

n−1∑
j=0

uj+1
i − 2uji + uj−1

i

(∆t)2

×

[
αni − 1

(αni )2

[
(−1 + αni (1− tj − tn))

× exp

[
(tn − tj)(αni )

−1 + α+n
i

]
+ (1 + αni (−1− tj+1 + tn))

exp

[
(tn − tj+1)(αni )

αn − 1

]]]

=
cni ∆x

6Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

×
i+j−1∑
l=0

W1∑
q=−W1

unq

×

[
exp

[
−αni

1− αni
(xi+j − xl)

]
× δ∆,σ(xl − xq)

+ 4 exp

[
−αni

1− αni
(xi+j − xl+ 1

2
)

]

2040047-10
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× δ∆,σ(xl+ 1
2
− xq)

+ exp

[
−αni

1− αni
(xi+j − xl+1)

]

× δ∆,σ(xl+1−xq)

]

+
cni ∆x

Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

W1∑
q=−W1

unq

×
[

exp

[
−αni

1− αni
(xi+j − xi+j−1)

]

× δ∆,σ(xi+j−1 − xq)
]

+
cni ∆x

6Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

×
M−1∑

p=i+j+1

W1∑
q=−W1

un(xq)

[
exp

[
−αni

1− αni
(xp − xi+j)

]
× δ∆,σ(xp − xq)

+ 4 exp

[
−αni

1− αni
(xp+ 1

2
− xi+j)

]
× δ∆,σ(xp+ 1

2
− xq)

+ exp

[
−αni

1− αni
(xp+1 − xi+j)

]
× δ∆,σ(xp+1 − xq)

]

+
cni ∆x

Γ(2− ϑni )

W∑
j=−W

δ2
∆,σ(−j∆x)

W1∑
q=−W1

unq ×
[
δ∆,σ(xp − xq)

]

+ fni + a×
W∑

j=−W
δ2

∆,σ(−j∆x)uni+j

×

1−
W∑

j=−W
δ2

∆,σ(−j∆x)uni+j

 .

This equation gives the full discrete form of
variable-order reaction–diffusion equation model.

As u(xk) is not defined beyond the domain [0, 1],
so to discretize the boundary conditions, we assume
that

uni =

{
un0 , i < 0,
unN , i > N.

(47)

The initial condition can be discretized in the fol-
lowing simple way as follows:

u0
i = f3(xi), i = 0, 1, . . . ,M. (48)

4. ERROR BOUND AND
CONVERGENCE

In this section, we will derive the convergence order
for the C-F fractional derivative.

Theorem 1. Let 0 < α(x, t) ≤ 1, %(x, t) = α(x,t)
1−α(x,t)

and u(x, t) be smooth function for t ∈ [0,∞). Then

CFC
0 D

α(x,t)
t u(tn, xi)

=
1

1− α(x, t)

n∑
j=1

uji − u
j−1
i

%ji ×∆t

e−%(n−j)∆t(1− e−%∆t) +O((∆t)2). (49)

Proof. By the definition of Caputo–Fabrizio deriva-
tive in the Caputo sense

CFC
0 D

α(x,t)
t u(tn, xi)

=
1

1− α(xi, tn)

∫ tn

0

∂u(x, s)

∂s
e−%(tn−s)ds

=
1

1− αni

n∑
j=1

∫ tj

tj−1

∂u(x, s)

∂s
e−%(tn−s)ds

=
1

1− αni

n∑
j=1

uni − u
n−1
i

∆t∫ tj

tj−1

e−%(tn−s)ds+Rn(∆t)

=
1

1− αni

n∑
j=1

uni − u
n−1
i

∆t

× (1− e−%∆t)e−%(n−j)∆t +Rn(∆t). (50)

The term Rn(∆t) can be written as

Rn(∆t)

= − 1

1− αni

n∑
j=1

∫ tj

tj−1

∂2u(x, s)

∂s2

(tj + tj−1 − 2s)

2

× e−%(tn−s)ds− 1

1− αni

×
n∑
j=1

∫ tj

tj−1

(tj − s)3u′′′(ς1j)− (tj−1 − s)3u′′′(ς2j)

6∆t

× e−%(tn−s)ds

= −S1 − S2

2040047-11
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with ς1j , ς2j ∈ (tj−1, tj). Now computing the first
part S1 of Eq. (53)

S1 =
1

1− αni

n∑
j=1

∫ tj

tj−1

∂2u(xi, s)

∂s2

× (tj + tj−1 − 2s)

2
e−%(tn−s)ds

=
1

1− αni

n∑
j=1

∫ t
j− 1

2

tj−1

u′′(xi, s)

× (tj + tj−1 − 2s)

2
e−%(tn−s)ds+

1

1− αni

×
n∑
j=1

∫ tj

t
j− 1

2

u′′(xi, s)
(tj + tj−1 − 2s)

2

e−%(tn−s)ds

=
1

1− αni

n∑
j=1

u′′(xi, ζ1j)

2

×
∫ t

j− 1
2

tj−1

(tj + tj−1 − 2s)

2
e−%(tn−s)ds

+
1

1− αni

n∑
j=1

u′′(xi, ζ2j)

2

×
∫ tj

t
j− 1

2

(tj + tj−1 − 2s)

2
e−%(tn−s)ds

=
1

1− αni

n∑
j=1

u′′(xi, ζ1j)

2

(
−∆t

%
(1 + e−%∆t)

×+
2

%2
(1− e−%∆t)

)
e−%(n−j)∆t

+
1

1− αni

n∑
j=1

u′′(xi, ζ2j)

2

×

(
−∆t

%
+

2

%2
(1− e−

1
2
%∆t)

)
× e−%(n−j)∆t, ζ1j , ζ2j ∈ (tj−1, tj)

=
1

1− αni

n∑
j=1

u′′(xi, ζ1j)

2

×

(
−%
6

∆t3 +O((∆t)4)

)
e−%(n−j)∆t

+
1

1− αni

n∑
j=1

(ζ1j − ζ2j)

× u′′′(xi, ζ3j)

2

(
−1

4
(∆t)2 +O((∆t)3)

)
× e−%(n−j)∆t, ζ1j , ζ2j , ζ3j ∈ (tj−1, tj)

=O
(

(∆t)2
)
. (51)

Now we are computing S2

S2 =
1

1− αni

n∑
j=1

∫ tj

tj−1

× (tj − s)3u′′′(ς1j)− (tj−1 − s)3u′′′(ς2j)

6∆t

× e−%(tn−s)ds

=
1

(1− αni )× 6∆t

n∑
j=1

u′′′(ς1j)

×
∫ tj

tj−1

(tj − s)3e−%(tn−s)ds

− 1

(1− αni )× 6∆t

n∑
j=1

u′′′(ς2j)

×
∫ tj

tj−1

(tj−1 − s)3e−%(tn−s)ds

=
1

(1− αni )× 6∆t

n∑
j=1

u′′′(ς1j)

[
6

%4
(e%∆t − 1)

− 6∆t

%3
− 3(∆t)2

%2
− (∆t)3

%

]
e−%(n−j+1)∆t

− 1

(1− αni )× 6∆t

n∑
j=1

u′′′(ς2j)

[
6

%4
(1− e−%∆t)

− 6∆t

%3
+

3(∆t)2

%2
− (∆t)3

%

]
e−%(n−j)∆t

= e−%(n−j+1)∆t
(1

4
((∆t)4) +O((∆t)5)

)
+ e−%(n−j)∆t

(−1

4
((∆t)4) +O((∆t)5)

)
. (52)

Equations (54) and (55) give

Rn(∆t) ≤ |S1|+ |S2| = O
(

(∆t)2
)
. (53)

Theorem 2 (Ref. 26). An approximate relation
between the function f(x) and its spatial derivative
approximation by quasi wavelet spatial is given by
where function is band-limited to σ = ∆r, B, W ∈
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N, s ∈ Z+, and W ≥ rs√
2

‖fs −
W∑

k=−W
δsσ,∆(x− xk)f(xk)‖

≤ β × exp

(
−γ2

2r2

)
, (54)

where

f(x) ∈L∞ ∩ L2(Ω) ∩ Cs(Ω), γ

= min(r2(π −B∆),W ), β

= (
√

2B‖f‖Ls(Ω) + 2r‖f‖L∞(Ω))

× eπ(s+ 1)!r

γπ∆s
. (55)

5. RESULTS AND DISCUSSION

The performances of our method are shown by solv-
ing some numerical examples. We have used Wol-
fram Mathematica version-11.3. in all numerical
computations.

Example 1. If we take α(x, t) = 1, 0 ≤ x ≤ 1,
0 ≤ t ≤ 1 and ϑ(x, t) = 2 sin t, our model reduced
to the following equation:

∂u(t, x)

∂t
=
∂2 sin tu(t, x)

∂|x|2 sin t
+ u(t, x)(1− u(t, x))

+ f(t, x). (56)

The initial and boundary conditions are taken as
follows:

u(x, 0) = sin 2πx, u(0, t) = 0, u(1, t) = 0. (57)

The exact solution of above problem can be taken

as u(x, t) = sin(2πx)√
t+1

.

The plots of numerical and taken exact solution
at different times are shown in Figs. 1 and 2. The
accuracy of our method can also be seen in Table 1.

Example 2. Considering the following example
with 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1:

CFC
0 Dxt

t u(t, x) =
∂2u(t, x)

∂x2
+ u(1− u)

+ f(x, t), (58)

which, under the prescribed initial and boundary
conditions, yields

u(0, x) = (1− x)2x2,

u(t, 0) = 0, (59)

u(t, 1) = 0.

Table 1 Absolute Error for Different
Value of x.

x ↓ Absolute Error Absolute Error
t = 0.0001 t = 0.1

1
20 5.5× 10−11 3.7× 10−9

3
20 2.7× 10−10 7.5× 10−9

6
20 2.3× 10−10 2.5× 10−10

9
20 1.0× 10−14 9.4× 10−10

12
20 2.3× 10−10 1.7× 10−9

15
20 2.7× 10−10 5.6× 10−9

18
20 5.5× 10−11 1.7× 10−9

The exact solution of the above problem is given by
u(x, t) = (1 − x)2x2et with suitable force function
f(x, t).

We draw the graph of numerical and exact solu-
tion with M = 20,∆t = 0.00001 and N = 10 is
depicted by Fig. 3. We also plot the graph between
numerical and exact solution for a wide range of
time (t = 0.1) as shown in Fig. 4. Table 2 repre-
sents the variations of absolute error. These results
prove the accuracy and validity of our method.

Fig. 1 Plots of u(t, x) versus x for W = 20, ϑ(x, t) = 2 sin t,
M = 20, r = 3.2 and ∆t = 0.00001.

Fig. 2 Plots of u(x, t) for M = 20, ϑ(x, t) = 2 sin t, W = 20,
t = 0.1 and r = 3.2 in case of numerical and exact solution.
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Fig. 3 Behavior of u(t, x) in both numerical and exact solu-
tion with parameters α(x, t) = xt, ∆t = 0.00001, M = 20,
r = 3.2 and W = 20.

Fig. 4 Plots of u(t, x) for t = 0.1, M = 20, α(t, x) = xt,
r = 3.2 and W = 20 in case of exact and numerical solution.

Table 2 Absolute Error for Different
Value of x.

x ↓ Absolute Error Absolute Error
t = 0.0001 t = 0.1

1
20 1.7× 10−5 5.6× 10−5

3
20 1.51× 10−4 2.7× 10−4

6
20 1.55× 10−4 6.7× 10−4

9
20 1.0× 10−4 3.6× 10−4

12
20 1.6× 10−4 4.9× 10−4

15
20 1.7× 10−4 9.3× 10−4

18
20 1.1× 10−4 4.2× 10−4

Example 3. We consider the time fractional
variable-order Riesz space fractional reaction–
diffusion equation with α(x, t) = x, 0 ≤ x ≤ 1,

0 ≤ t ≤ 1 and ϑ(x, t) = 2t,

CFC
0 Dx

t u(t, x) =
∂2tu(t, x)

∂|x|2t
+ u(t, x)(1− u(t, x))

+ f(t, x). (60)

Equation (63) with initial and boundary conditions

u(x, 0) = x2 sinπx, u(0, t) = 0, u(1, t) = et sinπ
(61)

gives the exact solution u(x, t) = etx2 sinπx with
f(x, t) as force function.

Figures 5 and 6 depict the exact and numerical
solution at ∆t = 0.00001 and wide time range t =
0.1. The variations of absolute error are shown in
Table 3.

Fig. 5 Behavior of u(t, x) in both numerical and exact solu-
tion with parameters α(x, t) = xt, ∆t = 0.00001, M = 20,
r = 3.2 and W = 20.

Fig. 6 Behavior of u(t, x) in both numerical and exact solu-
tion with parameters α(x, t) = xt, t = 0.1, M = 20, r = 3.2
and W = 20.
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Table 3 Absolute Error for Different
Value of x

x ↓ Absolute Error Absolute Error
t = 0.0001 t = 0.1

1
20 3.9× 10−8 4.6× 10−8

3
20 1.4× 10−7 3.4× 10−7

6
20 2.04× 10−7 9.4× 10−7

9
20 1.7× 10−7 6.4× 10−7

12
20 2.1× 10−7 1.2× 10−7

15
20 7.2× 10−7 9.7× 10−7

18
20 1.4× 10−5 4.5× 10−5

6. CONCLUSION

In this research, we have dealt with a new model
of reaction–diffusion equation having variable-order
space and time in fractional order derivative with a
law named exponential kernel. To solve this type
of model, we derived a difference scheme by using
Taylor series formula for the discretization of time
direction derivative. The discretization of Riesz spa-
tial derivatives and unknown functions is done by
using double quasi wavelet method. In the knowl-
edge of authors, double-quasi-wavelet method along
with variable-order CFC and Riesz CFR derivative
has been presented for the first time. The accuracy
and validity of this double-quasi-wavelet method
are shown by error tables and graphs.
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