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1. Introduction

The energy predicament and dilapidation of environment are pres-
ently two vital issues for worldwide sustainable development [1]. 
The foremost source of potential energy is fossil fuels that are 
dominantly consumed by the most of developed and developing 
economies around the world [2, 3]. Dependence on traditional 
fuels has contributed to change in climate resulting in global warm-
ing [4, 5]. Continuous increase in consumption of energy has led 
to rapid exhaustion of existing natural sources [6, 7]. Therefore, 
the world is looking for an energy system that is accessible, sustain-
able and clean lesser carbon intensive for survival and welfare 
of living beings [8, 9]. Simultaneously, the inconsiderate reality 
of a mounting global population forces rampant utilization of in-
organic fertilizers. It degrades soil fertility, depletes soil organic 
matter, poses risk of soil erosion and through agricultural runoffs 
causes eutrophication. In this context, agricultural wastes/ 
agro-wastes that comprises straw, husk, stalks, cobs etc. embodies 
a profuse carbon-neutral feasible resource for bioenergy and nu-
trients generation as summarized in Fig. 1 [10]. 

Scientific advancement in genetics, biotechnology, engineering 
and process chemistry have yielded ‘biorefinery,’ a novel manu-
facturing concept. It converts renewable agro-wastes / biomass 
into biofuels, nutrients and by-products while integrating different 
technologies [11]. It offers the possibility for sustainable production 
of biopower and biomaterials [12, 13]. For biorefinery feedstocks, 
agro-waste provides potential substrate for recycling of nutrients 
in agricultural field which in turn maintain soil health, improves 
soil structure and reduces the risk of erosion. However, economic 
feasibility of the conversion processes is yet to be determined. 
Therefore, this review aims at better utility of agro-wastes, de-car-
bonization, biofuel generation, nutrient recycling and reduced pol-
lutant emissions by actual application with holistic approach [14].

2. Biorefinery Approach

The increasing interest in biorefinery and the growing evidence 
for its benefits in terms of material savings and emissions reductions 
[14, 15], led to commensurate focus on biorefinery, particularly in 
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those countries and regions with large agri‐food sectors [16]. In the 
design and operation of biorefineries, biofuels and nutrient recovery 
technologies have been a prime consideration that is utilized for 
recovering a range of N, P or K rich products of environmental 
agricultural significance. A biorefinery may be considered as an 
integrated facility that employs extraction/conversion methods for 
the production of variety of platform chemicals, fuels, and energy 
that is somewhat parallel to a petroleum refinery [17, 18]. 
Sustainability is the key criteria promoting bio-refineries which uti-
lizes conversion of low-value biomass (specifically agro-wastes mate-
rial from agriculture) into a portfolio of higher-value products to 
fulfill future product demands and must also be considered as an 
integral part of environmental management approaches [19, 20] (Fig. 
2). Biorefinery feedstocks usually contain biomass having an ex-
cessive amount of carbon viz., lignocellulosic biomass obtained from 
agro-wastes that comprises mainly of carbon-rich polymers such 
as cellulose, hemicellulose, and lignin. It also contains nutrients like 
N, P, and K recovered from any type of agro-wastes [17] (Table 1). 

Nutrients recovered from agricultural wastes can include com-
plex organic mixtures, e.g, biomass; mixed residuals from ther-
mo-chemical processes like char/ash; or separate N, P, K specific 
chemicals for e.g, NH4

+ or K based products [29]. Nutrient recovery 
technologies mainly include anaerobic digestion to produce bio-
solids, thermal processing to produce biochar or ash and aerobic 
composting to produce soil amendments. Char and ash are increas-
ingly utilized in soil amendments which offer potential for heavy 
metal immobilization, carbon sequestration, and improved soil 
quality [30]. Potential technique for utilizing lignocellulosic 
agro-waste is by converting them into simple sugar (glucose) fol-
lowed by fermentation to form ethanol [31, 32] (Fig. 3).

However, other solvents like butanol derived from biorefinery 
is equally useful or in some special cases superior to ethanol. 
But they have very limited public recognition. The superior qualities 
of butanol like low volatility, octane improving power, high energy 
content and miscibility could replace gasoline or diesel [34]. 

Fig. 2. Process of biorefinery concept with major substrates and products. 

Economics is also favoring butanol fermentation with enhanced 
microbial stability and reduced product inhibition [35], and 
continuous improvements could be seen with efforts in

Table 1. Composition of Lignocellulose Component in Various Lignocellulogic Materials

Lignocellulogic Materials Lignin (%) Hemicellulose (%) Cellulose (%) Ref.

Wheat Straw 16.00 - 21.00 26.00 - 32.00 29.00 - 35.00 [21]

Sugar cane Bagasse 20.00 25.00 42.00 [22]

Corn Cobs 15.00 35.00 45.00 [23]

Sweet Sorghum 21.00 27.00 45.00 [22]

Corn Stover 19.00 26.00 38.00 [24] 

Hard Wood 18.00 - 25.00 24.00 - 40.00 40.00 - 55.00 [25]

Rice Straw 18.00 24.00 32.10 [23]

Soft Wood 25.00 - 35.00 25.00 - 35.00 45.00 - 50.00 [25]

Nut Shells 30.00 - 40.00 25 - 30 25-30 [26]

Grasses 10.00 - 30.00 25.00 - 50.00 25.00 - 40.00 [25]

Bagasse 23.00 - 33.00 16.52 54.87 [24]

Banana Waste 14.00 14.80 13.20 [28]

News Paper 18.00 - 30.00 25 - 40 40 - 55 [26]

Sponge gourd Fibre 15.00 - 46.00 17.44 66.59 [27] 



Environmental Engineering Research 25(5) 623-637

625

Fig. 3. Process flow chart of lignocellulosic biomass into various useful 
products [33].

research and development [36]. Therefore, possible efforts must 
be made to utilize each and every product of agro-waste. The experi-
ence gained must be used in building a modern mature technology 
for biofuel production which is economically and ecologically viable 
after petrol/oil era.

3. Energy Recovery Possibilities

Biorefineries are manufacturing services that transform bio-based 
materials into products like food, feed, fuels, chemicals, and energy 
[37]. These bio-based materials and chemicals could substitute 
products obtained from petroleum and natural gas [38, 39]. 
Moreover, they entail lesser investment and simple innovation 
technology while lessening air pollution from degradation of 
agro-wastes either when it is blazed in fields or when it is rotted 
in the countryside [40]. Moving towards renewable biomass re-
sources is a progress of an industrial society that is sustainable 
and efficiently manages greenhouse gas emanations [13, 41]. The 
energy recovery potential of different agro-wastes adopted in differ-
ent technologies is described in Table 2.

Although biofuels reduce fossil fuel driven energy problems 
and direct emissions [42], its increasing demand could cause an 
adverse environmental impact through changes in overall land 
utilization [43-45]. Production of biofuels might lead to loss of 
biodiversity either through straight displacement of natural habitat 
and/or meandering of ecologically valuable land [46, 47]. Therefore, 
biotechnological methods guiding biofuels production should be 

Table 2. Energy Recovery Potential from Different Agricultural Waste in Different Regions of the World

Energy Recovery

Country Region Income Population
Biomass Waste

generation
(tonnes/day)

Biomass
energy source

Units
Potential
Energy/

bioelectricity

By the
year

Ref.

Algeria MENA LMI 19,225,335 23,288 Biomass Mtoe 3.7 -
[90]

Brazil LCR UMI 144,507,175 149,096
Sugarcane
biomass

TWh
62 - 93 2009

[91]

Finland OECD HIC 3,301,950 7,030
Agricultural
solid waste

PJ/yr 91 2025 [92]

Germany OECD HIC 60,530,216 127,816
Agricultural
solid waste

PJ/yr 200 2025 [92]

Norway OECD HIC 3,605,500 10,082
Agricultural
solid waste

PJ/yr 17 2025 [93]

India SAR LMI 1,358,137,719 97,192 Rice straw PJ/yr 311.6

At 100% 
collection 
efficiency

2002 [94]

Thailand EAP UMI 69,266,999 Rice straw PJ/yr 237.5 

Philippines EAP LMI 104,256,076 Rice straw PJ/yr 141.8 

OECD: Organization for Economic Cooperation and Development, SAR: South Asia Region, LIC: Low Income Countries, 
LMI: Low-Middle Income, HIC: High-Income Country, AFR: African Region, ECA: Europe and Central Asia, 
LCR: Latin America and the Caribbean, EAP: East Asia and Pacific region, MENA: Middle East and North Africa region
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greatly accelerated that aptly use biomass recalcitrance agro-wastes 
while preventing biodiversity loss and taking care of sustainability 
criteria [48, 49]. However, huge demand of energy and fuel may 
not be fulfilled by biomass utilization due to relatively low energy 
content, seasonality and discrete geographic availability of biomass 
feedstocks [50, 51].  

3.1. Biogas/Methane Recovery

Biogas consists of methane, carbon dioxide, hydrogen and hydrogen 
sulphide [52]. It is obtained in a bioreactor during biomethanation 
of organic substrates like sewage sludge, manure, agricultural resi-
due, organic part of household and industrial wastes, along with 
energy crops [53]. Further, they are used as fuel for producing 
thermal energy and electricity [54, 55]. From a bioenergy point 
of view, the anaerobic treatment has an advantage over aerobic 
degradation of organic substrates as it yields high product (biogas) 
at low biomass input and results in less generation of waste sludge/ 
slurry [56, 57]. 

Agro-wastes are capable of biodegrading effortlessly owing to 
organic substance and low nitrogen content, making them appro-
priate for co-digestion and augmenting methane production with 
animal organic wastes from the fermenters [58, 59]. Significant 
studies on power generation from agro-wastes has been widely 
done. Considerable number of biogas plants are already running 
around the world. Developing nations like Brazil had already 
setup 85 MW biogas plant from agro waste; 36 MW from rice 
husk; 32 MW from elephant grass; 371 MW from wood residue 
[60]. Similarly, Piwowar et al. [61] studied agricultural biogas 
plants in Poland and found that production of biogas from 
agro-waste was increased by 137.29 million m3 from the year 
2011-2014. Similarly, in developed nations like Germany, biogas 
plants are increasing continuously since last twenty years. There 
were approximately 140 biogas plants in 1992, while the number 
reached to 7720 at the end of 2013. For rural regions, develop-
ment of market for establishment of biogas plants is crucial 
and must be analyzed for socio-economic and environmental 
aspects [62].

3.2. Bioethanol

The manufacturing of ethanol from agro-wastes derived sustainable 
resources is extended through the use of various microorganisms 
in fermentation systems [31]. These biofuels i.e. biomass to liquid 
are prepared from agro-industrial materials such as residues, straw, 
sawdust, reclaimed wood and low value timber [63, 64]. Bioethanol 
is a non-toxic substitute for traditional fossil fuel for transportation 
worldwide [65]. Along with energy generation, bioethanol is suitable 
for chemical feedstock and, as an industrial solvent [66]. There 
is also an increasing recognition that bioethanol provides environ-
mental benefits to ease particulate emissions [67]. 

Recent studies have concluded that energy derived from 
agro-wastes has a completely positive energy balance to an extent 
that brings a prosperous impact on sustainability and security chal-
lenges [66]. For example, Dominguez-Bocanegra et al. [67] utilized 
coconut, pine and tuna as agricultural waste for promoting bio-
ethanol production by yeast Saccharomyces cerevisiae CDBB 790. 
Their results showed that highest bioethanol concentration was 

in 22% (v/v) pineapple juice, 20% (v/v) coconut milk and least 
in tuna juice i.e. 12% (v/v). Similarly, Evcan and Tari [66] studied 
the apple pomace hydrolysate as agro-industrial waste co-culturing 
Aspergillus sojae, Trichoderma harzianum, and Saccharomyces 
cerevisiae. The highest ethanol and bioethanol concentration were 
8.748 g L-1 and 0.945 g L-1, respectively. These preliminary studies 
suggest that bioethanol can be a treated as an alternative renewable 
feedstock for fossil fuel, as a feasible environmentally friendly 
solution for waste utilization.

3.3. Briquette

Briquettes obtained from agro-wastes are a biofuel substitute to 
coal and charcoal and can be employed in domestic cook stoves, 
boilers and gasifiers as fuel [49]. Briquettes are com-
pressed/compacted blocks of coal dust or any other added combus-
tible biomass like wood chips, charcoal, peat, cobs, straw, sawdust, 
and paper [68]. The fine quality briquettes are environmentally 
safe biofuels and are produced at low cost from solid waste - formed 
from agricultural and industrial sources, through thermo-chemical 
conversion [69-71]. Scattered and untreated waste biomass of high 
density is dried, chopped and compressed to make briquettes [72]. 
The technological options available for making biomass briquette 
fuel, compress scattered and untreated resources into fuel (solid) 
of high density through drying, chopping and briquetting [68], 
thus. This reduces transportation and storage space costs and also 
enhances the combustion quality, while making its activation more 
purposeful [73]. Briquettes from agricultural residues can be em-
ployed in power generation through gasification, straight ignition, 
co-combustion, and in industrial boilers, furnaces, heating boilers 
and other combustion equipment [74, 75]. The prospective econom-
ic, environmental and social impacts of biomass briquetting re-
quired appraisal to ensure its eco-efficiency. Studies focused on 
the techno-economic aspect of biomass briquetting have revealed 
that appliance of agro-waste for sustainable construction materials 
provide a solution which proposes conservation of energy and 
natural resources [76]. The extent of wastes produced from 
agro-sources like sugarcane bagasse, rice husk, jute fiber, etc. is 
relatively high. Thus, it can be strategically reused as a sustainable 
building material which could provide an alternative to excessive 
cost of conventional building materials along with nuisance of 
pollution and land-filling. Briquetting technology requires densi-
fication of material aimed at improvising its handling character-
istics and hastening the volumetric calorific value [72]. 
Practically, the lignin content in biomass is useful for binding 
of particles [76]. Investigations on binderless briquettes using 
biomass waste have employed combination of pearl millet, saw 
dust, coal fines, jatropha shell, spent coffee grounds, paper pulp, 
bagasse, cotton stalk, [77, 78], rye straw along with meadow 
hay or leaves in 1:1 ratio [73, 79], and were successfully reported 
to have approximate density ranging from 710 to 770 kg m-3. 
Therefore, briquetting may prove as an excellent and feasible 
option to refurbish the waste into valuable energy rather than 
leaving it to decompose at open dumps which may pollute the 
environment. Briquettes are easy to handle, can be easily stored 
or transported to long distances and do not cause any atmospheric 
crisis [68].
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3.4. Hydrogen Production by Dark Fermentation

The environmental biorefinery is a unique concept where in-
stallations are designed to manufacture an extensive array of goods 
to increase biomass conversion. An unconventional fuel-hydrogen, 
is used as an energy carrier obtained from agro-lignocelluloses wastes 
so as to reduce dependency on fossil fuels, is being considered 
[80]. At present, the technology for biohydrogen production is not 
perfect as they are dependent on fossil fuels deviously through 
electricity generation [81]. Therefore, production of hydrogen by 
microbial action on wastes has immense potential for satisfying 
future energy demands through hydrogen production [82]. It is envi-
ronment friendly as it decreases release of GHGs and other air 
pollutants. Biohydrogen can be employed as fuel for transportation 
in combustion engines and in fuel cells after purification for generat-
ing electricity. Its energy content per unit weight is as high as 
142 kJ g-1 and the only by-product yielded through oxidative combus-
tion is water [83]. This produces hydrogen as an environmental 
benefactor and may certainly substitute fossil fuels. Currently 88% 
of the marketable hydrogen originates from fossil fuels like natural 
gas, coal or heavy oils [84]. Until now, hydrogen is not commercial-
ized as an energy source, but it is used simultaneously as a chemical 
reactant during production of fertilizers and refining. However, 
in large part, the proposal for using utilization of hydrogen as 
energy resource has been is constrained by high energy costs, storage 
space demand and distribution methods [81]. 

To enhance the likelihood of biohydrogen as a feasible system, 
water electrolysis has been developed which currently supplies 
up to 4% of total H2 production around the world [81]. While 
the production of biohydrogen from biomass at a laboratory re-
search level has garnered enormous attention, though substantial 
technical advancement is required for its market to turn out to 
be cost-effective [85]. The competent sources of biohydrogen entail 
water bio-photolysis through green algae and cyanobacteria, pho-
to-fermentation via photosynthetic bacteria, and dark fermentation 
by anaerobic bacteria [86, 87]. Similarly, biohydrogen production 
through carbohydrate fermentation is a novel approach and has 
received significant concern in recent years [88]. The main force 
for exploring the hydrogen production as a substitute of methane 
is its superior economic value and vast relevance in the biological 
processes that are eco-friendly and could satisfy future hydrogen 
demands from various renewable and carbon-neutral biomass re-
sources [82, 89]. 

Considering that agro-wastes are decomposed biologically via 
complex microbial ecosystems or dark fermentation using crop 
residues food and livestock waste. 

4. Nutrient Recovery Possibilities

During last few decades, research on sustainable recovery possibil-
ities of nutrients has got much importance. Nutrients like nitrogen 
(N), phosphorus (P), and potassium (K) are important for intensive 
agriculture and there are environmental concerns over their 
long-term availability and increasing costs [95]. Nitrogen is a renew-
able reserve whose extraction process (Haber-Bosch process) is 
energy intensive and its cost is dependent on availability of natural 

gas [96]. However, phosphorus rock is non-renewable reserve and 
also the chief source of phosphorus which is depleting at a pro-
gressively high rate. It has been speculated that the demand of 
phosphorus will surpass supply by the year 2033 [97]. Additionally, 
90% phosphorus rock reserves are present in five countries viz., 
Algeria, China, Iraq, Morocco and Syria [88], and hence is a major 
challenge of food security for other nations. Similarly, prices for 
potassium-based fertilizers have increased four times during the 
years 2007-2009, and there are growing concerns for availability 
of potassium fertilizers in the developing economies. The reason 
is that their bulk distribution is found mainly in Canada and Europe 
and very limited distribution in rest of the world [98-99]. Therefore, 
other developing nations have little possibility to be self-sufficient 
in production of potassium through conventional fertilizers. In 
forthcoming decades, with the rise in global population, demand 
for food will increase that will create additional demand for alter-
native sources of nutrient recovery [100-102]. Therefore, there is 
an urgent need for integrated and holistic approach for recovery 
of nutrients. In this context, total amount of major nutrients (NPK) 
present in agro-wastes ranges from 40-100 kg tons-1. United states 
alone have 9 million tons year-1 of nutrients contained in agro-wastes 
and 74 million tons year-1 around the world [99]. Table 3 [103] 
highlights the nutrient values of diverse potential feedstocks/agro 
wastes. 

To recover energy from agro-wastes, biological, physical and 
chemical techniques have been utilized in different countries as 
described in Table 4 [104]. Chemical techniques are limited to 
phosphorus accumulation, whereas biological methods are utilized 
for nitrogen and potassium accumulation and physical techniques 
are utilized for recovering all the three nutrients. However, a number 
of specific studies exist regarding the assessment of different 
nutrient recovery and reuse systems under different scenarios, still 
more uniform and widespread investigations are required. Yet 
proper research and knowledge are lacking about life cycle energy costs

Table 3. Nutrient Content of Various Potential Feedstocks/Agro Wastes 
[103]

Feedstock/Agro Waste
Nitrogen

(%)
Potassium

(%)
Phosphorus

(%)

Cereals (wheat) 0.1 0 0

Corn Cob 1.38 0.46 0.09

Corn Grain 2.15 0.42 0.34

Corn Leaves 1.30 1.48 0.21

Corn Silage 1.30 0.9 0.16

Corn Stem 0.84 1.23 0.09

Rapeseed Crop Biomass 3.3-5.4 0 0

Sugarcane Bagasse 0.73 0 0

Wood 0.07-0.39 0 0

Water Hyacinth 1.96 0 0

Pine 0.1 0 0

Peach Leaves 0 2.45 0.14

Giant Brown Kelp 1.22 0 0
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of nutrient recovery and reuse systems (recovery, refining, trans-
portation) and how such costs are compared to the use of mineral 
fertilizers (mining, processing, transportation).

4.1. Phosphorus Recovery
Phosphorus, a vital plant nutrient is also a necessary component 
of fertilizers which is needed for healthy growth of plants. Phosphate 
rock- a finite reserve, is rapidly exhausting on a global scale as 
it is possessed by a few countries. Therefore, it is conclusive to 
recover P from agro-waste to close anthropogenic phosphorus cycle 
so as to promote agricultural sustainability [105, 106]. However, 
agro-wastes have rabeen explored for phosphorus recovery while 
at least 6.4% P wastage results from crop harvesting [107]. For 
this purpose, potential of microbes must be fully exploited as phos-
phorus recycling from agro-waste is in its infancy. In this direction, 
phototrophic and heterotrophic organisms work together to help 
in accumulation of vital nutrients [108]. Generally, proteobacteria 
like cyanobacteria, purple non-sulfur bacteria and polyphosphate 

accumulating organisms (PAOs) are utilized for accumulation 
of nutrients [109]. Presently, PAOs are most extensively utilized 
for accumulation of P i.e. 20–30% by weight [110] which has 
solids-retention time of 10 days that is called as polyphosphate 
[80, 111]. 

Another means to recover P is through struvite recovery [112]. 
It is helpful in recycling of vital nutrients. Different studies suggested 
that among different agro-waste, cattle manure is very successful 
in recovery of struvite [113, 114], followed by swine manure [108, 
109, 115, 116], poultry manure [117], and lastly cattle urine [118]. 
Generally, farm wastes containing manures are abundant in P and 
NH4

+, which is advantageous for struvite recovery. However, the 
composition depends on various conditions like manure handling, 
rearing conditions, animal species, storage and treatment methods. 
In a similar study by Kataki et al. [119] stated that P concentration 
ranges from 90-600 mg L-1 i.e. 90-200 mg L-1 in swine manures, 
100-460 mg L-1 for dairy manure and 370-600 mg L-1 in poultry 
manure. 

Table 4. Nutrient Recovery Potential From Different Agricultural Waste in Different Regions of the World

Nutrient Recovery

Country Region Income Population Biomass waste
used Proportion Used Method used for

nutrient recovery Nutrient recovered Year Ref.

Czech Republic ECA HIC 10,628,906 Apple pomace
waste 25%, 50%, and 75%. Vermicomposting N = 2.8%, P = 0.85%, 

K = 2.3%, 2014 [137]

India SAR LMI 1,358,137,719 Coconut husk
80%, 90%, 100% coconut husk 
with poultry manure and pig 

slurry
Vermicomposting

N = 1.27 g kg-1

P = 1.4–9.7 g kg-1 
K = 7.7–10.5 g kg-1

2016 [138]

Iran MENA UMI 82,565,364
Crop Residue

(Rice, corn, wheat
and sugarcane)

5 kg of substrate included with 
200 adult epigamic 

earthworms
Vermicomposting - 2015 [139]

Italy ECA HIC 61,838,227 Agriculture waste -

Anaerobic digestate: 
drying with acidic 
recovery, stripping 
with acidic recovery 

and
membrane 
separation

Drying:
N = 6.8 gN/L; P = 0.8 gP/kg

Membrane Technology: 
N = 3.35gN/L,
P = 1.64 gP/L,

Stripping process:
N = 3.6 gN/L
P = 0.5 gP/L.

2017 [140]

Germany OECD HIC 82,392,809 Digestate 10 - 50 L of digestate Membrane-based 
treatment chain

N = 4.4 kgNtotal·t−1

P = 1.95 kgP2O5 t−1

K = 3.98 kgK+
2018 [141]

Australia EAP HIC 24,987,583 Agro-industrial 
residues - - N = 246 kt N, P = 88 kt P, 

K = 359 kt K 2010 [95]

India SAR LMI 1,358,137,719 Rice straw 1 Kg Vermicomposting

TOC = 32.2-52.8%
decrease

N = 10.56 and 18.58 g/kg
K = 1.1-2.6 times higher 
with increment of 169%

P = 36-166%

2018 [142]

Germany OECD HIC 82,392,809 Agriculture waste - Membrane filtration
8 kg t−1 N total, 
5.5 kg t−1 P2O5,

10 kg t−1 K2O
2018 [141]

OECD: Organization for Economic Cooperation and Development, SAR: South Asia Region, LIC: Low Income Countries,
LMI: Low-Middle Income, HIC: High-Income Country, AFR: African Region, ECA: Europe and Central Asia,
LCR: Latin America and the Caribbean, EAP: East Asia and Pacific region, MENA: Middle East and North Africa region
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Köse and Kivanç [120] conducted an experiment where calcium 
phosphate was recovered from calcinated waste eggshell. The recov-
ery efficiency of phosphate was found to be 37.6%. From current 
literature, it was concluded that phosphorus can be recovered from 
agro-wastes at rate of 90% as calcium phosphate or 95% via struvite 
precipitation [121, 122]. Also, membrane technologies like osmotic 
membrane bioreactor (OMBR) have been utilized for biological 
phosphorus recovery from agro-wastes [123]. Padrino et al. [124] 
observed the highest rate of theoretical phosphorus recovery poten-
tial in agro-waste residues was obtained when subjected to pre-treat-
ment with ionic liquid and thermophilic anaerobic digestion. 
Similarly, Yan et al. [125] studied the effect of wheat and rapeseed 
straw mulch on NPK recovery and was used in cultivation of hybrid 
rice. They found that wheat and rapeseed straw mulch increased 
total NPK accumulation in rice plants by 1.81-10.79%, 2.70-42.21% 
and 16.41-17.92%, respectively, consequently enhancing NPK 
utilization. Nonetheless, innovative ideas for nutrient recovery are 
considered for paradigm of the biorefineries, where the wastes 
from the one system must be entirely reinstated in the market 
as raw material [126].

4.2. Nitrogen Recovery
Excessive discharge of nutrients into water bodies leads to eutrophi-
cation [127] that causes water pollution and consequently leads 
to soil pollution. Therefore, to curb such environmental issues, 
recovery of nitrogen is a strategic measure. For this purpose, 
blue green algae (cyanobacteria) are most suitable for uptake of 
nitrogen [128]. Micro algae play a major part in nutrient recovery 
and adequate biomass is required for sufficient uptake. It is a 
well-established fact that uptake and reduction of NO3

- is a photo-
synthetically driven process in nitrogen sufficient conditions of 
cyanobacteria. This will implicate production of ammonium and 
carbon skeletons. 

Other physico-chemical techniques for nitrogen recovery like 
ion exchange for NH4

+ and NO3
− recovery, NH4

+ precipitation as 
struvite, NH3 adsorption, stripping and distillation are well estab-
lished [129, 130]. The best approach for N recovery depends on 
the concentration and form of N i.e. NO3

−/NO2
− or NH3/NH4

+. The 
only available technology to recover nitrate is anion exchange fol-
lowed by precipitation as an inorganic salt of nitrate for application 
in agriculture [131]. Therefore, further research on less expensive 
promising technologies for nitrogen recovery definitely is consid-
ered on high priority. Conversely, other nitrogen recovery techni-
ques are available like electrodialysis, and liquid gas stripping. 
Gas permeable membrane produces aqueous ammonia solution 
which is capable of utilization as manure or can be utilized for 
denoxification of emissions from exhausts in waste incinerators 
and power stations [132]. Further conversion of aqueous ammonia 
to solid inorganic fertilizers like NH4NO3 or (NH4)2SO4 can also 
be achieved. In this respect, Hadas et al. [133] conducted an experi-
ment to study the effect of decomposition rate of agro-waste (tobacco, 
rapeseed, rice hulls, corn and wheat residue) and nitrogen availability 
to soil. The results revealed that nitrogen recovery from tobacco 
was higher as compared to rapeseed residue. Rice, wheat and corn 
residues were comparatively recalcitrant; however, rice residue does 
not cause any nitrogen deficiency. Similarly, Fox et al. [134] con-
ducted an experiment on dried mature tops of six legumes i.e. 

alfalfa (Medicago sativa L.), Fitzroy stylo (Stylosanthes scabra Vog., 
var Fitzroy), leucaena (Leucaena leucocephala Lam., deWit), round 
leaf cassia (Cassia rotundifolia Pers., var. Wynn), snail medic (Medicago 
scutellata L.), and vigna (Vigna trilobata L., var verde). They were 
introduced in soil @ 100 mg kg-1 soil and found that net N mineralization 
after twelve weeks ranged from 47% of added N for alfalfa and 11% 
of added N with cassia. Two legumes i.e. Fitzroy stylo and cassia 
residues contained less than 20 mg kg-1 of N for six weeks of the 
experiment. Similar study was conducted by Ladd et al. [135] on 
medic material residue (Medicago littoralis) that was amended with 
soil at 3 field sites in South Australia. Deliverables of around 189 
kg N ha-1 was achieved during fifteen months of decomposition. Of 
this 49.3% was taken up by test plant wheat), 19.7% was immobilized 
or persisted as fine root residue, 9.2% was left as inorganic N in 
the soil while 22.1% was accounted for soil-plant interaction or may 
be lost through inorganic N. Hence, around 6.5 kg inorganic N ha-1 
was provided by the amended soil with medic residues per 100 kg 
dry matter ha-1 removed as wheat grain. However, the economic feasi-
bility of nitrogen recovery is very low due to its high chemical cost 
for adjusting pH to increase free ammonia concentration i.e. NH4

+ 
to NH3, the requirement of heat for decreasing ammonia gas solubility, 
ammonia stripping, and lastly because of comparatively low cost of 
ammonia products derived from Haber-Bosch process. 

4.3. Potassium Recovery
Potassium is another important nutrient for increasing crop yield 
and enriching soil. It is well acknowledged that nitrogen use effi-
ciency, productivity and resistance to drought, pests and diseases 
are improved by potassium. Most parts of the world are under 
agricultural practices that grow potassium demanding crops like 
sugar beet, fodder crops, vegetables, potatoes, and other commercial 
crops. Forms of potassium that are accessible to plants from soil 
are exchangeable potassium and soil solution potassium. Soil 
Organic Matter (SOM) present in surface layer is a crucial factor 
that retains sufficient quantity of potassium, but SOM is rapidly 
diminishing in soils of tropical region. 

Adeoye et al. [136] stated that potential to utilize resource of 
potash from agro-wastes is available in ample quantity. They as-
sessed thirteen agro-wastes for their potassium and other nutrient 
contents. They found that plantain waste, cocoa waste, water hya-
cinth and market waste are high in K contents. Different amendments 
of such wastes were applied at the rate of @ 0, 10, 15, 20, 25, 
30 tons/ha in powder form together with recommended dose of 
NPK were applied in greenhouse experiment on Amaranthus cruen-
tus L. used as test crop. The results obtained showed that cocoa 
waste and water hyacinth supported maximum crop yield and 
growth when treated with 10 tons/ha, respectively. Growth and 
yield of crop were significant (p < 0.05) with respect to inorganic  
NPK fertilizer. It was also detected that potassium obtained from 
water hyacinth was more easily available to plant as compared 
to other farm wastes. Potassium from water hyacinth and cocoa 
waste possibly prove to be economical for farmers of the developing 
countries to fulfill their required potassium demands.

4.4. Comlizers
Comlizers are obtained by mixing composted organic waste and 
ammonium sulphate fertilizers [143]. It was first developed in Ghana 
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and has been tested on maize crop and compared with application 
of NPK (15-5-15) and ammonium sulphate. Plots that were amended 
with comlizers @ 91 kg N ha-1 showed 11% higher uptake of 
nitrogen and phosphorus than ammonium sulphate treated plots 
@ 150 kg N ha-1 and NPK treated plots (15-5-15). Also, the organic 
matter of soil amended with comlizer was 22 and 64% higher 
than the inorganic fertilizer and soil. Water use capacity was 
also 12% higher as compared to other treatments. Little threat 
was expressed from heavy metal and pathogens that must be 
considered for their elimination while practicing on larger scale. 
Therefore, application of comlizer improves nutrient uptake, crop 
yield, organic matter, and water use efficiency. Additionally, 
comlizers are relatively cheaper than other fertilizers available 
in the market [144].

5. Energy and Nutrient Recovery: An Economic 

Assessment

Currently, reconsideration of the effective exploitation of alternative 
uses of renewable resources through clean technologies is crucial. 
Also, it is essential to overcome the huge dependency on petroleum 
for liquid fuels. The selection of suitable feedstock and processes 
for generating clean energy and essential nutrients must be such 
which consume lesser electricity, generate less emission in total, 
and have low adverse human health impact [145]. Considering 
these factors and to fulfill the present-day energy and nutrients’  
need, lignocellulosic biomass obtained from agro-waste is consid-
ered as a most potential material. Furthermore, from the biorefinery 
concept, discovery and characterization of new enzymes through 
advanced technologies led to low-cost transformation of lignocellu-
losic biomasses into bio-fuels, bio-chemicals and bio-fertilizers 
[146-148]. 

5.1. Economic Perspective on Energy Recovery

The manufacturing of any product must be economically viable 
otherwise; marketing is not possible even if they are made from 
renewable resources. Time to time economic analysis has been 
carried out by many researchers and scientists on the potentiality 
of agro-residue in terms of energy recovery and valuation of their 
bio-products. Ethanol and bio-diesel are the most well-known forms 
of agro-fuels for gasoline and diesel substitution, respectively. In 
Brazil (2010), Portugal-Pereira et al. [60] reported that 8% of total 
electricity consumption was fulfilled by the bioenergy which is 
approximately equal to 39 TWh. Around 9 GW energy productions 
were estimated from agro-wastes in Brazil considering the average 
annual availability factor of 50%. On the contrary, another study 
by Dassanayake and Kumar [149] indicates that electricity gen-
eration in Alberta by direct combustion of triticale straw is not 
reasonable at any plant scale as compared to coal based power 
generation. 

They concluded that even at very low power cost of $ 71.57/MW, 
triticale straw-based energy plant is not considered economically 
viable. Moreover, the presently available conversion technology 
is less efficient and logistics causes the triticale straw-based bio-en-

ergy generation costlier in comparison to fossil fuel-based energy; 
however, it could become competitive with carbon credits.

Seabra et al. [150] carried out the economic analysis that involved 
evaluation of the minimum ethanol selling price (MESP) of sugar-
cane residual biomass. The total investment calculated for the bio-
chemical conversion plant is around 152 M$ leading to final MESP 
values of 318 $ m-3 for biochemical conversion while for thermo-
chemical conversion the total value cost was 127 M$ and MESP 
value of 329 $ m-3 was achieved. Thermochemical conversion. 
Total electricity generation from biochemical conversion is 50 
kWh t-1 of cane of electricity surplus while from thermochemical 
conversion the values are reduced to 32 kWh t-1 of cane for 
electricity. However, the residues that cannot be converted into 
ethanol through biochemical conversion could lead to provide 
power at 557 kWh m-3 ethanol. Via biochemical route, the high 
amount of residues that cannot be converted into ethanol leads 
to a high potential to export power, at 557 kWh m-3 ethanol. Electricity 
would be an important co-product of this biorefinery plant, for 
bio chemical conversion, with surplus of about 50 kWh t-1 of elec-
tricity from cane. 

Similarly, Yoosin and Sorapipatana [151] stated that the pro-
duction costs of the bio-ethanol are quite variable due to highly 
volatile nature of the raw materials. and concluded that in general, 
of the total bio-ethanol production costs feedstock contributes 
60-75%. The cost of bio-ethanol from sugar cane is US$ 0.23-0.29 
per liter [152], whereas sugar and corn-based bio-ethanol in EU 
and the United States are reported to be $ 0.29 per liter [153] 
and US$ 0.53 per liter [154], respectively. The bio-ethanol pro-
duction costs are commonly higher based on the energy content. 
Sugars and corn-based ethanol plants affect food production and 
also its production cost is higher which makes it difficult to become 
cost competitive with fossil fuels. Because of this serious economic 
concern, now majority of the industries are focusing on scientific 
research to develop economically viable lignocellulose-based bio-
fuel energy plant. 

5.2. Economic Perspective on Nutrient Recovery

The sustainable production of fertilizers, particularly NPK, are quite 
challenging in this century. To avoid toxic effect of chemically 
produced fertilizers on soil health, the biologically treated organic 
wastes are the best option which could augment the soil fertility. 
The best way to utilize large volume of nutrient rich agro-wastes 
is by recycling through appropriate biological processes like com-
posting, vermicomposting or anaerobic digestate [155, 156]. 
Bekchanov and Mirzabaev [157] evaluated that recycling of 
agro-wastes through composting causes reduction of expenses from 
US$ 357 to 197 million in total agro-waste management and fertilizer 
usage cost. However, investment costs of operating an anaerobic 
sludge composting plant (capacity of 7.12 x 106 kg) is around 
€ 462,646 and annual cost ranges between € 250,000 - 360,000.  
Similarly, Dockhorn [158] assessed operating and maintenance 
costs of a phosphorus recovery plant from struvite (capacity 
350,000-person equivalents (PE)). They concluded that with 50 
mg L-1 PO4-P concentration, € 2800 ton-1 of struvite was achieved; 
however, with 800 mg L-1 PO4-P concentration, only € 520 ton-1 
was attained. In a similar study, Battistoni et al. [159] estimated 
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total profits between € 7,800-89,400 year-1 from struvite production 
at operating costs of € 0.19 - 0.28 m-3 digestate. However, Blumenstein 
et al. [160] reported that from an investors’ perspective composting 
of grasses from semi-natural grassland of Germany, Wales and 
Estonia was not profitable in comparison to generation of solid 
fuel and biogas from the biomass. In a precise case study, capital 
and operational costs for pre-treatment of anaerobic digestate, were 
estimated between 5.40 and 6.97 € m-3 by Bolzonella et al. [140]. 
However, the economic valuation of any plant is a complicated 
process due to many uncertainties on investments and operating 
costs. Further, research to evaluate risk and optimization of combi-
nation of technologies is needed. 

6. Strategic Action Plans for ENR

6.1. Regulatory Coherence and Policies

Society is well aware of the problems generated due to anthropogenic 
activities. To tackle these problems, collective legislative actions 
and policies need to be framed. There are considerably large number 
of directives and regulations concerning ENR from agro-wastes. 
The legal framework on energy guarantees certainty to relevant 
stakeholders, administrative authorities, waste producers, disposal 
companies and citizens to know their roles and obligations. 
Appropriate framework is required to reach the objective of 
sustainability. Moreover, regular monitoring and legal binding is 
necessary for regulating emission standards and other environ-
mental prescriptions. 

However, there is a great range of corresponding regulation at 
national and regional level which can hinder entrepreneurial im-
petus, investment and knowledge transfer. Similarly, for greater 
uptake, recovery and reuse of nutrients and development, regu-
lations governing the sectors need certain coherence between the 
member states. For instance, the European Union (EU) has created 
a significant assembly of regulation impacting nutrient use. The 
main elements that are to be regulated are consequential treatment 
of organic waste, their utilization in crop and livestock farming, 
nutrient market, and secondary raw materials arising from this 
complex chain [161]. 

Owing to substantial financial risk, poor implementation, and 
gaps in regulation requires primary concern. However, the problems 
have patently not been resolved despite collection of attempts have 
been made to deal with them. Therefore, full techno-economic 
assessment of local, regional and global recovery of energy and 
nutrients must be backed up by decision assistance tools.

Regulatory policy scheme of many countries promotes renew-
able energy technologies (RETs) and it is getting great importance 
now-a-days. Two most standard regulatory policies are Feed-in-tar-
iff (FIT) and Renewable Portfolio Standard (RPS). Mostly, FIT 
and RPS are emphasized because they denote most widespread 
regulatory promotion policies [162, 163]. Theoretically, FIT is based 
on the price regulation policy in which producers of power is 
paid a fixed rate or premium for their electricity, irrespective of 
how much they can generate. Generally, for a definite duration 
of time the prices are fixed, however, the tariff may change with 
time. RPS is based on quantity regulation policy and valuation 

depends on market condition which decides the price for power 
generated. In this connection, governments fix targets or quotas 
to confirm that a certain market share of capacity or generation 
of electricity produces from renewable energy sources [164]. Earlier 
research work concluded that FIT is a better promoter of power 
capacity development than RPS [162, 164, 165 ]. However, these 
research conclusions are made on the basis of comparative case 
studies that lack vigorous empirical test. 

Langniss and Wiser [166] studied the implication of national 
and sub-national policies. In the way of power development proj-
ects, they emphasized that FIT can make a stable and profitable 
market whereas in case of RPS there is a lack of surety in the 
market assurance and industrial profitability, henceforth, it pro-
vides fewer progresses in power generation. However, in previous 
studies by Mitchell [167] and Menanteau et al. [168] indicated 
that RPS is more liable to incentivize competition between different 
renewable technologies whereas FIT does not inspire innovation 
since it promises stable prices to producers. Other studies from 
the environmental and economic aspects, market-based approach 
is considered as superior to a non-market system in promotion 
of technological change [169-172]. From the energy point of view, 
RPS is categorized as market-based policy whereas FIT is focused 
on price control by government. Therefore, RPS appears to be 
more ideal according to this standard of comparison.

6.2. Recommendations

Following recommendations regarding framing of policies can be 
adopted:

a. Technologies to lower the cost of implementation of energy 
recovery plants must be encouraged.

b. The cost and financial aspect must be critically assessed 
to encourage energy plants in developing nations.

c. Advancement in emission control technologies from energy 
generation through wastes should be taken into prime 
consideration.

d. Technical specifications, emission standards, suitable waste, 
extraction process for energy as well as cost benefit analysis 
must be clearly defined.

e. Frequent interaction with environmentalists, stakeholders, 
municipality and local people must be done for operational 
health and safety measures.

f. Adequately qualified and skilled staff members must be pro-
vided for effective enforcement and regular inspections.

g. Manage nutrient cycle in a resource efficient way by promoting 
sustainable management of agricultural ecosystems.

h. Governments need to end harmful farming practices of in-
tensification and switch to sustainable agricultural practices.

I. Tax must be levied for excessive pesticides and fertilizers 
usage.

j. Polluter pays principle must be implemented for ensuring 
cost recovery.

k. For overall release of nitrogen and other nutrients, local targets 
must be set keeping in view the ecological limits.

l. Regular monitoring of quality standards, both for energy and 
nutrient recovery strongly implemented.
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7. Conclusions 

The recovery of energy and nutrients from agro-waste must be 
ensured that they are consistent in competition with current tech-
nologies [175]. Amalgamation of different technologies may help 
in enhancing the use of agro-wastes for centralized ENR. However, 
socio-economic, logistical, regulatory, political etc. barriers create 
a gap between the sustainable, technical and economic potentials 
of energy and nutrient recovery. Presently, for fertilizer industries, 
new prospects arise to move from inorganic fertilizers, to organic 
fertilizers that augment soil health. Synchronization of small and 
medium farmers into cooperatives as well as application of energy 
service companies (ESCOs) for financing in ENR would lessen 
operational costs. Also, commercial incentives such as FIT and 
RPS would reassure stakeholders to expand their activities together 
with bioenergy in their business portfolio. Overall, development 
of respective technologies for ENR from agro-wastes must be im-
plemented for the secondary market. Thus, this paper outlined 
the importance of energy and nutrient recovery of higher quality 
from agro-wastes that counteracts present problems of wasteful 
energy use, environmental degradation and nutrient resources 
depletion.
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