List of Tables

Table No.	Name of Table	Page No.
Table 1.1	Different group of commercially available aluminum alloys	3
Table 1.2	literature review summery of aluminum alloys and with	7
	different heat treatments	
Table 1.3	Literature review summery of metal matrix composites of	9
	aluminum alloys	
Table 1.4	Literature review summery of micro-structural investigation	10
Table 1.5	Literature review summery of theoretical analysis of LCF	11
Table 1.6	Literature review summery of empirical analysis of LCF	11
Table 1.7	Literature review summery of numerical analysis of LCF	12
Table 3.1	Chemical composition and EDAX analysis for as-received	76
	AA6063-T6 alloy at room temperature	
Table 3.2	Tensile properties for as-received AA6063-T6 alloy at room	79
	temperature	
Table 3.3	Comparison of values of n, K and $\sigma_{fracture}^{true}$	79
Table 3.4	Torsion test data for as-received AA6063-T6 alloy at room	80
	temperature	
Table 3.5	Vickers micro hardness for As Received AA6063-T6 alloy at	81
	different load	

Table 3.6	Vickers Macro hardness for As Received AA6063-T6 alloy at	82
	different load	
Table 3.7	Cyclic data for cantilever beam fatigue test of as-received	83
	AA6063-T6 at room temperature	
Table 3.8	Strain-controlled fatigue properties of as received AA6063-T6	84
	aluminum alloy	
Table 3.9	Comparison of values of \mathbf{n}' and \mathbf{K}'	85
Table 3.10	Comparison of experimental, numerical and theoretical results	86
	for elastic strain as received AA6063 alloy	
Table 3.11	Comparison of experimental, numerical and theoretical results	86
	for plastic strain AA6063 as received	
Table 3.12	and modified R^2 values for elastic , plastic and total strain for as	90
	received AA6063-T6 alloy	
	·	
Table 4.1	The monotonic properties of AA6063 at different heat	95
	treatment temperatures with same soaking time	
Table 4.2	Comparison of values of n, k and $\sigma_{fracture}^{true}$ for AA6063	95
	(100°C_2hour)	
Table 4.3	Comparison of values of n, k and $\sigma_{fracture}^{true}$ for AA6063	95
	(200°C_2hour)	
Table 4.4	Comparison of values of n, k and $\sigma_{fracture}^{true}$ for AA6063	95
	(350°C_2hour)	

Table 4.5	Torsion test data for AA6063 for different heat treatment	98
	temperatures with same soaking time	
Table 4.6	Cyclic data for rotating cantilever low cycle fatigue test of	101
	AA6063 alloy heat treated at 100°C with soaking time of 2	
	hours	
Table 4.7	Cyclic data for rotating cantilever low cycle fatigue test of	102
	AA6063 alloy heat treated at 200°C with soaking time of 2	
	hours	
Table 4.8	Cyclic data for rotating cantilever low cycle fatigue test of	104
	AA6063 alloy heat treated at 350°C with soaking time of 2	
	hours	
Table 4.9	Low cycle fatigue properties of aluminum alloy AA6063 at	106
	different heat treatment temperatures with same soaking time	
Table 4.10	Comparison of experimental, numerical and empirical results of	108
	elastic strain for AA6063 with different heat treatment	
	temperature at same soaking time	
Table 4.11	Comparison of experimental, numerical and empirical results of	109
	Plastic strain for AA6063 with different heat treatment	
	temperature at same soaking time	
Table 4.12	\mathbb{R}^2 and modified \mathbb{R}^2 values for elastic , plastic and total strain	119
	for AA6063 with different heat treatment temperature at same	
	soaking time	

Table 5.1	The monotonic properties of AA6063 at same heat treatment	125
	temperature 350°C with different soaking time	
Table 5.2	Comparison values of n, k and $\sigma_{fracture}^{true}$ for AA6063 heat	125
	treated at 350°C with 4hours soaking time	
Table 5.3	Comparison values of n, k and $\sigma_{fracture}^{true}$ for AA6063 heat	126
	treated at 350°C with 6hours soaking time	
Table 5.4	Comparison values of n, k and $\sigma_{fracture}^{true}$ for AA6063 heat	126
	treated at 350°C with 8hours soaking time	
Table 5.5	Torsion test data for AA6063 samples at different soaking	130
	times with same heat treatment temperature of 350°C	
Table 5.6	Cyclic data for rotating cantilever low cycle fatigue test of	132
	AA6063 alloy heat treated at 350°C and with soaking time of 2	
	hours	
Table 5.7	Cyclic data for rotating cantilever low cycle fatigue test of	134
	AA6063 alloy heat treated at 350°C and with soaking time of 4	
	hours	
Table 5.8	Cyclic data for rotating cantilever low cycle fatigue test of	135
	AA6063 alloy heat treated at 350°C and with soaking time of	
	6hours	
Table 5.9	Cyclic data for rotating cantilever low cycle fatigue test of	136
	AA6063 alloy heat treated at 350°C and with soaking time of 8	
	hours	

Table 5.10	Low cycle fatigue parameters of aluminum alloy AA6063 at	137
	different soaking time and same heat treatment temperature of	
	350°C	
		1 4 1
Table 5.11	Comparison of experimental, numerical and empirical results	141
	for elastic strain for AA6063 at different soaking times for	
	same heat treatment temperature of 350°C	
T.L. 510		1.4.1
1 able 5.12	Comparison of experimental, numerical and empirical results	141
	for Plastic strain for AA6063 at different soaking times for	
	same heat treatment temperature of 350°C	
T-hl. 5 12	\mathbf{P}^2 and we dified \mathbf{P}^2 values for electic relation and total studie for	150
1 able 5.13	R ⁻ and modified R ⁻ values for elastic, plastic and total strain for	152
	AA6063 with different soaking time and at same heat treatment	
	temperature of 350°C	
Table 6.1	The monotonic properties of AA6063 at different volume	158
	fraction of SiCp reinforcement particle	
Table 6.2	Comparison values of n, k and $\sigma_{fracture}^{true}$ for AA6063/SiCp p	158
	(2% Vf) MMC	
Table 6.3	Comparison values of n, k and $\sigma_{fracture}^{true}$ for AA6063/SiCp p	158
	(8% Vf) MMC	
Table 6.4	Torsion test data	161
Table 6.5	Cyclic data for rotating cantilever low cycle fatigue test of	164
	AA6063/SiCp (2% V _f) MMC	
	L × -7	

Table 6.6	Cyclic data for rotating cantilever low cycle fatigue test of	165
	AA6063/SiCp (8% V _f) MMC	
Table 6.7	Low cycle fatigue properties of aluminum alloy AA6063+ SiCp	166
	with different volume fraction $V_{\rm f}$ % of reinforcement particle	
	size	
Table 6.8	Comparison of experimental, numerical and empirical results	170
	for elastic strain AA6063 for Metal Matrix Composite at	
	different volume fraction of SiCp reinforcement particle	
Table 6.9	Comparison of experimental, numerical and empirical results	170
	for Plastic strain AA6063 for Metal Matrix Composite at	
	different volume fraction of SiCp reinforcement particle	
Table 6.10	R^2 and modified R^2 values for elastic , plastic and total strain for	177
	AA6063/SiCp MMC with different volume fraction $V_{\rm f}$ of SiCp	
	reinforcement particle	
Table 7.1	Tensile properties of the as received alloy AA6063-T6	181
Table 7.2	Variation of number of reversals to failure (2Nf) with different	199
	components of strain amplitude at RT for the alloyAA6063 at	
	fracture point of each sample	
	I	
Table 8.1	JCPDF data for intensity and crystallites as-received condition-	204
	T6 with loading and without loading	

Table 8.2	Crystallite size and diameter for as-received condition	204
	AA6063-T6 at different loads	
Table 8.3	Crystallite size and diameter of sample at fracture data for	208
	AA6063 with different heat treatment temperature for same	
	soaking time of 2 hours	
Table 8.4	Crystallite size and diameter of sample at fracture data for	212
	AA6063 with different soaking time for same heat treatment	
	temperature of 350°C	
Table 8.5	Crystallite size and diameter of sample at fracture data for	216
	AA6063/SiCp MMC	
Table A.1	X-RD experimental data for as-received AA6063-T6 alloy	257
	without loading	
Table A.2	X-RD experimental data for as-received AA6063-T6 alloy at	258
	4.5 kg loading	
Table A.3	X-RD experimental data for as-received AA6063-T6 alloy at	258
	6.9 kg loading	
Table A.4	X-RD experimental data for as-received AA6063-T6 alloy at	258
	7.389 kg loading	
Table A.5	X-RD experimental data for as-received AA6063-T6 alloy at	259
	8.55 kg loading	
Table A.6	X-RD experimental data for AA6063-200°C with soaked time	259
	2hours	
Table A.7	X-RD experimental data for AA6063-350°C with soaked time	260
	2hours	
Table A.8	X-RD experimental data for AA6063-350°C with soaked time	260
	4hours	

Table A.9	X-RD experimental data for AA6063-350C with soaked time 6hours	260
Table A.10	X-RD experimental data for AA6063-350 with soaked time 8hours	261
Table A.11	X-RD experimental data for AA6063/SiCp MMC with 2% V_f reinforcement particle	261
Table A.12	X-RD experimental data for AA6063/SiCp MMC with 8% Vf reinforcement particle	262