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Nonquenched rotators ease flocking and memorize it
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We introduce a minimal model for a two-dimensional polar flock with nonquenched rotators and show that
the rotators make the usual macroscopic long-range order of the flock more robust than the clean system. The
rotators memorize the flock-information which helps in establishing the robustness. Moreover, the memory of the
rotators assists in probing the moving flock. We also formulate a hydrodynamic framework for the microscopic
model that makes our study comprehensive. Using linearized hydrodynamics, it is shown that the presence of
such nonquenched heterogeneities increases the sound speeds of the flock. The enhanced sound speeds lead
to faster convection of information and consequently the robust ordering in the system. We argue that similar
nonquenched heterogeneities may be useful in monitoring and controlling large crowds.
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I. INTRODUCTION

Collective behavior of large-scale systems like crowd of
pilgrims [1–5] and flock of birds [6] spanning a few kilo-
meters or micron-scale population of bacteria [7,8] display
many common features like phase segregation [9–11], large
density fluctuations [12], etc. These features stem from the
self-propulsion nature of the individual constituents exhibiting
systematic movement at the cost of their internal energy
[13–17]. A comprehensive understanding of these systems
have immense utility [18] in various aspects of society, viz.,
safety measures of human crowds [1–5], cell biology [19,20],
and drug delivery employing microrobotics [21,22]. Extensive
theoretical and experimental studies have indeed developed
a primary insight of the underlying physics in the clean
systems [13–17,23–27]. However, heterogeneity is inevitable
in natural systems [28], e.g., bacteria moving on complex
substrates [29,30], human traffic with varieties of obstacles
[31,32]. Recently, various heterogeneous systems are stud-
ied, and it is shown that usually the collective movement
of the flock gets hampered by the heterogeneities [33–39].
Surprisingly, specific type of external agents can also help in
flock formation or crowd control [40–43]. However, a generic
framework for the heterogeneous self-propelled system is
lacking in the literature which may help in understanding
varieties of flocking systems.

Study of the clean self-propelled systems using minimal
rule-based microscopic models has been successful in predict-
ing and explaining many features therein [23,44]. Inspired by
this, in this article, we propose a minimal model for a hetero-
geneous self-propelled system. The heterogeneity agents are
modeled as inertial rotators which try to retain their orienta-
tions and affect the neighboring flock. However, the flock also
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gives feedback of its orientational information to the rotators
and changes their orientations. Our numerical study reveals
that an interplay of the feedback mechanism and the inertia
of the rotators build a correlated flock which is more robust
to fluctuations than the clean system. Moreover, these rotators
memorize the flock orientation that offers a mechanism for
probing the flock statistics. We also provide a hydrodynamic
description of this minimal model. The linearized calcula-
tions show that these heterogeneities effectively increase the
convection speed that establishes the robust ordering in the
system.

II. MODEL

We consider a collection of Ns polar self-propelled par-
ticles (SPPs) on a two-dimensional (2D) substrate. These
particles are characterized by their instantaneous positions
r j (t ) and orientations θ j (t ). Each SPP tries to orient parallel
to its neighbors, although it makes errors. The particles move
along their updated orientations with a constant speed vs.
The substrate is also populated with Nr randomly placed
nonquenched rotators (NRs). The NRs remain stationary and
have their own orientations φ j (t ). The jth NR influences its
neighboring SPPs and tries to reorient those SPPs along φ j . In
turn, the flock of the SPPs also tries to reorient the NR along
the mean flock-orientation. However, the effect of the SPPs on
a NR is suppressed by its inertia, as the NR tries to retain its
earlier orientation. Therefore, the model is described by the
following update rules:

θ j (t + 1) = arg

[∑
k∈R

eiθk (t ) + μ
∑
k∈R

eiφk (t )

]
+ ηθψθ , (1)

r j (t + 1) = r j (t ) + v j (t + 1), (2)

φ j (t + 1) = arg

[
eiφ j (t ) + α

∑
k∈R

eiθk (t )

]
, (3)
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where arg[z] represents the argument � of z = Rei�. The self-
propulsion velocity v = vs[cos θ (t ), sin θ (t )], R represents the
interaction radius, and summations are considered over all
neighbors within R. The mutual interactions among the SPPs
and the NRs are tuned by the strengths μ and α. We choose
these two parameters mutually independent due to the lack
of momentum conservation in the dry active systems [13].
Errors in the process of orientation update of the SPPs are
incorporated by an uniform additive noise ψθ in the range
[−π, π ] with zero mean and white correlations. ηθ ∈ [0, 1]
represents the noise strength. The rotators are called non-
quenched as their orientations are changed by feedback of the
flock-orientations.

The effect of the neighboring particles on a tagged SPP
(NR) is schematically presented in Fig. 1. For an arbitrary
configuration shown in the top panel of Fig. 1(a) [respectively,
Fig. 1(b)], the effective interactions are depicted in the bottom
panel after properly tuned by μ (respectively, α). Due to the
interactions with the neighbors, the orientation of the tagged
particle would be updated towards the resultant direction,
as represented by the black arrow. We evidence that due to
the presence of the NRs, a robust coordination is developed
among the SPPs. The corresponding mechanism is depicted
in the schematic Fig. 1(c), which we discuss in Sec. III A.

The above model is similar to the celebrated Vicsek model
[23] in the absence of the NRs, and it describes a clean flock
where a true long-range order (LRO) exists in 2D [24,25].
Also note that the rotators become quenched for α = 0, and
therefore, no long-range order but a quasi-long-range order
(QLRO) may survive in the system [37–39].

III. RESULTS

A. Robust long-range order

We simulate the update Eqs. (1)–(3) numerically in a L × L
(L ∈ [100, 500]) substrate with periodic boundaries. Ns SPPs
(density cs = Ns/L2 = 1) and Nr NRs (density cr = Nr/L2)
with random orientations are distributed on the substrate. As
we are interested in the physical limit where heterogeneities
are small in numbers as compared to the SPPs, we restraint
ourselves to cr ∈ [0, 0.045]. Further, we consider vs = 1 and
R = 1, and execute a code exploiting OpenMP application
program interface. We note that depending on the system size,
3 × 105 to 16 × 105 iterations are sufficient to attain steady
states, and we calculate the relevant quantities by averaging
over next 5 × 105 to 14 × 105 iterations. Up to 30 realizations
are used for better statistics. The order parameter of the SPPs
Vs = 〈Vs(t )〉t = 〈 1

Ns
| ∑Ns

j=1 eiθ j (t )|〉t varies from zero to unity
for a disordered to an ordered state, respectively.

The clean system (cr = 0) shows a monotonic order-
disorder transition with increasing ηθ [Fig. 2(a)]. However,
in the presence of the quenched rotators (α = 0), the system
achieves optimal ordering at a nonzero ηθ . This optimality
feature emerges as the quenched rotators disturb transfer of
information among the SPPs, and the system needs a certain
noise to circumvent that hindrance [34,37]. As the optimal ηθ

increases with μ, we set μ = 200 such that the optimal ηθ at-
tain moderate values for the studied range of cr . In contrast to
the quenched model, the system shows a monotonic transition

FIG. 1. Schematic of interaction among flocks and NR. (a) Top—
A test SPP (“1”) interacts with its neighbors (“2, 3, 4”) within
a distance R. Bottom—Vectorial representation of the orientation
update rule of the SPP (“1”). The SPP-NR (“1”–“4”) interaction
is tuned by μ. The dashed line shows the resultant orientation
and the black arrow on it represents the corresponding unit vector.
(b) Similar presentation for the orientation update of a test NR
(“5”). The NR-SPP interactions are tuned by α. (c) Two subflocks
(A—broken square; B—solid square) of SPPs and a NR (broken
hexagon) are considered in an arbitrary 2D space at time t1. The
patterns (striped, checkered, and solid) inside the geometries indicate
information therein. All the information is called pure at t1. As A
and NR are nearby at t1, they interact mutually through μ and α

terms, and meanwhile B remains reclusive. During interactions, A
and NR exchange information as per the values of μ and α. A
passes by the NR outside its interaction range by t2. By that time, B
comes close to NR and interact mutually. Consequently, NR receives
information of B, and transfer its current information (which also
contains information of A) to B, as depicted for a late time t3.
Other than direct interactions among A and B, this extra means of
information transfer through the inertia of NR establishes ordering
robust than the clean system. Also, NR acts as probe to the flocks as
it memorizes information of the flocks.

for α > 0 in the presence of the NRs. Similar to the clean case
[23,26], we note a homogeneous ordered state of SPPs in the
presence of the NRs for noises much smaller than its critical
value for the order-disorder transition. We also note that
banded configuration emerges near the critical noise where a
highly ordered dense cluster of SPPs travels over disordered
sparse background [26,45]. Surprisingly, the system with the
NRs survives up to ηθ higher than its clean counterpart, as the
zoomed version of Fig. 2(a) shows. This necessarily implies
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FIG. 2. Robust ordering due to NRs. The data are shown for
μ= 200. (a) The SPPs show monotonic order-disorder transition
with ηθ in the presence of the NRs (cr = 0.01, α = 1), similar
to the clean system (cr = 0). Unlike that, the quenched model
(cr = 0.004, α = 0) shows nonmonotonic transition. The curves are
zoomed near the transition on the right panel of (a). (b) Critical noise
ηc

θ increases with L. The numerics on the left margin indicate cr , and
the dashed lines show respective quadratic fits. The thermodynamic-
limit value ηc

θ (L → ∞) of the critical noise is obtained from the
extrapolation. (c) ηc

θ (L) increases quadratically with density cr . The
broken lines show respective fits. Order and disorder states of the
SPPs are indicated for the thermodynamic limit.

that the flock is more robust to the external fluctuations (ηθ ) as
compared to the clean system. To ensure this emerged robust-
ness, we calculate the critical noise ηc

θ of the order-disorder
transition and compare it for several cr . The Binder cumulant
[26,45,46] U (L) = 1 − 〈V 4

s (t, L)〉t/3〈V 2
s (t, L)〉t shows a dip

to negative values near the transition (Appendix A). We define
ηc

θ as the noise corresponding the min[U (L)]. We check that
reduced critical noise ε = 1 − ηc

θ /η
cL
θ scales as L−ζ , where

ηcL
θ represents critical noise obtained for L = 400 (data not

shown). We note that the finite size scaling (FSS) exponent
ζ = 2 for the clean system, as reported in Ref. [26], and
the exponent increases for cr > 0. Though it is interesting
to check the variation in ζ with cr , a rigorous FSS study of
the present Vicsek-like model with angular noise [26] is nu-
merically expensive and beyond our current objective. Rather,
we note that ηc

θ increases quadratically with decreasing 1/L
[Fig. 2(b)]. So, the thermodynamic limit values ηc

θ (L → ∞)
of the critical noises are obtained from extrapolations of
these curves to the L → ∞ limit. Interestingly, ηc

θ (L → ∞)
increases quadratically with cr [Fig. 2(c)], and therefore, the
NRs indeed offer a mechanism for a flock to be more robust
than the clean system. We also plot the ηc

θ -cr curve for L =
400 for comparison, and note similar behavior as explained
for the thermodynamic limit.

The order parameter of the clean system does not depend
on the system size [Fig. 3(a)] which is a manifestation of the
LRO therein [23–25,37]. We also note that in the presence

FIG. 3. LRO in the presence of NRs. The data are shown for
μ = 200 and ηθ = 0.15. (a) The SPP-order parameter does not vary
with system size for the clean system (cr = 0) or the system with the
NRs (cr = 0.01, α = 1). However, in the presence of the quenched
rotators (cr = 0.004, α = 0), the order parameter decreases alge-
braically. The lines show respective algebraic fits. (b) The orientation
distribution of the SPPs do not depend on the system size in the
presence of the NRs, whereas the distribution broadens with L for
the quenched model.

of the quenched rotators, Vs decreases algebraically with Ns,
implying a QLRO state in the system [37–39]. However, Vs

does not change with Ns in the presence of the NRs. Moreover,
the order parameter in the presence of the NRs is larger than
clean system. Therefore, similar to the clean system, a LRO
exists in the presence of the NRs, and that state is more
robust than the clean system. The nature of the ordered state
is further confirmed by calculating a normalized distribution
P(θ ) of the SPP-orientations for various system sizes [37].
This distribution is a measure of the orientation fluctuations
among the SPPs, and it does not vary with the system size in
the presence of the NRs [Fig. 3(b)]. However, P(θ ) widens
with system size in the quenched model as there exists a
QLRO only [37].

The mechanism that makes the LRO state more robust
than the clean system can be understood from the schematic
Fig. 1(c) drawn on an arbitrary 2D space. Two subflocks A
and B, and a NR have their pure orientational information at
time t1, as represented by the patterns striped, checkered, and
solid, respectively. While B is away from the NR, A and NR
interact mutually through the μ- and α-terms and exchange
information. Therefore, at a later time t2, A and NR contain
both the pure information (striped and solid) corresponding
to time t1. The proportion of this exchange is determined
by the parameters μ and α. However, by that time A moves
beyond the interaction range of the NR, and B comes close
to the same NR. Due to a similar kind of interaction through
μ and α, the NR now receives the pure information of B
(checkered). In turn, B receives the pure information of A
(striped) even without any direct interaction, as shown in the
schematic for time t3. Therefore, in the duration of t1 to t3,
the NR has received feedback from the subflock A and later it
delivered that information to B through its inertia. In addition
to the usual convection of the SPPs [23,25], this mechanism
provides an extra means of information transfer among the
particles that induces robustness in the system. Also note that
the NR memorizes the information of the passing by flocks,
which is beneficiary for probing the flocks through these
external agents, as we discuss next.
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B. NRs probe the flock

We investigate the orientation autocorrelation of the NRs,
defined as Cφ (t ) = 〈cos [φ j (t + t0) − φ j (t0)]〉 j,t0 . Here 〈·〉
symbolizes averaging over all the NRs and many steady-state
reference times t0. Starting from an orientation φ j (t0), jth NR
changes its orientation due to the feedback from the flocks.
Therefore, Cφ shows an early time decay, and beyond that
it saturates to the square of the order parameter Vr of the
NRs. Vr is defined similar to Vs. The early time decay in
Cφ indicates the timescale up to which a NR remembers its
earlier orientation. This timescale is necessarily dictated by α,
as Eq. (3) suggests. Vr depends on ηθ through the feedback
from the flock, and also on α. However, Vs does not change
significantly with α, provided α > 0. Therefore, we stress that
the flock-phenomenology described here and its implications
hold for any finite value of α. The results presented in this
article are obtained for α = 1.

We note that Cφ shows periodic modulations over its
saturated value [Fig. 4(a)]. This is more prominent near the
order-disorder transition where band emerges in the system
[Figs. 4(b)–4(g)] [26,47,48]. The modulations in Cφ offer a
mechanism of probing the statistics of the flock. Let us con-
sider a banded-state configuration at a reference time t0 when
all the NRs have their initial orientations φ j (t0) [Fig. 4(b)].
The NRs inside the band have a spatially correlated distribu-
tion of orientations due to the feedback from the correlated
SPPs. However, the NRs outside the band have random φ j (t0).
Though φ j changes as the band moves forward, the same NRs
that are still inside the band [Fig. 4(c)] remains correlated
to their initial orientations. The rest of the NRs yield a zero
contribution to Cφ as they have been averaged over random
terms. Therefore, we obtain a finite Cφ in aggregate. The band
moves further in the course of time [Figs. 4(d) and 4(e)], and
there exists no finite contribution to Cφ until the band-front
reaches (due to periodic boundary condition) the region of the
band-tail of time t0 [Fig. 4(e)]. Cφ again becomes finite with
time [Fig. 4(f)], and it is the maximum when the band reaches
the same position as t0 [Fig. 4(g)]. Following this, the same
dynamics continues. Therefore, the peak-to-peak separation τ

in Cφ modulations [Fig. 4(b)] is the time required by the flock
(density wave) to traverse the system once (Supplemental
Material movie [49]). We obtain the flock (band) speed v f

from the ratio of L and τ . The modulations in Cφ shows good
fit with Gaussian curves [Fig. 4(a)]. Standard deviation σ of
the Gaussian fit multiplied by v f shows a linear decay with ηθ

[Fig. 4(h)]. Note that σv f is a NR-property that should give a
measure of the width of the band, as the finite contributions to
Cφ are due to the band. Next, we verify that σv f indeed bears
the information of the band.

We divide the whole substrate into L strips of unit width
parallel to the band. The ratio of the number of SPPs inside
a strip to L gives the local density cloc

s therein. The lateral
dimension for which cloc

s > cs is defined as the bandwidth,
which is similar to the length between the black vertical
lines in Fig. 4(b). We calculate the mean bandwidth Wb

averaged over many snapshots and see that Wb decreases
linearly with ηθ with the same slope as σv f Vs/Vr versus ηθ

curve [Fig. 4(h)]. Therefore, σv f which is a NR-property
indeed bears the flock information, and the NRs act as
footprints of the passed-by flock. Note that Wb is calculated

FIG. 4. Flock information is stored in the NRs. The data are
shown for μ = 200. (a) Autocorrelation function Cφ of the NRs
(cr = 0.01, α = 1, L = 300) are shown at the late time, t0 being the
reference steady-state time. Cφ shows modulations over its saturated
value V 2

r , and these modulations are prominent near the critical point
(ηθ = 0.45) where band emerges. The solid line shows Gaussian fit to
these modulations, and the labels correspond to the snapshots shown
in panels (b–g). The snapshots are shown for a zoomed substrate of
dimension 300 × 100 for clarity. The black circles indicate the NRs
(only few shown), and the colors represent orientations of the SPPs
and the NRs. Separation in the black vertical lines in panel (b) gives
an estimate of the bandwidth Wb. Cφ assumes a finite value only if the
current position of the band overlaps to that in panel (b). (h) Wb and
σv f Vs/Vr decreases with ηθ with the same slope. Here the flock speed
v f = L/τ where τ is the peak-to-peak separation of Cφ modulations.

considering clustering of the SPPs, whereas σv f contains
information of the ordering in the system. Therefore, we need
the multiplication factor—relative strength of order of the
SPPs and the NRs (Vs/Vr) to compare a NR-property σv f

with a flock-property Wb.
Note that the bands may arise in any direction. However,

we present the case of the lateral bands only, and emphasize
that the same argument holds for other band-directions. Also
note that similar modulations in Cφ are present in any non-
banded ordered state, as shown for ηθ = 0.10 in Fig. 4(a).
However, we present our argument for the banded state only
as band provides a precise measure of the relevant length
and timescales of the flock dynamics. Therefore, the flock
information can be obtained from the modulations in Cφ

of the NRs, where the amplitude and the frequency of the
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modulations are set by the ordering and the extent of the
flock.

C. Hydrodynamic description

We develop a hydrodynamic framework for the non-
quenched model described above. The relevant slow fields of
the system with the NRs are (i) density ρ(r, t ) of the SPPs, (ii)
polarization P(r, t ) of the SPPs, and (iii) polarization Pr (r, t )
of the NRs. The density ρr of the NRs is considered uniform
as they are immobile and randomly distributed. Following
the phenomenology of the system, we write the hydrody-
namic equations of motion (EOMs) for the slow variables as
follows:

∂tρ = −vs∇ · (ρP) + Dρ∇2ρ, (4)

∂t P = {α1(ρ) − β1|P + Pr |2}P + λ1(P · ∇)P (5)

− vs

2ρ
∇ρ + D∇2P + γ1ρPr,

∂t Pr = γ2ρrP − β2|P + Pr |2Pr . (6)

The density ρ of the SPPs being a globally conserved quan-
tity, Eq. (4) represents a continuity equation, however, with
an active current contribution [25]. Here vs represents self-
propulsion speed, and Dρ is the diffusion coefficient. As the
ordering of the NRs affects the the SPPs, the mean-field term
within the curly brackets in Eq. (5) contains both P and
Pr . We have considered only the λ1 convective term as this
is the most relevant convective nonlinearity [25,37–39]. The
coefficient of the pressure term due to fluctuation in ρ is taken
vs for simplicity. Equation (5) is written under equal-elastic-
constant approximation [50]. The Pr term in Eq. (5) represents
the feedback of the NRs to the SPPs that indeed depends on
the density of the SPPs. Similar to this feedback term, the
feedback of the SPPs to the NRs is represented by the first
term on the right hand side of Eq. (6). The β2 term in Eq. (6)
stabilizes Pr in the steady state.

1. Mean-field study

Let us first consider a broken symmetry steady state such
that a homogeneous solution of Eqs. (4)–(6) is given by
ρ = ρ̄, P = P‖̂, and Pr = Pr ‖̂. Here ‖̂ is the unit vector along
the broken symmetry direction, and ⊥̂ is normal to that. For
this homogeneous steady state, we obtain Pr = BP, where
B = β1γ2ρr/α1(ρ̄)β2 (see Appendix B). Using this expression
for Pr , we get

P2 = α1(ρ̄ )

β1
× 1 + γ1ρ̄B/α1(ρ̄)

(1 + B)2
. (7)

Note that B = 0 for the clean system, and therefore the order
parameter is P = √

α1(ρ̄)/β1. Therefore, the order parameter
P of the SPPs in the presence of the NRs is greater than its
value P in the clean system, provided γ1ρ̄ − β1γ2ρr/β2 >

2α1(ρ̄ ), which indeed holds for an ordered state [α1(ρ̄) > 0].
This necessarily implies a positive shift in the critical point,
and therefore validates the existence of a more robust ordered
state in the presence of the NRs.

FIG. 5. NRs increase sound-mode speeds. (a) The effective dif-
fusivity D‖ decreases and (b) the factor X increases with increasing
density ρr of heterogeneity. The changes are more dominant for
smaller α1(ρ̄), i.e., near the transition. Legends are the same in panels
(a) and (b). (c) c+(ϕ) is plotted in polar coordinates for various α1(ρ̄)
and ρr , and its zoomed version is shown in panel (d). The numerics
adjacent to the radial and the angular grids indicate respective values,
and help to realize the magnification in panel (d) as compared to
panel (c). Panels (c) and (d) share the same legends. The mode speed
increases with ρr along the flock direction, which is more prominent
for small α1(ρ̄ ).

2. Linearized hydrodynamics

Beyond the mean-field calculations, we consider small
fluctuations in the slow fields:

ρ = ρ̄ + δρ, P = (P + δP‖, δP⊥),

Pr = (Pr + δPr‖, δPr⊥). (8)

Simplifying the hydrodynamic EOMs under linearized ap-
proximation and solving for the fluctuations δP‖, δPr‖, and
δPr⊥, we obtain equations for δρ and δP⊥ as

∂tδρ = (D‖∂2
‖ + Dρ∂

2
⊥)δρ− XvsP∂‖δρ − vsρ̄∂⊥δP⊥, (9)

∂tδP⊥ = D∇2δP⊥ + λ1 P∂‖δP⊥ − vs

2ρ̄
∂⊥δρ, (10)

where

D‖ = Dρ + v2
s

2(α′
1 − A′)

, X = 1 + γ1Bρ̄

α′
1 − A′ . (11)

Here D‖ is an effective diffusivity and the factor X tunes
the convective speed. In the clean system, D‖ = Dρ +
v2

s /4α1(ρ̄) = D and X = 1 = X . For a finite ρr , D‖ < D, and
X > X , as shown in Figs. 5(a) and 5(b) (also see Appendix C).
Therefore, the presence of the NRs reduces the effective
diffusivity in the ‖ direction and also increases the convective
speed. These two modifications in the physical parameters are
responsible for faster transfer of information among the SPPs.
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Solving Eqs. (9) and (10) in Fourier space [25,37], we
obtain two sound modes of the fluctuations as

ω± = c±(ϕ)q − i�ρ

[
v±(ϕ)

2c2(ϕ)

]
− i�P

[
v∓(ϕ)

2c2(ϕ)

]
. (12)

Here ϕ is the angle between the wave vector q and the broken-
symmetry direction so that q = (q cos ϕ, q sin ϕ), and

c2(ϕ) =
√

1
4 (Xvs + λ1)2P2 cos2 ϕ + 1

2v2
s sin2 ϕ, (13)

c±(ϕ) = 1
2 (Xvs − λ1)P cos ϕ ± c2(ϕ), (14)

v±(ϕ) = c2(ϕ) ± 1
2 (Xvs − λ1)P cos ϕ. (15)

The wave-vector dependent dampings are �ρ (q) = D‖q2
‖ +

Dρq⊥ and �P(q) = Dq2. The sound speeds c±(ϕ) differ mu-
tually by a phase shift as c+(ϕ) = −c−(ϕ + π ). In Figs. 5(c)
and 5(d) we plot c+(ϕ) in polar coordinates for different
values of α1(ρ̄). For comparison we also plot c+ for the clean
system. Clearly, c+(ϕ) is larger for finite ρr , and the effect is
the most dominant for ϕ = 0. Also note that smaller the value
of α1(ρ̄), i.e., as we approach close to the critical point, more
the change in sound speed. Therefore, the effect of the NRs are
more prominent near the transition, as we have shown earlier
in Fig. 2(a).

D. Fluctuations in the NRs change the scenario

We also study the effect of an additive noise in the φ-
update. Contrary to Eq. (3), the modified update rule for φ

reads

φ j (t + 1) = arg

[
eiφ j (t ) + α

∑
k∈R

eiθk (t )

]
+ ηφψφ. (16)

The inclusion of this additional noise introduces randomness
in the SPP-dynamics through the feedback and inertia mech-
anism discussed above. Consequently, the optimality feature
analogous to the quenched model emerges in the system.
The optimal ηθ for this modified model decreases linearly
to zero as ηφ approaches zero. This verifies the claim of
a monotonic order-disorder transition in the nonquenched
model discussed previously in this article. We also note that
Vs decreases quadratically with 1/Ns for this modified model,
and an extrapolation of the quadratic fit suggests a finite Vs in
the thermodynamic limit. Therefore, we stress that the system
remains in the LRO state for a finite ηφ . We have discussed
this phenomenology in details in Appendix D.

IV. DISCUSSION

In summary, we study a polar self-propelled system with
nonquenched rotators using a minimal rule-based microscopic
model, and provide a hydrodynamic description of it. Al-
though the self-propelled systems like a collection of bacteria
or human crowds differ in their specific details [1–8], in
general they follow common symmetries and conservation
laws [15]. Usually microscopic models [23,44] are prolific
in illustrating the common features of these systems, and
hydrodynamic frameworks developed on the basis of the
microscopic models make the descriptions more general.

In our model both the self-propelled particles (SPPs) and
the rotators feedback each other their orientational informa-
tion. As the rotators memorize the passed-by subflock of SPPs
and transfer that information to the next subflock, they offer
an additional means of information transfer. Consequently,
these rotators establish a long-range-order flock more robust
than the clean system. Note that in the absence of the in-
ertia term in Eq. (3), a rotator “forgets” the information of
a passed-by flock immediately, and therefore, the reported
robustness vanishes. The hydrodynamic framework of the
nonquenched model verify the enhanced ordering using mean-
field calculations. Further, considering linear fluctuations on a
homogeneous ordered state, we show that the nonquenched
heterogeneities decrease the effective diffusivity along flock-
orientation that suppresses the fluctuations. Also, the het-
erogeneities increase the sound-mode speed which makes
the transfer of information faster. These general results can
be equally applicable to large social gatherings with similar
nonquenched heterogeneities, and tuning the heterogeneities
the panic or stampede like situations can be controlled.

Interestingly, the rotators store the information of the
passed-by flock. Therefore, by probing a less number of
heterogeneity agents, we can investigate the flock-statistics, as
we have done by comparing the rotator-autocorrelation with
the ordering and extent of the flock. This offers a mechanism
for monitoring large crowd, alternative to bluetooth- or GPS-
based methods [51–53].
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APPENDIX A: DETERMINING ηc
θ FROM

BINDER CUMULANT

We calculate Binder cumulant U (L) for various system
sizes. U (L) assumes values 2/3 and 1/3, respectively, deep
in the ordered and disordered states, as is expected for
a 2D model with continuous rotational symmetry [26,45].
However, it dips to negative values near the transition, as
shown in Fig. 6, and it indicates the discontinuous nature
of the transition. We assume the noise corresponding to the
minimum of U (L) as ηc

θ (L) which is expected to converge to
the critical noise [26]. Note that ηc

θ (L) increases with L, which
we fit using quadratic function as shown in Fig. 2(b).

APPENDIX B: MEAN-FIELD HYDRODYNAMICS

Considering a broken symmetry homogeneous steady-state
solution of the hydrodynamic EOMs, as provided in the main
text, and solving for the modulus P and Pr of the order
parameter fields, we obtain

α1(ρ̄)P + γ1ρ̄Pr = β1(P + Pr )2P, (B1)

(P + Pr )2 = γ2ρrP

β2Pr
. (B2)

012607-6

https://newweb.bose.res.in/departments/TUECMS/index.html


NONQUENCHED ROTATORS EASE FLOCKING AND … PHYSICAL REVIEW E 101, 012607 (2020)

FIG. 6. Critical noise ηc
θ increases with L. Binder cumulants are

shown for cr = 0.008, μ = 200, and α = 1, and zoomed near their
minima for the sake of clarity.

Plugging the expression for (P + Pr )2 from Eq. (B2) into
Eq. (B1), we obtain

Pr = BP, where B = β1γ2

α1(ρ̄)β2
ρr . (B3)

Using Eq. (B3), we obtain the expression for P2, as in Eq. (7).
This expression suggests enhance in the robustness of the
system in the presence of the NRs.

APPENDIX C: LINEARIZED HYDRODYNAMICS

We consider fluctuations in the slow fields, as written in the
main text. Incorporating these fluctuations in the EOM for Pr ,
and writing it for the ‖ and ⊥ components up to linear order
in B, we obtain

δPr‖ = AδP‖, where A = γ2ρr − 2β2BP2

β2(1 + 4B)P2
, (C1)

and

δPr⊥ = BδP⊥. (C2)

Similarly, writing the EOM for P for the ‖ components and
neglecting the higher-order terms in fluctuations and deriva-
tives, we get

δP‖ = 1

α′
1 − A′

(
γ1BP − vs

2ρ̄
∂‖

)
δρ, (C3)

where

α′
1 = −α1(ρ̄) + β1(1 + B)2P2 + 2β1(1 + B)P2, (C4)

A′ = {γ1ρ̄ − 2β1(1 + B)P2}A. (C5)

Note that, α′
1 = 2α1(ρ̄) and A′ vanishes for the clean system,

and therefore, Eq. (C3) takes the familiar form as in Ref. [25].
Now as we have obtained the expressions for the fluctua-

tions δP‖, δPr‖, and δPr⊥, we solve for fluctuations δP⊥ and
δρ. Plugging the above expressions into the ρ Eq. (4), we

obtain

∂tδρ = (
D‖∂2

‖ + Dρ∂
2
⊥
)
δρ − XvsP∂‖δρ − vsρ̄∂⊥δP⊥. (C6)

Also, writing the P Eq. (5) for the ⊥ components up to linear-
order terms in fluctuations and simplifying it, we obtain

∂tδP⊥ = D∇2δP⊥ + λ1P∂‖δP⊥ − vs

2ρ̄
∂⊥δρ. (C7)

Following the customary, we write Eqs. (C6) and (C8) in the
Fourier space. Given a function u(r, t ), its Fourier transform
in space and time is defined as

u(q, ω) =
∫ ∞

−∞
dtdreiωt e−iq·ru(r, t ). (C8)

Using this definition, we can write the EOMs for the fluctua-
tions as

M� = O, (C9)

where the fluctuation vector

� =
(

δρ(q, ω)
δP⊥(q, ω)

)
(C10)

and O represents the null vector. The coefficient matrix is
given by

M(q, ω) =
[
i
(
ω −XvsPq‖

) − �ρ −ivsρ̄q⊥
ivsq⊥/2ρ̄ −i

(
ω + λ1Pq‖

) + �P

]
.

(C11)

FIG. 7. ηφ-term introduces fluctuations in the system. (a) Vs

versus ηθ plot is shown for cr = 0.01, α = 1, and various ηφ . The
SPPs obtain optimal ordering at a finite ηθ in the presence of the ηφ-
term. The curves are obtained near the optimal point only, and the
maximum Vs suggests respective η

opt
θ . (b) η

opt
θ varies linearly with ηφ .

The dashed line represents the extrapolation which verifies η
opt
θ = 0

for ηφ = 0. (c) Variation in Vs with system size is shown on semilog
scale for cr = 0.01, α = 1, and ηφ = 1. The solid lines show fits
quadratic in 1/Ns and have finite intercepts in the thermodynamic
limit.
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We obtain the normal modes of Eq. (C10) by solving
Det[M] = 0. This eventually gives a quadratic equation ω2 +
bω + c = 0, where

b = (λ1 − Xvs)Pq‖ + i(�P + �ρ ),

c = −λ1XvsP
2q2

‖ − v2
s

2
q2

⊥ − �P�ρ

+ i(λ1�ρ − Xvs�P )Pq‖.

The solution of this quadratic equation gives two sound modes
ω± with the convection speeds c±, as discussed in the main
text.

APPENDIX D: FLUCTUATIONS IN THE ROTATOR
UPDATE INTRODUCES RANDOMNESS IN THE SYSTEM

Inclusion of the noise term ηφψφ in the update Eq. (3)
of NR-orientation induces the optimality feature, as the sys-
tem attains the optimal ordering for a finite ηθ [Fig. 7(a)].
The extra noise term in the φ-update equation introduces

randomness in the system that hinders mutual communi-
cations among the subflocks. Therefore, Vs decreases with
increasing ηφ [Fig. 7(a)]. Provided the system has a finite ηθ ,
the system overcomes the hindrance due to ηφ and attains the
optimal order. The optimal noise η

opt
θ increases linearly with

ηφ [Fig. 7(b)]. An extrapolation of the linear fit ensures the
monotonic order-disorder transition for ηφ = 0.

Note that inclusion of the ηφ-term makes φ behave like a
color noise to the SPP-orientation. As easily understood from
the φ-update rule, the autocorrelation of φ varies as 1/η2

φ for
α = 0. This sets in a timescale in the system that inhibits us to
obtain a true steady state in a reasonable cpu-time. However,
for a finite α, the NRs suppress the effect of the color noise
and we obtain steady-states. We show the variation in Vs with
system size for α = 1 and the maximum noise ηφ = 1 in
Fig. 7(c). We note that Vs varies quadratically with 1/Ns, and
the corresponding fits give finite Vs as 1/Ns = 0. Moreover,
note that the fluctuation in Vs decreases systematically with
system size. Therefore, we argue that for finite α and finite ηφ ,
the system will obtain a long-range order state; however, the
presence of the ηφ-term inhibits us to find it unambiguously.
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