List of Figures

Page No.

Fig. 1.1 Trajectories starting from two nearby points.
Fig. 1.2 Stability region of linear fractional-order system with order q.
Fig. 2.1 Phase portraits of fractional order Vallis system for fractional order $q=0.97$.

Fig. 2.2 Phase portraits of fractional order Vallis system for fractional order $q=0.981$.

Fig. 2.3 Plots of $x(t), y(t), z(t)$ of the controlled system (2.7): (a) at equilibrium point E_{1}; (b) at the equilibrium point E_{2}; (c) at the equilibrium point E_{3}; (d) plots of control functions $u_{1}(t), u_{2}(t), u_{3}(t)$ at E_{1}.

Fig. 2.4 Phase portraits of fractional order El-Nino system for fractional order $q=0.93$.

Fig. 2.5 Phase portraits of fractional order El-Nino system for fractional order $q=0.934$.

Fig. 2.6 Plots of $x(t), y(t), z(t)$ of the controlled system (2.17): (a) at equilibrium point P_{1}; (b) at the equilibrium point P_{2}; (c) at the equilibrium point P_{3}; (d) plots of control functions $u_{1}(t), u_{2}(t), u_{3}(t)$ at P_{1}.

Fig. 2.7 State trajectories of master system (2.19) and slave system (2.20) for fractional order $q=0.7$: (a) synchronization between x_{1} and x_{2}; (b) synchronization between y_{1} and y_{2}; (c) synchronization between z_{1} and z_{2}; (d) the evolution of the
error functions $e_{1}(t), e_{2}(t)$ and $e_{3}(t)$.
Fig. 2.8 State trajectories of the systems (2.19) and (2.20) for fractional order $q=0.9$: (a) synchronization between x_{1} and x_{2}; (b) synchronization between y_{1} and y_{2}; (c) synchronization between z_{1} and z_{2}; (d) the evolution of the error functions $e_{1}(t), e_{2}(t)$ and $e_{3}(t)$.

Fig. 2.9 State trajectories of the systems (2.19) and (2.20) for order $q=0.981$: (a) synchronization between x_{1} and x_{2}; (b) synchronization between y_{1} and y_{2}; (c) synchronization between z_{1} and z_{2}; (d) the evolution of the error functions $e_{1}(t), e_{2}(t)$ and $e_{3}(t)$.

Fig. 2.10 State trajectories of the systems (2.19) and (2.20) for $q=1$: (a) synchronization between x_{1} and x_{2}; (b) synchronization between y_{1} and y_{2}; (c) synchronization between z_{1} and z_{2}; (d) evolution of the error functions $e_{1}(t), e_{2}(t)$ and $e_{3}(t)$.

Fig. 3.1 Phase portraits of Lu hyperchaotic system for $q=0.95$: (a) in $x_{1}-x_{2}-x_{3}$ space; (b) in $x_{1}-x_{2}-x_{4}$ space.

Fig. 3.2 Phase portraits of 4D Integral order hyperchaotic system for $q=0.95:$ (a) in $y_{1}-y_{2}-y_{3}$ space; (b) in $y_{1}-y_{2}-y_{4}$ space.

Fig. 3.3 Phase portraits of Lu hyperchaotic system with uncertainties and disturbances for $q=0.95$: (a) in $x_{1}-x_{2}-x_{3}$ space; (b) in $x_{1}-x_{2}-x_{4}$ space.

Fig. 3.4 Phase portraits of 4D Integral order hyperchaotic system with uncertainties and disturbances for $q=0.95$: (a) in $y_{1}-y_{2}-y_{3}$ space; (b) in $y_{1}-y_{2}-y_{4}$ space.

Fig. 3.5 Phase synchronization for signals: (a) between x_{1} and y_{1}; (b) between x_{2} and y_{2} (c) between x_{3} and y_{3}; (d) between x_{4} and y_{4}; (e) The evolution of the error functions of uncertain hyperchaotic systems; (f) The evolution of the error functions of hyperchaotic systems, for fractional order derivative $q=0.95$.

Fig. 3.6 Anti-phase synchronization for signals: (a) between x_{1} and y_{1}; (b) between x_{2} and y_{2}; (c) between x_{3} and y_{3}; (d) between x_{4} and y_{4}; (e) The evolution of the error functions of uncertain hyperchaotic systems; (f) The evolution of the error functions of hyperchaotic systems, for fractional order derivative $q=0.95$.

Fig. 4.1 Phase portraits of the complex Lorenz system for the order of derivative $q=0.95$.

Fig. 4.2 Phase portraits of the complex Lu system for the order of derivative $q=0.95$.

Fig. 4.3 The evolution of the error functions at $q=0.95$: (a) evaluation of $e_{1}^{\prime}(t)$; (b) evaluation of $e_{2}^{\prime}(t)$; (c) evaluation of $e_{3}^{\prime}(t)$; (d) evaluation of $e_{4}^{\prime}(t)$; (e) evaluation of $e_{5}^{\prime}(t)$.

Fig. 5.1 Phase portraits of fractional order T-system for fractional order $q=0.95$.

Fig. 5.2 Phase portraits of fractional order T-system for fractional order

$$
q=0.94 .
$$

Fig. 5.3 Plots of $x(t), y(t), z(t)$ of the controlled system (5.8): (a) at equilibrium point E_{1}; (b) at the equilibrium point E_{2}; (c) at the equilibrium point E_{3}.

Fig. 5.4 Phase portrait of the Lorenz system for the order of derivative $q=0.993$.

Fig. 5.5 State trajectories of error functions $e_{1}(t), e_{2}(t)$ and $e_{3}(t)$ of master system (5.12) and slave system (5.13) for fractional order $q=0.993$.

Fig. 6.1 Phase portraits of fractional order (a) Newton-Leipnik system; (b) Liu system; (c) Lotka-Voltra system; (d) Chen system for the order of derivative $q=0.95$.

Fig. 6.2 Combination synchronization among three fractional order chaotic systems (6.5), (6.6) and (6.7) for fractional order $q=0.95$: (a) between $x_{1}(t)+z_{1}(t)$ and $y_{1}(t)$; (b) between $x_{2}(t)+z_{2}(t)$ and $y_{2}(t)$; (c) between $x_{3}(t)+z_{3}(t)$ and $y_{3}(t)$; (d) the evaluation of error functions $e_{1}(t), e_{2}(t)$ and $e_{3}(t)$.

Fig. 6.3 Combination synchronization among four fractional order chaotic systems (6.5), (6.6), (6.7) and (6.8) for fractional order $q=0.95$: (a) between $x_{1}(t)+y_{1}(t)+z_{1}(t)$ and $w_{1}(t)$; (b) between $x_{2}(t)+y_{2}(t)+z_{2}(t)$ and $w_{2}(t)$; (c) between $x_{3}(t)+y_{3}(t)+z_{3}(t)$ and $w_{3}(t)$; (d) the evaluation of error functions $e_{1}(t), e_{2}(t)$ and $e_{3}(t)$.

Fig. 6.4 The evaluation of error functions $e_{1}(t), e_{2}(t)$ and $e_{3}(t)$ at $q=1$: (a) for three systems; (b) for four systems.

136-137

Fig. 7.1 Dual synchronization scheme of complex chaotic systems.
Fig. 7.2 Phase portraits of fractional order complex T system for fractional order $q=0.94$.

Fig. 7.3 State trajectories of the master systems (7.6) and (7.7) and response systems (7.8) and (7.9) for order $q=0.96$: (a) synchronization between $k_{11} * x_{11}(t)$ and $x_{21}(t)$; (b) synchronization between $k_{12} * x_{12}(t)$ and $x_{22}(t)$; (c) synchronization between $k_{13} * x_{13}(t)$ and $x_{23}(t) ;$ (d) synchronization between $k_{14} * x_{14}(t)$ and $x_{24}(t)$; (e) synchronization between $k_{15} *_{15}(t)$ and $x_{25}(t)$; (f) synchronization between $k_{21} * y_{11}(t)$ and $y_{21}(t) ; \quad(\mathrm{g})$ synchronization between $k_{22} * y_{12}(t)$ and $y_{22}(t) ;$ (h) synchronization between $k_{23} * y_{13}(t)$ and $y_{23}(t)$; (i) synchronization between $k_{24} * y_{14}(t)$ and $y_{24}(t)$; (j) synchronization between $k_{25} * y_{15}(t)$ and $y_{25}(t)$; (k) The evolution of the error functions $e_{i j}(t), i=1,2$ and $j=1,2, \ldots, 5$.

