List of Figures

Fig. 1.1	Trajectories starting from two nearby points.	08
Fig. 1.2	Stability region of linear fractional-order system with order q .	15
Fig. 2.1	Phase portraits of fractional order Vallis system for fractional	
	order $q = 0.97$.	45
Fig. 2.2	Phase portraits of fractional order Vallis system for fractional	
	order $q = 0.981$.	45-46
Fig. 2.3	Plots of $x(t)$, $y(t)$, $z(t)$ of the controlled system (2.7): (a) at	
	equilibrium point E_1 ; (b) at the equilibrium point E_2 ; (c) at the	
	equilibrium point E_3 ; (d) plots of control functions	
	$u_1(t), u_2(t), u_3(t)$ at E_1 .	48-49
Fig. 2.4	Phase portraits of fractional order El-Nino system for fractional	
	order $q = 0.93$.	53
Fig. 2.5	Phase portraits of fractional order El-Nino system for fractional	
	order $q = 0.934$.	53-54
Fig. 2.6	Plots of $x(t)$, $y(t)$, $z(t)$ of the controlled system (2.17): (a) at	
	equilibrium point P_1 ; (b) at the equilibrium point P_2 ; (c) at the	
	equilibrium point P_3 ; (d) plots of control functions	
	$u_1(t), u_2(t), u_3(t)$ at P_1 .	55-57
Fig. 2.7	State trajectories of master system (2.19) and slave system	
	(2.20) for fractional order $q = 0.7$: (a) synchronization between	
	x_1 and x_2 ; (b) synchronization between y_1 and y_2 ; (c)	

synchronization between z_1 and z_2 ; (d) the evolution of the

error functions $e_1(t)$, $e_2(t)$ and $e_3(t)$.

- **Fig. 2.8** State trajectories of the systems (2.19) and (2.20) for fractional order q = 0.9: (a) synchronization between x_1 and x_2 ; (b) synchronization between y_1 and y_2 ; (c) synchronization between z_1 and z_2 ; (d) the evolution of the error functions $e_1(t), e_2(t)$ and $e_3(t)$. 61-62
- **Fig. 2.9** State trajectories of the systems (2.19) and (2.20) for order q = 0.981: (a) synchronization between x_1 and x_2 ; (b) synchronization between y_1 and y_2 ; (c) synchronization between z_1 and z_2 ; (d) the evolution of the error functions $e_1(t), e_2(t)$ and $e_3(t)$. 63-64
- Fig. 2.10 State trajectories of the systems (2.19) and (2.20) for q = 1: (a) synchronization between x₁ and x₂; (b) synchronization between y₁ and y₂; (c) synchronization between z₁ and z₂; (d) evolution of the error functions e₁(t), e₂(t) and e₃(t).
- Fig. 3.1 Phase portraits of Lu hyperchaotic system for q = 0.95: (a) in $x_1 - x_2 - x_3$ space; (b) in $x_1 - x_2 - x_4$ space. 74
- Fig. 3.2 Phase portraits of 4D Integral order hyperchaotic system for q = 0.95: (a) in $y_1 - y_2 - y_3$ space; (b) in $y_1 - y_2 - y_4$ space. 75
- Fig. 3.3 Phase portraits of Lu hyperchaotic system with uncertainties and disturbances for q = 0.95: (a) in $x_1 - x_2 - x_3$ space; (b) in

$$x_1 - x_2 - x_4$$
 space. 77

Fig. 3.4 Phase portraits of 4D Integral order hyperchaotic system with uncertainties and disturbances for q = 0.95: (a) in $y_1 - y_2 - y_3$ space; (b) in $y_1 - y_2 - y_4$ space.

78

Fig. 3.5 Phase synchronization for signals: (a) between x_1 and y_1 ; (b) between x_2 and y_2 (c) between x_3 and y_3 ; (d) between x_4 and y_4 ; (e) The evolution of the error functions of uncertain hyperchaotic systems; (f) The evolution of the error functions of hyperchaotic systems, for fractional order derivative q=0.95. 80-82

Fig. 3.6 Anti-phase synchronization for signals : (a) between x₁ and y₁;
(b) between x₂ and y₂; (c) between x₃ and y₃; (d) between x₄
and y₄; (e) The evolution of the error functions of uncertain hyperchaotic systems; (f) The evolution of the error functions of hyperchaotic systems, for fractional order derivative q=0.95. 84-87

- Fig. 4.1Phase portraits of the complex Lorenz system for the order of
derivative q = 0.95.94-95
- **Fig. 4.2** Phase portraits of the complex Lu system for the order of derivative q = 0.95. 96-97
- **Fig. 4.3** The evolution of the error functions at q = 0.95: (a) evaluation of $e'_1(t)$; (b) evaluation of $e'_2(t)$; (c) evaluation of $e'_3(t)$; (d) evaluation of $e'_4(t)$; (e) evaluation of $e'_5(t)$. 100-102
- Fig. 5.1Phase portraits of fractional order T-system for fractional orderq = 0.95.107-108
- Fig. 5.2 Phase portraits of fractional order T-system for fractional order

q = 0.94.

Fig. 5.3 Plots of x(t), y(t), z(t) of the controlled system (5.8): (a) at equilibrium point E_1 ; (b) at the equilibrium point E_2 ; (c) at the equilibrium point E_3 .

Fig. 5.4Phase portrait of the Lorenz system for the order of derivative
$$q = 0.993.$$
113

- Fig. 5.5 State trajectories of error functions $e_1(t)$, $e_2(t)$ and $e_3(t)$ of master system (5.12) and slave system (5.13) for fractional order q = 0.993.
- Fig. 6.1 Phase portraits of fractional order (a) Newton-Leipnik system;
 (b) Liu system; (c) Lotka-Voltra system; (d) Chen system for the order of derivative q = 0.95.
- Fig. 6.2 Combination synchronization among three fractional order chaotic systems (6.5), (6.6) and (6.7) for fractional order q = 0.95: (a) between x₁(t) + z₁(t) and y₁(t); (b) between x₂(t) + z₂(t) and y₂(t); (c) between x₃(t) + z₃(t) and y₃(t);
 (d) the evaluation of error functions e₁(t), e₂(t) and e₃(t). 129-130
- **Fig. 6.3** Combination synchronization among four fractional order chaotic systems (6.5), (6.6), (6.7) and (6.8) for fractional order q = 0.95: (a) between $x_1(t) + y_1(t) + z_1(t)$ and $w_1(t)$; (b) between $x_2(t) + y_2(t) + z_2(t)$ and $w_2(t)$; (c) between $x_3(t) + y_3(t) + z_3(t)$ and $w_3(t)$; (d) the evaluation of error functions $e_1(t), e_2(t)$ and $e_3(t)$. 135-136

108

- Fig. 6.4 The evaluation of error functions $e_1(t)$, $e_2(t)$ and $e_3(t)$ at q = 1: (a) for three systems; (b) for four systems. 136-137
- Fig. 7.1Dual synchronization scheme of complex chaotic systems.144
- **Fig. 7.2** Phase portraits of fractional order complex T system for fractional order q = 0.94. 146
- Fig. 7.3 State trajectories of the master systems (7.6) and (7.7) and response systems (7.8) and (7.9) for order q = 0.96: (a) $k_{11} * x_{11}(t)$ $x_{21}(t);$ synchronization between and (b) $k_{12} * x_{12}(t)$ $x_{22}(t);$ synchronization between and (c) $k_{13} * x_{13}(t)$ $x_{23}(t);$ synchronization between and (d) $k_{14} * x_{14}(t)$ synchronization between and $x_{24}(t);$ (e) $k_{15} * x_{15}(t)$ synchronization between $x_{25}(t);$ and (f) $k_{21} * y_{11}(t)$ $y_{21}(t);$ synchronization between and (g) between $k_{22} * y_{12}(t)$ $y_{22}(t);$ synchronization and (h) $k_{23} * y_{13}(t)$ synchronization between $y_{23}(t);$ and (i) between $k_{24} * y_{14}(t)$ synchronization and $y_{24}(t);$ (j) synchronization between $k_{25} * y_{15}(t)$ and $y_{25}(t)$; (k) The 152-154 evolution of the error functions $e_{ii}(t)$, i = 1, 2 and j = 1, 2, ..., 5.