Chapter 7

Dual function projective synchronization of fractional order
complex chaotic systems

7.1 Introduction

The concept of dynamical system is originated from Newtonian mechanics, which has
many applications in engineering. The mathematical models of a dynamical system
express the evolution of system in terms of equation of motion and initia value.
Dynamical systems are exponentially sensitive to initial condition, which is popularly
known as the butterfly effect. In 1963, E. N. Lorenz (Lorenz (1963)) found the
canonical chaotic attractor first time. The term chaos in highly associated with nonlinear
systems, which creates the occurrences of irregular solution while the equation of
motion is deterministic. Later it has been detected in a large number of dynamical
systems of various physical natures. It has been extended to the fractional order systems
by the researchers and from the literature survey it is seen that in past few years. The
area of chaotic dynamicsin fractional order systems has been growing rapidly (Podlubny

(1999), Hilfer (2001)).

The chaos synchronization problems have been studied and applied by the scientists and
engineers in many scientific and engineering fields. The results have an important role
in chaotic communications. It offers a potential advantage over non-coherent detection
in terms of noise performance and data when the basis functions are recovered from

noisy distorted received signals (Feng and Qiu (2004), Kolumban et a. (1998), Xu et a.
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(2004)). In the section 6.1, it is already mentioned that the idea of synchronization of
chaotic systems was first given by L. M. Pecoraand T. L. Carroll. They showed that
synchronization between the systems is possible through simple coupling and later the

idea was expanded in various fields of science and engineering.

Dual synchronization is a specia circumstance in synchronization in which two
different pairs of chaotic systems, i.e., two master systems and two Slave systems are
synchronized. In 1996, Tsimring and Sushchik (1996) were first investigated the idea of
multiplexing chaos using synchronization in a small map and an electric circuit model.
After this in 2000, the concept of dual synchronization was given by Liu and Davids
(2000). They introduced the dual synchronization of 1-D discrete chaotic systems. In
2003, Uchida et a. (2003b) studied the dual synchronization of chaos in one-way
coupled microchip lasers. The dua synchronization of chaos was also studied in
microchip lasers (Uchida et al. (2003a)) in the same year. The dua synchronization
between Lorenz and Rossler systems was investigated by Ning et a. (2007). In 2008,
Salarieh and Shahrokhi (2008) studied the dual synchronization of chaotic systems via
time-varying gain proportional feedback. In 2013, Xiao et al. (2013) have studied the
dual synchronization of fractional-order chaotic systems via a linear controller. These
have motivated the author to study on the dual function projective synchronization of
fractional order complex chaotic systems. The dual synchronization of chaotic systems
is used experimentally in communication applications (Uchida et al. (2003c)). In 2007,
the complex Lu system was proposed by Mahmoud et a. (2007b), and later the
fractional order complex Lu system was studied by the Jiang et al. (2014). In 2008,
Tigan and Opris (2008) proposed a 3D chaotic system called T-system and its

dynamical behavior was studied in details by Liu et al. (2014). The severa complex
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dynamical systems of physical interest have been studied and proposed by the many
researchers (Ning and Haken (1990), Nian et al. (2010), Roldan et a. (1993), Toronov and
Derbov (1997), Luo and Wang (2013)), where chaotic systems were efficiently used in
various important fields of science and engineering. The complex chaotic systems are
successfully used in laser physics where the atomic polarization and electric field
amplitudes in aring laser system of two-level atoms are complex quantities (Fowler et
al. (1983), Rauh et a. (1996)). The application of complex chaotic systems is already

described in the section 4.1 of chapter 4.

In this chapter the dual function projective synchronization of fractional order complex
chaotic systems using active control method is studied. During the study of complex
chaotic systems, fractional order T and Lu systems are taken. The numerical simulation
and results of this chapter are displayed graphically which clearly exhibit that the active
control method is effective, easy to implement and reliable for the dual function

projective synchronization of fractional order complex chaotic systems.

7.2 Problem statement
Let us consider first two fractional order complex chaotic systems as master (drive)
system as

Master systems-I:

q
d’X,, = AX,, + F(X,),
dt®

where X, = X, + jX,, iscomplex state variable with

d’X,,
dt

= AX,, + F,(X,)
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d’X,,
dt

= AX,, + f,(X,,). (7.1)

Master system-I|:

doy,

= BY, oY),

where Y, =Y, + ]Y,, iscomplex state variable with

ady,

dtc:nl = Ble + gl(le)
dy,,
o =BYn 9.(Y,,)- (7.2)

The linear combination of the master systems| & 11, givesrise to
Vm =Za'ixmli +za1'xmzi +zb|lei +Zblszi
i=1 i=1 i=1 i=1

=[a,8,,...a,] X, Han a3, 1X,, +[0y, 0, B 1Y, +[By, 0, 0, TY

T T T T T AT Xml T RT le
=A X +A Xy, +B Y +B Y =[A A T HB B

m, m

Xm
- A, B, <) 47

where A =[a,,a,,..a,]" and B, =[b,b,,...b ] ae known and A,=[A" A']",
Bll :[BlT BlT]T and E11 :[AiTl BlTl]T .

The next two fractional order complex systems is taken as response (dave) system as
Response system-|:

doX,
dt®

=CX +h(X)+u®(t).

Taking X = X + jX, ascomplex state variable, we get
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dX, @

e =CXy +h(Xy)+u (1)

a°X,, =CX_ +h (X )+ul(t) (7.3)
dt® S S, 2 \Y- .
Response system-11:

day.

== DY, +1(Y,) +u®(t).
dtq S ( S) ()

TakingY, =Y, + Y, ascomplex state variable, we get

ary,

dthl = DY, +1,(Y,) +u? (t)
quSz (2)
e DY, +1,(Y, ) +us2(t), (7.4)

where u® @) =uf M)+ jul(t), uP@®)=uP? @)+ ju?(t) are control functions,
ul® () =[u®, uf ,...,uP 1", ud (t) =[u”, ul? ..., P and

WO =1, U . U217, U (O =[P, P . uDT'.

The linear combination gives
Vs =Zaixsli +za1'xszi +zb|Ysli +zb|Yszi
i=1 i=1 i=1 i=1

=[a,a,,....8,] Xy +[a, a,.a ] Xy +[0, 0, BY +[by, by, B ]Y

T T T T T T XSL T T Ysl
~ AX, + A X, +BIY, +BIY, =[A ATl J* |+[B B]]
S2 S2

X
-, ey, <l |

S

The goal is to obtain the dua function projective synchronization between master and

slave systems.
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Now defining the error function between the master and slave systems as
e=V,-A(x)V,,, where A'(x)=diag{K,(X,), K,(X,),...., K, (X,)} is the function
scaling matrix.

Therefore, for dual function projective synchronization the active control method is
used for designing the control functions in such a way that the origin becomes
asymptotically stable equilibrium point of the error dynamics i.e,

lim|X, = A() X, =0 and lim|Y, - A(X)Y,,[=0.

The demonstration of active control method is given in section 7.4 and the schematic

diagram is described through Fig. 7.1 for dual synchronization of complex systems.

X, =[X, X, 17 X, =[X, X, I
Master-I —_— Slave-I
Vi e v,
—>
Master-I1 Slave-I1
Y, =¥, T, 1" r=[r, 7.

Fig. 7.1 Dual synchronization scheme of complex chaotic systems

Definition 7.1 The master systems (7.1), (7.2) and response systems (7.3), (7.4) are said

to be dual function projective synchronized, if lim |ld|=0, where |-| denotes matrix

norm.

7.3 Systems’ descriptions

7.3.1 The fractional order complex T system

The fractional order complex T system (Xiao et a. (2013)) is described as
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dx,

dt e =a (X —X)

dx

dtqz =(a, —a)x —ax X, (7.5)
dix, 1 _ <

dte :E(Xlxz +%%,) — 85X,

where x=(x,X,,X%;)" is the state variable vector of the system, X, =X,, + jX, and
X, = X3 + JX,, are complex variables, x,=x. is read variable and a;,a,,a, are
parameters with a, # 0. This system possesses chaotic attractors which are shown in
Fig. 7.2, when the parameters are taken as a =21 a,=30,a,=0.6 and initia

condition x(0) =[-1+9j, 8—5j, —1] at q=0.94.

Equation (7.5) can be written in the form

q

d?x
an: ay (X5 — Xy)

dx,,

dt = (X — Xp)

q
dx;

dte = (8, —ay) Xy —aXy; X5 (7.6)

dx,,
dt

= (az - a1)x12 — 4 X X5

d%;
dt

= X X3+ Xp Xy — A3X5.
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Fig. 7.2 Phase portraits of fractional order complex T system for fractional order

g=094.
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7.3.2 The fractional order complex Lu system
The fractional order complex Lu system is aready described through equation (4.6)

under the section 4.3.2 in chapter 4.

Let the state variables of the system is written in the form vy, =y, + jy,, and
Y, = VY13 + JY,, arecomplex variableswhile y, = y,. isrea variable.

Separating into real and imaginary parts, we get

dy
qul =B (Y15 — Y1)

de
T);u = bl(y14 - ylz)

dy,
dt?

= bz Yis = Y Yis (7-7)

dyy,
dt®

= bz Yia = Yo Yis

dly;
dtd

= Y11 Y1z T Y12 Y14 — B3 Yis-

7.4 Dual function projective synchronization of fractional order complex T system
and Lu system using active control method

The fractional order complex T system is considered as master systems-| and fractional
order complex Lu system is taken as master system-11, which are already defined in
equations (7.6) and (7.7) respectively.

The response systems-1 and response system-I1 with control functions are defined as
Response system-1:

dx,,
at?

= ai(x23 - le) + ul(l)
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dx
dt q22 = ai(X24 - Xzz) + uél)
d Xy )
F = (8, — @)Xy — 8 X1 Xo5 + Us (7.8)
d?x
qum - (az a ai)XZZ ~ A XX F uz(ll)
d?x
dt q25 = XuXgg T XpoXoq =8 Xps + uél)'
Response system-I1:
de
dt{'ﬂ =B (Vo3 = Yor) + Ul(Z)
d* Yo (2
W =B (Yo — ¥2) +U;
de
% =0,Yo3 = YuYos + u§2) (7.9)
dy
quM =D,Y21 = Y22 Vo5 + uz(12)
dvy
qus =YuYn tYnYu - b3y25 + uéZ)'

Now error functions are defined as e, =x, —k;X;, where i=12..,5 and
e, =Y, —Ky Y, Wwherei=12,...,5 and k;, k, arethe scaling functions.

The error systems become

98 _ o (e —e) + (ks — k) U ()

a 376 13 — Ky ) X3 + Uy

de

dteqlz = a1(e14 - e12) + a1(k14 - klZ)X14 + uél) (t)

de, _ _ _k _ K ©)
at =(a, —a)e; +(a, —a)(Ky —Ki3) Xy — 83X, X5 + Kisdy X3 X5 +Ug” ()
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d¢
dteqm = (az - a:l.)e.LZ + (az - a1)(k12 - k14)X12 A X X5 k14"3‘1)(12)(15 + uz(ll) (t)

dqels (o)

W =T E5 + Xy Xog + X5 Xy — le(X11X13 + X12X14) +Ug (t)

de, @

—=bi(eg—6,) +b(Ky —Ky) yig + U7 (1) (7.10)
dt®

dqezz (2)
dt = bl(e24 _922) + bl(k24 - kzz)y14 +U; (t)

de,
dt

= bzezs ~YauYxst k23 Y1 Yis + uéZ) (t)

d,
dt

= b2e24 Yo V¥st k24 Yi2Yis + uz(lz) (t)

de,
dt

=085 + Yo Yos + Va2 Vou — Ko (Yaa Yz + Yaz Yaa) + UL (1)
Here the goal is to design the control functions u/ (t), j =1, 2,i=1, 2,...,.5. (Agrawal et
al. (2012b)) as

uf? (1) = —ay (ki3 — Ky ) X5 + 12 (1)

uy” (1) = -8y (K, —kyp) X + V3 (1)

ug (1) = —(a, — ay) (K — Kua) Xy + 83X X5 — Kyad X0, 05+ V5 (1)
ug” (1) = ~(a, — @) (Kyp — Ky ) Xop + 8 X5 X5 — Ky Xip X5 + V5 (1)
U (1) = =Xy Xog — Xop Xy + K (X X5 + XX ) + VE (1)

U (1) = —by (Kos — Kpy) Vi + VA2 (1)

U (£) = b, (Kyy —Kyp) Va0 + V52 (1)

U (1) = Yar Yoo — Ko Yar Vi + VA7 (1)

uz(12) (t) =YnYs— k24 Yi2Yis Vz(12) (t)
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U () = =Y Yoz — Yoo Yas + Kos (Yia Yis + Yio Yaa) + V7 (1)

which leadsto the following error systems as

dffjl =ay(65 &) + Vi (1)
d’e,

o = GG —ep) v (1)

q

dtq = (a, —a)e, +v5 (1)

q

tq = (a, —a)e, +vy (1)

d

d q

dff’ =—a:6; +Vs (1)

d q

d§”=bd%3 &) +v2 (1) (7.12)

dq
dte;” by (e, —€y,) + V52 (t)

de,; _
dt*

b,e,; + V2 (1)

de,
dte

=b,e,, +V;” ()

de,

= e ().

The error system (7.11) is considered as a control problem, which is a linear system
with  control inputs v(t), j=12i=12.,5 a the functions of
e; (), 1=121=12.,5 Now to design control inputs the above system is stabilized
sothat e;(t), j=12,i=12,..,5 convergeto zero as time t approaches to infinity which

implies that fractional order complex T and complex Lu systems are synchronized.
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There are many choices for control inputs. Let us choose [v((t)]= Ale;l,

1=12,1=12,.,5, where A is the 10x10 matrix. In order to make the closed loop
system stable, the matrix A should be selected in such a way that the feedback system
will have the eigenvalues 4,1 =1, 2,...,10 with negative rea parts. There is no unique

choice for matrix A, but a good choice can be as follows

a -1 0 -a 0 O 0 0 0 0 0
0 a1 0 -a O 0 0 0 0 0
—(a,—a) 0 -1 0 © 0 0 0 0 0
0 -(a,-a) 0 -1 0 0 0 0 0 0
A 0 0 0 0 a-1 O 0 0 0 0
0 0 0 0 0 b-1 0 -b 0 0
0 0 0 0 0 0 Db-1 0 -b, 0
0 0 0 0 0 0 0 -b-1 0 0
0 0 0 0 0 0 0 0 -b,-1 O
| 0 0 0 0 0 0 0 0 0 b, —1]
Then the error system (7.11) isreduced to
de - s
e =-¢;, 1=12;]=1234,5, (7.12)

All the eigenvalues of the error systems (7.12) are negative and hence the condition

larg(4;)| > (qz/2) for 0<q<1 is satisfied. Therefore the systems are stable and

required dua function projective synchronization is obtained which are shown

graphically through Figs. 7.3(a)-(j).
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Fig. 7.3. State trgectories of the master systems (7.6) and (7.7) and response systems
(7.8) and (7.9) for orderq=0.96: (a) synchronization between k;, * x,(t) and X,,(t);

(b) synchronization between k,* x,(t) and X,,(t); (c) synchronization between
Kz * %5(t) and Xx,(t); (d) synchronization between Kk, * x,(t) and X, (t); (€
synchronization between k. * x(t) and xj.(t); (f) synchronization between
Ky * Vi (t) and Y, (t); (9) synchronization between Ky * y,,(t) and y,(t); (h)
synchronization between K, * y,,(t) and vy, (t); (i) synchronization between
Ky, * i, (t) and y,,(t); (j) synchronization between Kk, * y,.(t) and y,.(t); (k) The
evolution of the error functions g, (t),i=12 and j=12,..,5.

7.5 Numerical simulation and results
In this section, earlier considered values of parameters of the fractional order complex T
and Lu systems are taken during dual function projective synchronization. The initia

conditions of master systems | & |l and response systems | & Il are taken as
(%41(0), %15(0), X13(0), X14(0), %5(0)) = (-1, 9, 8,5, -1, (Y12(0), ¥12(0), ¥15(0), ¥14(0),

Y:5(0)) = (-8, 6, 5, 6, 10) and (X51(0), X5,(0), X,3(0), X,,(0), X5(0)) = (5, 4, 3, -1, 6),
(Y4(0), ¥,,(0), ¥,5(0), ¥,,(0),y,s(0) = (2, 4, -5, 3, —2) respectively, hence the initial
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condition of error systems according to definition of error functions will be
(64(0). €,(0), €5(0), €4(0). &5(0). €4(0), &, (0), €5(0), &,(0). () = (5.6, -4.9991, -0.9992,
3.9975, 6.5, 8.3992, -3.1976, -9.5, -2.4, -7.9860). We are taking the scaling
functions as k,, = @a,, cos(a,,X,;) + a3, K., =a,, cos(a,,X,) + s,
K3 = 8y COS(85,X%;5) + s, k., = a,, cos(a,,X,)+a,;, K5 = a5, cos(ag, X;5) + 8,
k,, =y, cos(b,X,,)+b,,, K,, =b,, cos(b,,X,,) +b,;, K, = b, cos(b,, X,,) + by,
K,, =b,, cos(b,,X,,) +b,;, Ky =b, cos(b,X,s)+b,, where values of parameters are
a, =05, a,=02, a,=01, a, =08, a,=01, a,,=02, a, =01, a;, =03,
a,; =04, a, =04, a,=06, a,;,=06, a,=02, a,=02, a,;=03, b, =03,
b,=03, b,=05, b, =09, b,=04, b,=03, b,=07, b,=02, b,;=02,
b,=01, b, =01, b,;=038, b, =04, b, =038, b,=02. It is seen from the Fig.

7.3(k) that error functions asymptotically converge to zero as time approaches to

infinity for the order of derivative q=0.96 which shows that the master systems| & 1l

are synchronized with the response systems| & 1.

7.6 Conclusion

This chapter has successfully demonstrated the dual function projective synchronization
among various fractional order complex chaotic systems using active control method.
For validation the dual function projective synchronization of fractional order complex
T and Lu systems are done. The graphical presentations of numerical results with error
functions approach to zero as time becomes large through proper choices of control

functions clearly exhibit that our applied method is very much effective and convenient
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to achieve global dua function projective synchronization of fractional order complex

chaotic systems.
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