
Chapter 7 
 
 
 
 
Dual function projective synchronization of fractional order 
complex chaotic systems

The chaos synchronization problems have been studied and applied by the scientists and 

engineers in many scientific and engineering fields. The results have an important role 

in chaotic communications. It offers a potential advantage over non-coherent detection 

in terms of noise performance and data when the basis functions are recovered from 

noisy distorted received signals (Feng and Qiu (2004), Kolumban et al. (1998), Xu et al. 

  

7.1 Introduction 

The concept of dynamical system is originated from Newtonian mechanics, which has 

many applications in engineering. The mathematical models of a dynamical system 

express the evolution of system in terms of equation of motion and initial value. 

Dynamical systems are exponentially sensitive to initial condition, which is popularly 

known as the butterfly effect. In 1963, E. N. Lorenz (Lorenz (1963)) found the 

canonical chaotic attractor first time. The term chaos in highly associated with nonlinear 

systems, which creates the occurrences of irregular solution while the equation of 

motion is deterministic. Later it has been detected in a large number of dynamical 

systems of various physical natures. It has been extended to the fractional order systems 

by the researchers and from the literature survey it is seen that in past few years. The 

area of chaotic dynamics in fractional order systems has been growing rapidly (Podlubny 

(1999), Hilfer (2001)). 

                                                            
The contents of this chapter have been published in Optik-International journal for Light 
and Electronics Optics (Elsevier), V. 127, 1-12, 2016. 
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(2004)). In the section 6.1, it is already mentioned that the idea of synchronization of 

chaotic systems was first given by L. M. Pecora and T. L. Carroll. They showed that 

synchronization between the systems is possible through simple coupling and later the 

idea was expanded in various fields of science and engineering.  

Dual synchronization is a special circumstance in synchronization in which two 

different pairs of chaotic systems, i.e., two master systems and two slave systems are 

synchronized. In 1996, Tsimring and Sushchik (1996) were first investigated the idea of 

multiplexing chaos using synchronization in a small map and an electric circuit model. 

After this in 2000, the concept of dual synchronization was given by Liu and Davids 

(2000). They introduced the dual synchronization of 1-D discrete chaotic systems. In 

2003, Uchida et al. (2003b) studied the dual synchronization of chaos in one-way 

coupled microchip lasers. The dual synchronization of chaos was also studied in 

microchip lasers (Uchida et al. (2003a)) in the same year. The dual synchronization 

between Lorenz and Rossler systems was investigated by  Ning et al. (2007). In 2008, 

Salarieh and Shahrokhi (2008) studied the dual synchronization of chaotic systems via 

time-varying gain proportional feedback. In 2013, Xiao et al. (2013) have studied the 

dual synchronization of fractional-order chaotic systems via a linear controller. These 

have motivated the author to study on the dual function projective synchronization of 

fractional order complex chaotic systems. The dual synchronization of chaotic systems 

is used experimentally in communication applications (Uchida et al. (2003c)). In 2007, 

the complex Lu system was proposed by Mahmoud et al. (2007b), and later the 

fractional order complex Lu system was studied by the Jiang et al. (2014). In 2008, 

Tigan and Opris (2008) proposed a 3D chaotic system called T-system and its 

dynamical behavior was studied in details by Liu et al. (2014). The several complex 
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dynamical systems of physical interest have been studied and proposed by the many 

researchers (Ning and Haken (1990), Nian et al. (2010), Roldan et al. (1993), Toronov and 

Derbov (1997), Luo and Wang (2013)), where chaotic systems were efficiently used in 

various important fields of science and engineering. The complex chaotic systems are 

successfully used in laser physics where the atomic polarization and electric field 

amplitudes in a ring laser system of two-level atoms are complex quantities (Fowler et 

al. (1983), Rauh et al. (1996)). The application of complex chaotic systems is already 

described in the section 4.1 of chapter 4.  

In this chapter the dual function projective synchronization of fractional order complex 

chaotic systems using active control method is studied. During the study of complex 

chaotic systems, fractional order T and Lu systems are taken. The numerical simulation 

and results of this chapter are displayed graphically which clearly exhibit that the active 

control method is effective, easy to implement and reliable for the dual function 

projective synchronization of fractional order complex chaotic systems. 

7.2 Problem statement 

Let us consider first two fractional order complex chaotic systems as master (drive) 

system as 

Master systems-I: 

),( mmq
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where
21 mmm jXXX +=  is complex state variable with 
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Master system-II: 
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where 
21 mmm jYYY +=  is complex state variable with 
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The linear combination of the master systems I & II, gives rise to 
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where T
naaaA ],....,[ 211 =  and T

nbbbB ],....,[ 211 = are known and ,][ 1111
TTT AAA =  

TTT BBB ][ 1111 = and TTT BAE ][ 111111 = .

 
The next two fractional order complex systems is taken as response (slave) system as 

Response system-I: 

).()( )1( tuXhCX
dt

Xd
ssq

s
q

++=  

Taking
21 sss jXXX += as complex state variable, we get 
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Response system-II: 
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Taking
21 sss jYYY += as complex state variable, we get 
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The goal is to obtain the dual function projective synchronization between master and 

slave systems.  
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Now defining the error function between the master and slave systems as 

ms VxAVe )(′−= , where )}(.....,),(),({)( 2211 nn XKXKXKdiagxA =′  is the function 

scaling matrix. 

Therefore, for dual function projective synchronization the active control method is 

used for designing the control functions in such a way that the origin becomes 

asymptotically stable equilibrium point of the error dynamics i.e.,   

0)(lim =′−
∞→ mst

XxAX  and .0)(lim =′−
∞→ mst

YxAY  

The demonstration of active control method is given in section 7.4 and the schematic 

diagram is described through Fig. 7.1 for dual synchronization of complex systems.  

 

Fig. 7.1 Dual synchronization scheme of complex chaotic systems 

Definition 7.1 The master systems (7.1), (7.2) and response systems (7.3), (7.4) are said 

to be dual function projective synchronized, if ,0lim =
∞+→

e
t

 where ⋅  denotes matrix 

norm. 

7.3 Systems’ descriptions 

7.3.1 The fractional order complex T system 

The fractional order complex T system (Xiao et al. (2013)) is described as 
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where Txxxx ),,( 321=  is the state variable vector of the system, 12111 jxxx +=  and 

14132 jxxx +=  are complex variables, 153 xx =  is real variable and 321 ,, aaa  are 

parameters with .01 ≠a  This system possesses chaotic attractors which are shown in 

Fig. 7.2, when the parameters are taken as 6.0,30,1.2 321 === aaa  and initial 

condition ]1,58,91[)0( −−+−= jjx  at .94.0=q  

Equation (7.5) can be written in the form 
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                               (e)                                                                     (f) 

Fig. 7.2 Phase portraits of fractional order complex T system for fractional order 
94.0=q . 
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7.3.2 The fractional order complex Lu system 

The fractional order complex Lu system is already described through equation (4.6) 

under the section 4.3.2 in chapter 4. 

Let the state variables of the system is written in the form 12111 jyyy +=  and 

14132 jyyy +=  are complex variables while 153 yy =  is real variable. 

Separating into real and imaginary parts, we get 
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                                                                                                (7.7) 
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7.4 Dual function projective synchronization of fractional order complex T system 

and Lu system using active control method 

The fractional order complex T system is considered as master systems-I and fractional 

order complex Lu system is taken as master system-II, which are already defined in 

equations (7.6) and (7.7) respectively. 

The response systems-I and response system-II with control functions are defined as  

Response system-I: 
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Response system-II: 
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Now error functions are defined as iiii xkxe 1121 −= , where 5....,,2,1=i  and 

iiii ykye 1222 −= , where ,5....,,2,1=i  and ik1 , ik2  are the scaling functions. 

The error systems become 
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Here the goal is to design the control functions .5,...,2,1,2,1),( == ijtu j
i   (Agrawal et 

al. (2012b)) as 
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which leads to the following error systems as 
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The error system (7.11) is considered as a control problem, which is a linear system 

with control inputs .5..,,2,1,2,1),()( == ijtv j
i  as the functions of 

.5..,,2,1,2,1),( == ijte ji  Now to design control inputs the above system is stabilized 

so that 5..,,2,1,2,1),( == ijte ji  converge to zero as time t approaches to infinity which 

implies that fractional order complex T and complex Lu systems are synchronized. 
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There are many choices for control inputs. Let us choose ][)]([ )(
ji

j
i eAtv = , 

5..,,2,1,2,1 == ij , where A is the 1010×  matrix. In order to make the closed loop 

system stable, the matrix A should be selected in such a way that the feedback system 

will have the eigenvalues 10...,,2,1, =iiλ  with negative real parts. There is no unique 

choice for matrix A, but a good choice can be as follows 
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Then the error system (7.11) is reduced to 

.5,4,3,2,1;2,1, ==−= jie
dt

ed
ijq

ij
q

                                                                    (7.12) 

All the eigenvalues of the error systems (7.12) are negative and hence the condition 

10for)2/()arg( ≤<> qqi πλ  is satisfied. Therefore the systems are stable and 

required dual function projective synchronization is obtained which are shown 

graphically through Figs. 7.3(a)-(j). 
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(k) 

Fig. 7.3. State trajectories of the master systems (7.6) and (7.7) and response systems 
(7.8) and (7.9) for order 96.0=q : (a) synchronization between )(* 1111 txk  and )(21 tx ; 
(b) synchronization between )(* 1212 txk  and )(22 tx ;  (c) synchronization between 

)(* 1313 txk  and )(23 tx ; (d) synchronization between )(* 1414 txk  and )(24 tx ;  (e) 
synchronization between )(* 1515 txk  and )(25 tx ; (f) synchronization between 

)(* 1121 tyk  and )(21 ty ; (g) synchronization between )(* 1222 tyk  and )(22 ty ; (h) 
synchronization between )(* 1323 tyk  and )(23 ty ; (i) synchronization between 

)(* 1424 tyk  and )(24 ty ; (j) synchronization between )(* 1525 tyk  and )(25 ty ; (k) The 
evolution of the error functions 5...,,2,1and2,1),( == jiteij . 

7.5 Numerical simulation and results 

In this section, earlier considered values of parameters of the fractional order complex T 

and Lu systems are taken during dual function projective synchronization. The initial 

conditions of master systems I & II and response systems I & II are taken as 

,)1,5,8,9,1())0(),0(),0(),0(),0(( 1514131211 −−=xxxxx  ),0(),0(),0(),0(( 14131211 yyyy  

=))0(15y )10,6,5,6,8(−  and ,)6,1,3,4,5())0(),0(),0(),0(),0(( 2524232221 −=xxxxx  

=))0(),0(),0(),0(),0(( 2524232221 yyyyy )2,3,5,4,2( −−  respectively, hence the initial 



 
CHAPTER 7 

155 

 

condition of error systems according to definition of error functions will be 

0.9992,- 4.9991,- 5.6,())0(),0(),0(),0(),0(),0(),0(),0(),0(),0(( 25242322211514131211 =eeeeeeeeee  

)7.9860- 2.4,- 9.5,- 3.1976,- 8.3992, 6.5, 3.9975, . We are taking the scaling 

functions as 1311121111 )cos( axaak += , 2312222112 )cos( axaak += , 

3313323113 )cos( axaak += , 4314424114 )cos( axaak += , 5315525115 )cos( axaak += , 

1321121121 )cos( bxbbk += , 2322222122 )cos( bxbbk += , 3323323123 )cos( bxbbk += , 

4324424124 )cos( bxbbk += , 5325525125 )cos( bxbbk += , where values of parameters are 

5.011 =a , 2.012 =a , 1.013 =a , 8.021 =a , 1.022 =a , 2.023 =a , 1.031 =a , 3.032 =a , 

4.033 =a , 4.041 =a , 6.042 =a , 6.043 =a , 2.051 =a , 2.052 =a , 3.053 =a , 3.011 =b , 

3.012 =b , 5.013 =b , 9.021 =b , 4.022 =b , 3.023 =b , 7.031 =b , 2.032 =b , 2.033 =b , 

1.041 =b , 1.042 =b , 8.043 =b , 4.051 =b , 8.052 =b , 2.053 =b . It is seen from the Fig. 

7.3(k) that error functions asymptotically converge to zero as time approaches to 

infinity for the order of derivative 96.0=q  which shows that the master systems I & II 

are synchronized with the response systems I & II. 

7.6 Conclusion 

This chapter has successfully demonstrated the dual function projective synchronization 

among various fractional order complex chaotic systems using active control method. 

For validation the dual function projective synchronization of fractional order complex 

T and Lu systems are done. The graphical presentations of numerical results with error 

functions approach to zero as time becomes large through proper choices of control 

functions clearly exhibit that our applied method is very much effective and convenient 
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to achieve global dual function projective synchronization of fractional order complex 

chaotic systems. 

 


