
Chapter 6 
 
 
 
 
Combination synchronization of fractional order n-chaotic 
systems using active backstepping design

The method here to use is backstepping design, which has been employed by many 

researchers for controlling and synchronizing chaotic systems as well as hyperchaotic 

systems. It consists in a recursive procedure that links the choice of a Lyapunov 

function with the design of a controller. Backstepping design is recognised as powerful 

design method for chaos synchronization. The design can guarantee global stability, 

tracking and transient performance for a broad class of strict-feedback nonlinear 

  

6.1 Introduction 

Chaos synchronization is an interesting phenomenon of nonlinear dynamical systems 

and it may occur when two or more chaotic systems are coupled or one chaotic system 

drives the other. After introduction of the synchronization method between chaotic 

systems by L. M. Pecora and T. L. Carroll in the year 1990, it has been intensively 

studied due to its potential applications in various fields viz., ecological system, 

physical system, chemical system, secure communications etc. (Blasius et al. (1999), 

Lakshmanan and Murali (1996), Han et al. (1995), Cuomo and Oppenheim (1993), 

Murali and Lakshmanan (2003)). In recent years different schemes have been 

successfully applied to chaos synchronization viz., linear and nonlinear feedback control 

method, active control method, adaptive control method, sliding mode control method, 

backstepping method etc. (Chen and Lu (2002a), Huang et al. (2004), Agrawal et al. 

(2012b), Chen and Lu (2002b), Razminia and Baleanu (2013), Park (2006)). 

                                                            
The contents of this chapter have been communicated in Nonlinear Dynamic (Springer) after 
minor revision. 
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systems (Zhang et al. (2005), Kokotovic (1992), Krstic et al. (1995). To stabilize and 

track chaotic systems, the method had been successfully used by Mascolo and Grassi 

(1999). In 2006, the backstepping control was used by Bin et al. (2006) to synchronize 

two coupled chaotic neurons in external electrical stimulation. Wang and Ge (2001) 

proposed the Adaptive synchronization of uncertain chaotic systems via backstepping 

design. Backstepping design was successfully applied by Tan et al. (2003) during 

synchronization of the chaotic systems and also by Yu and Zhang (2003) to control the 

uncertain behavior of chaotic systems. Recently, Park (2006), Wu et al. (2009) have 

shown that the back stepping method is very simple, reliable and powerful for 

controlling the chaotic behavior and synchronization of chaotic systems. But to the best 

of my knowledge the synchronization of fractional order systems using backstepping 

control has not yet been studied by any researcher. The theme of the present study is to 

investigate the synchronization procedure for a number of fractional order chaotic 

systems using this simple and reliable backstepping method. 

Initially the prediction of a system had been confined through finding the analytical 

solution of the formal modelling of the systems via mathematical modelling with a set 

of parameters and initial/boundary conditions. But after the advent of modern 

computers and related software packages, the simulation has become a useful technique 

of modelling of many streams of science and engineering as well as computational 

sociology. Nowadays it is used in technology to optimize the performance, safety 

engineering, also during modelling of natural and human systems. Simulation is 

described as the limitation of operation of a real world system over time. Thus before 

performing simulation, it requires to develop a model which will represent key features 

of the selected physical or abstract systems. Thus simulation basically represents the 
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operation of the system over time. During synchronization of identical or non-identical 

chaotic systems the simulation is used to find requirement of minimum time after which 

the states of slave system behave similar to the master system.  

The synchronization of three chaotic dynamical systems in integer order are first studied 

by the Runzi et al. (2011). It is seen from literature survey that the synchronization 

between three and more chaotic systems are few in numbers. Runzi et al. (2011) had 

stated the cause of investigation between two drive systems and one response system 

through a physical application in secure communication as transmitted signals can be 

splitted into several parts, each part loaded in different drive systems which shows that 

transmitted signals have stronger anti-attack ability and anti-translated capability than 

that transmitted by the usual transmission model. This has motivated me to study the 

generalization of synchronization between chaotic systems, when the systems have 

memory effects. In this chapter a new type of synchronization scheme known as 

combination synchronization of fractional order n-chaotic systems is proposed. The 

backstepping method is applied during synchronization of fractional order chaotic 

systems using Lyapunov stability theory and a new lemma for Caputo derivative. The 

combination synchronization of three and four fractional order chaotic systems are 

shown numerically and graphically to show the effectiveness and feasibility of the 

proposed scheme and method. 

6.2 The scheme of combination synchronization of fractional order n-chaotic 

systems 

In this scheme, (n-1) drive systems and one response system are assumed to be in 

fractional order system. 

The drive systems are considered as 
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)( 111 xfxD q
t = ,                                                                                                            (6.1) 

)( 222 xfxD q
t = ,                                                                                                           (6.2) 

……………….. 

……………….. 

)( 111 −−− = nnn
q
t xfxD ,                                                                                                    (6.3) 

and the response system is taken as 

)......,,,()( 21 nnnn
q
t xxxUxfxD += ,                                                                               (6.4) 

where )........,,,( 11
2

1
11 nxxxx = , )........,,,( 22

2
2
12 nxxxx = , ………………, 

)........,,,( 11
2

1
11

−−−
− = n

n
nn

n xxxx  and )........,,,( 21
n
n

nn
n xxxx =  with 

n
nn Rxxxx ∈− ,,..........,, 121  are the state vectors of the n-chaotic systems. 

nn
nn RRffff →− :,.......,,, 121  are the n-continuous vector functions and 

timesn

nnnn
n RRRRxxxU →××× .......:)......,,,( 21  

is a controller which will be designed 

latter. 

Definition 6.1 The fractional order (n-1) drive systems and one response system follow 

combination synchronization among n-chaotic systems if there exists n constant 

matrixes called scaling matrixes n
n RAAA ∈.....,,, 21  with 0≠nA  such that 

0.......lim 2211 =−++
+∞→ nnn

xAxAxA , where .  represents the matrix norm. 

It is noted that if IAAAAA nn =====≠ − ,0.........,0 1321 , then this problem is 

reduced to the projective synchronization, where I is an nn ×  identity matrix. If the 

scaling matrix 1A  is considered as a function, then synchronization problem is reduced 

into function projective synchronization problem. Again if 0......... 121 ==== −nAAA , 

then the problem becomes a chaos control problem. 
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6.3 Systems’ descriptions 

6.3.1 Fractional order Newton-Leipnik systems 

The fractional order Newton-Leipnik system (Sheu et al. (2008)) was first studied in the 

year 2008, which is given by 

32211
1 10 xxxxa

dt
xd
q

q

++−=  

3121
2 54.0 xxxx

dt
xd
q

q

+−−=                                                                                         (6.5) 

2132
3 5 xxxa

dt
xd
q

q

−= ,  

when 2a  takes the values outside of this interval. If 2a  becomes close to zero, the 

system shows uninteresting dynamic and if 8.02 ≥a , the given system becomes 

explosive i.e., the solution of this system diverges to infinity for any initial condition 

other than the critical points. 

For the parameters’ values 4.01 =a , 175.02 =a  and the initial condition 

)18.0,0,19.0( − , the Newton-Leipnik system shows chaotic behaviour at 95.0=q  

which is depicted through Fig. 6.1(a). 

6.3.2 Fractional order Liu system 

The Liu system (Liu et al. (2009)) was studied in the year 2009, which was later extended 

to fractional order Liu system by Gejji and Bhalekar (2010) as 

2
2411

1 ybyb
dt

yd
q

q

−−=  

31512
2 yybyb

dt
yd
q

q

−=                                                                                                  (6.6) 
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21633
3 yybyb

dt
yd
q

q

+−= .  

The phase portrait of the system is described through Fig. 6.1(b), which shows that the 

system exhibits chaos at the lowest fractional order 92.0=q  for the values of parameters 

4,4,1,5,5.2,1 654321 ====== bbbbbb  and initial condition )5.0,0,2.0( .  

6.3.3 Fractional order Lotka-Voltra system 

The fractional order Lotka-Voltra system (Petras (2011)) is given as 

2
136

2
1521211

1 zzczczzczc
dt

zd
q

q

−+−=  

21423
2 zzczc

dt
zd
q

q

+−=                                                                                                 (6.7) 

2
13637

3 zzczc
dt

zd
q

q

+−= . 

The chaotic attractor of the system is described through Fig. 6.1(c) at 95.0=q  for the 

values of the parameters 3,7.2,2,1 7654321 ======= ccccccc  and initial 

conditions )1,4.1,1( . 

6.3.4 Fractional order Chen system 

The fractional order Chen system (Li and Chen (2004a)) is considered as 

)( 121
1 wwd

dt
wd
q

q

−=  

2331113
2 )( wdwwwdd

dt
wd
q

q

+−−=                                                                              (6.8) 

3221
3 wdww

dt
wd
q

q

−= . 
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Fig. 6.1(d) shows the chaotic attractors of the system at the fractional order 95.0=q  for 

the parameters’ values 28,3,35 321 === ddd  and the initial condition )1,4.1,1( . 
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Fig. 6.1 Phase portraits of fractional order (a) Newton-Leipnik system; (b) Liu system; 
(c) Lotka-Voltra system; (d) Chen system for the order of derivative .95.0=q  

6.4 Synchronization of fractional order Newton-Leipnik, Lotka-Voltra and Liu 

systems 

For the study of synchronization between three fractional order chaotic systems, two 

systems Newton-Leipnik (6.5) and Lotka-Voltra (6.7) are considered as drive system-I 

and drive system-II and third system Liu system is considered as response system. The 

response system with the control functions 321 ,, uuu  is defined as 
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1
2
2411

1 uybyb
dt

yd
q

q

+−−=  

231512
2 uyybyb

dt
yd
q

q

+−=                                                                                            (6.9) 

321633
3 uyybyb

dt
yd
q

q

++−= . 

Defining the error functions as 1111 xzye −−= , 2222 xzye −−= , 3333 xzye −−= , we 

obtain the error system as 

112411
1 uebeb

dt
ed
q

q

++−−= φ  

223315113531522
2 )()( uxzebxzebeebeb

dt
ed
q

q

+++−+−−= φ                                     (6.10) 

,)()( 332216112621633
3 uxzebxzebeebeb

dt
ed
q

q

+++++++−= φ  

where  

32211
2
136

2
15212112241111 10)()( xxxxazzczczzczcxzbxzb −−++−+−+−+−=φ  

312121423222331152 54.0)())(( xxxxzzczcxzbxzxzb −++−+++++−=φ  

.5)())(( 2132
2
13637333221163 xxxazzczcxzbxzxzb +−−++−++=φ   

Now the control functions would be designed using backstepping approach for 

combination synchronization of three fractional order chaotic systems. 

Theorem 6.1 If the control functions are chosen as 

11 φ−=u  

22142233152 )( φ−−+−+= vvbvbxzvbu  

321651126522163 )()()()( φ−−++−++−= vvbbxzvbbxzvbu , 
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where ,11 ev =  ,22 ev =  33 ev = , then the drive systems I & II will be combination 

synchronized with response system. 

Proof:  To achieve the results, let us use the active backstepping procedure through 

following three steps. 

Step-I: Defining 11 ev = , we get 

,112411
11 uebvb

dt
ed

dt
vd

q

q

q

q

++−−== φ                                                                        (6.11) 

where )( 112 ve α=  is regarded as an virtual controller. For designing )( 11 vα  to 

stabilize 1v - subsystem, choosing the Lyapunov function 1V  as  

2
11 2

1 vV = . 

The q -th order fractional derivative of 1V  w. r. to t  is 

dt
vd

dt
Vd q

q

q 2
11

2
1

=  

q

q

dt
vdv 1

1≤  (using Lemma-1.1) 

])([,.. 11114111 uvbvbvei ++−−≤ φα . 

If we take 0)( 11 =vα  and 11 φ−=u , then 02
11

1 <−≤ vb
dt

Vd
q

q

, which implies that sub-

system (6.11) is asymptotically stable. Since virtual control function )( 11 vα  is an 

estimate function, defining the error variable 2v  between 2e  and )( 11 vα  as 

)( 1122 vev α−= . 

We obtain the following ),( 21 vv -subsystem as 

2411
1 vbvb

dt
vd
q

q

−−=  
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223315113531522
2 )()( uxzvbxzebevbvb

dt
vd
q

q

+++−+−−= φ ,                                    (6.12) 

where ),( 2123 vve α=  is regarded as an virtual controller. 

Step II: To stabilize ),( 21 vv  - subsystem (6.12), taking Lyapunov function as 

2
2

2
1

2
212 2

1
2
1

2
1 vvvVV +=+= . 

The thq −  order fractional derivative of  2V  w. r. to t  is 

q

q

q

q

q

q

dt
vd

dt
vd

dt
Vd 2

2
2
12

2
1

2
1

+=  

          q

q

q

q

dt
vd

v
dt

vd
v 2

2
1

1 +≤ , (from Lemma 1.1) 

])())(,(),([i.e., 22331511212521215222214
2
11 uxzvbxzvvbvvvbvbvvvbvb +++−+−−+−−≤ φαα

 

If 0),( 212 =vvα  and 22142233152 )( φ−−+−+= vvbvbxzvbu , then 

02
2

2
11

2 <−−≤ vvb
dt

Vd
q

q

, which implies that ),( 21 vv -subsystem (6.12) is asymptotically 

stable. 

Again defining the error variable as 

),( 21233 vvev α−= , 

the ),,( 321 vvv  - subsystem becomes 

2411
1 vbvb

dt
vd
q

q

−−=  

)( 1135315142
2 xzvbvvbvbv

dt
vd
q

q

+−−+−=
                

                                              (6.13) 

332216112621633
3 )()( uxzvbxzvbvvbvb

dt
vd
q

q

+++++++−= φ . 
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Step III: To stabilize the ),,( 321 vvv  - subsystem (6.13), choosing the following 

Lyapunov function 3V  as 

2
3

2
2

2
1

2
323 2

1
2
1

2
1

2
1 vvvvVV ++=+= . 

The fractional derivative of  3V  is 

q

q

q

q

q

q

q

q

dt
vd

dt
vd

dt
vd

dt
Vd 2

3
2
2

2
13

2
1

2
1

2
1

++=   

          q

q

q

q

q

q

dt
vd

v
dt

vd
v

dt
vd

v 3
3

2
2

1
1 ++≤ , (from Lemma1.1) 

].)(

)([)(.,.

332216

1126216333113253215
2
2

2
11

uxzvb

xzvbvvbvbvxzvvbvvvbvvbei

++++

+++−++−−−−≤

φ
 

,)()()()(Taking 321651126522163 φ−−++−++−= vvbbxzvbbxzvbu  we obtain 

02
33

2
2

2
11

3 <−−−≤ vbvvb
dt

Vd
q

q

. Thus the system is asymptotically stable. Thus for 

11 ev = , 21122 )( evev =−= α  and 321233 ),( evvev =−= α , the error systems 

,3,2,1,0 =→ iei  which helps to obtain combination synchronization among the three 

considered fractional order systems. 
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Fig. 6.2 Combination synchronization among three fractional order chaotic systems 
(6.5), (6.6) and (6.7) for fractional order 95.0=q : (a) between )()( 11 tztx +  and )(1 ty ; 
(b) between )()( 22 tztx +  and )(2 ty ; (c) between )()( 33 tztx +  and )(3 ty ; (d) the 
evaluation of error functions )(),( 21 tete and )(3 te . 
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6.5 Synchronization of fractional order Newton-Leipnik, Liu, Lotka-Voltra 

systems and Chen system 

In this section to synchronize four fractional order chaotic systems, we consider 

fractional order Newton-Leipnik system (6.5), fractional order Liu system (6.6) and 

fractional order Lotka-Voltra system (6.7) as the drive systems I, II and III respectively. 

The fractional order Chen system (6.8) is taken as response system with control 

function 321 ,, uuu ′′′  as 

1121
1 )( uwwd

dt
wd
q

q

′+−=  

22331113
2 )( uwdwwwdd

dt
wd
q

q

′++−−=                                                                    (6.14) 

33221
3 uwdww

dt
wd
q

q

′+−= . 

Defining error functions as 11111 xyzwe −−−= , 22222 xyzwe −−−= , 

33333 xyzwe −−−= , we obtain the error system as 

11121
1 )( ueed

dt
ed
q

q

′++−= ψ  

22233331111331113
2 )()()( uedxyzexyzeeeedd

dt
ed
q

q

′+++++−++−−−= ψ            (6.15) 

,)()( 33322221111221
3 uedxyzexyzeee

dt
ed
q

q

′++−++++++= ψ   

where 

32
2
136

2
15212111111111212241211

10

)()()()1()(

xxzzc

zczzcxadybdzcdxdyybdzd

−+

−+−−−−+−−+++=ψ
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312131522

214232223333111111132

54.0

)())(())((

xxxxyybyb

zzczcxyzdxyzxyzxyzdd

−+++−

−++++++++−++−=ψ

 

.5

)())((

21

3221633
2
1363733322221113

xx

xayybybzzczcxyzdxyzxyz

+

−−+−+++−++++=ψ
 

Next control functions 21, uu ′′  and 3u′  would be designed using backstepping approach to 

achieve combination synchronization among four fractional order chaotic systems. 

Theorem 6.2 If the control functions are chosen as 

11 ψ−=′u  

22123331232 )( ψ−−−+++−=′ vvdxyzvvdu  

322213 )( ψ−++−=′ xyzvu , 

where ,11 ev =  ,22 ev =  33 ev = , then the drive systems (6.5), (6.6) and (6.7) will be 

combination synchronized with response system (6.14). 

Proof:  For synchronization, backstepping procedure is used through following steps. 

Step-I: Considering 11 ev = ,  

11121
11 )( ueed

dt
ed

dt
vd

q

q

q

q

′++−== ψ ,                                                                        (6.16) 

where )( 112 ve α=  is regarded as an virtual controller. To stabilize 1v -subsystem, let us 

define the Lyapunov function 1V  as  

2
11 2

1 vV = , 

whose fractional derivative is 

q

q

q

q

q

q

dt
vd

v
dt

vd
dt

Vd 1
1

2
11

2
1

≤=  
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]))(([.,. 1111111 uvvdvei ′++−≤ ψα . 

Taking 0)( 11 =vα  and 11 ψ−=′u , we get 02
11

1 <−≤ vd
dt

Vd
q

q

, which implies that 1v -

subsystem (6.16) is asymptotically stable. For the virtual control function )( 11 vα , a 

variable 2v  between 2e  and )( 11 vα  is defined as 

)( 1122 vev α−= . 

Then ),( 21 vv -subsystem is obtained as 

)( 121
1 vvd

dt
vd
q

q

−=  

22233331111331113
2 )()()( uvdxyzvxyzeevvdd

dt
vd
q

q

′+++++−++−−−= ψ .        (6.17) 

Let us consider ),( 2123 vvv α=  is a virtual controller. 

Step II: In this step to stabilize ),( 21 vv -subsystem (6.17), let us define the Lyapunov 

function 2V  as 

2
2

2
1

2
212 2

1
2
1

2
1 vvvVV +=+= . 

Now 

q

q

q

q

q

q

dt
vd

dt
vd

dt
Vd 2

2
2
13

2
1

2
1

+=  

           q

q

q

q

dt
vd

v
dt

vd
v 2

2
1

1 +≤ ,   

].)(

))(,(),()[(.,.

22233331

11121221211132
2
11211

uvdxyzv

xyzvvvvvvddvvdvvdei

′+++++−

++−−−+−≤

ψ

αα
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Taking 0),( 212 =vvα  and ,)( 22123331232 ψ−−−+++−=′ vvdxyzvvdu  we get 

02
2

2
11

2 <−−≤ vvd
dt

Vd
q

q

, which makes subsystem (6.17) asymptotically stable. 

Considering ),( 21233 vvev α−= , the ),,( 321 vvv -subsystem is obtained as 

)( 121
1 vvd

dt
vd
q

q

−=  

)( 111331112
2 xyzvvvvdv

dt
vd
q

q

++−−−−=                                                                (6.18) 

33322221111221
3 )()( uvdxyzvxyzvvv

dt
vd
q

q

′++−++++++= ψ . 

Step III: In order to stabilize ),,( 321 vvv - subsystem (6.18), choosing the Lyapunov 

function as  

2
3

2
2

2
1

2
323 2

1
2
1

2
1

2
1 vvvvVV ++=+= , 

we get 

q

q

q

q

q

q

q

q

dt
vd

dt
vd

dt
vd

dt
Vd 2

3
2
2

2
13

2
1

2
1

2
1

++=  

          q

q

q

q

q

q

dt
vd

v
dt

vd
v

dt
vd

v 3
3

2
2

1
1 ++≤ ,                                               

])(

)([)]([)]([.,.

33322221

111221311133111221211

uvdxyzv

xyzvvvvxyzvvvvdvvvvdvei

′++−+++

++++++−−−−+−≤

ψ
 

          ])([ 333222213
2
2

2
11 uvdxyzvvvvd ′++−+++−−= ψ . 

If 322213 )( ψ−++−=′ xyzvu , 02
32

2
2

2
11

3 <−−−≤ vdvvd
dt

Vd
q

q

 negative definite. In view 

of 11 ev = , 21122 )( evev =−= α , 321223 ),( evvev =−= α , the error states 

3,2,1,0 =→ iei  will converge to zero after a finite period of time, and thus the 
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combination synchronization among four fractional order chaotic systems will be 

achieved. 
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(d) 

Fig. 6.3 Combination synchronization among four fractional order chaotic systems 
(6.5), (6.6), (6.7) and (6.8) for fractional order 95.0=q : (a) between 

)()()( 111 tztytx ++  and )(1 tw ; (b) between )()()( 222 tztytx ++  and )(2 tw ; (c) 
between )()()( 333 tztytx ++  and )(3 tw ; (d) the evaluation of error functions 

)(),( 21 tete  and )(3 te . 
 
 
 
 

 

(a) 
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(b) 

Fig. 6.4. The evaluation of error functions )(),( 21 tete  and )(3 te  at :1=q (a) for three 
systems ; (b) for four systems. 

6.6 Numerical simulation and results 

During synchronization the earlier values of the parameters and initial conditions of 

systems are considered. The time step size is taken as 0.005. Fig. 6.2 shows the 

synchronization among three fractional order systems are achieved through active 

backstepping approach at .95.0=q  Figs. 6.2(a), 6.2(b) and 6.2(c) depict the time 

response of the state trajectories )()( tztx ii +  and )(tyi , where 3,2,1=i  represent the 

drive systems (6.5), (6.7) and response system (6.9) respectively. The error states are 

displayed through Fig. 6.2(d). The synchronization among four fractional order systems 

are achieved through Fig. 6.3 using the same method at 95.0=q . Figs. 6.3(a), 6.3(b) 

and 6.3(c) show the time response of the states )()()( tztytx iii ++  and )(twi , where 

3,2,1=i represent the drive systems (6.5), (6.6), (6.7) and the response system (6.8). 

The error states for this case are described through Fig 6.3(d). It is noticed that it takes 

less time for synchronization among four systems (Fig. 6.3(d)) compared to that of three 
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systems (Fig. 6.2(d)) for our considered systems in both fractional order as well as 

integer order case (Fig. 6.4).  

6.7 Conclusion 

In the present study, the combination synchronization among a number of fractional 

order drive and response systems is successfully demonstrated using backstepping 

method. For validation, the combination synchronization of three and four systems are 

considered taking two systems and three systems as drive system respectively, while 

one system as response system, which clearly exhibit that the applied method is 

effective and convenient to achieve global synchronization of a number of non-identical 

fractional order chaotic systems. It is worth mentioning that this scientific contribution 

of combination synchronization among the fractional order chaotic systems will be 

significant towards the further study of nonlinear dynamics among the research 

community involved in the area of modelling of fractional order dynamical systems. 


