Chapter 6

Combination synchronization of fractional order n-chaotic
systems using active backstepping design

6.1 Introduction

Chaos synchronization is an interesting phenomenon of nonlinear dynamical systems
and it may occur when two or more chaotic systems are coupled or one chaotic system
drives the other. After introduction of the synchronization method between chaotic
systems by L. M. Pecora and T. L. Carroll in the year 1990, it has been intensively
studied due to its potentia applications in various fields viz., ecological system,
physical system, chemical system, secure communications etc. (Blasius et al. (1999),
Lakshmanan and Murai (1996), Han et a. (1995), Cuomo and Oppenheim (1993),
Murali and Lakshmanan (2003)). In recent years different schemes have been
successfully applied to chaos synchronization viz., linear and nonlinear feedback control
method, active control method, adaptive control method, sliding mode control method,
backstepping method etc. (Chen and Lu (2002a), Huang et a. (2004), Agrawal et a.
(2012b), Chen and Lu (2002b), Razminia and Baleanu (2013), Park (2006)).

The method here to use is backstepping design, which has been employed by many
researchers for controlling and synchronizing chaotic systems as well as hyperchaotic
systems. It consists in a recursive procedure that links the choice of a Lyapunov
function with the design of a controller. Backstepping design is recognised as powerful
design method for chaos synchronization. The design can guarantee global stability,

tracking and transient performance for a broad class of strict-feedback nonlinear
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CHAPTER 6
systems (Zhang et al. (2005), Kokotovic (1992), Krstic et al. (1995). To stabilize and

track chaotic systems, the method had been successfully used by Mascolo and Grassi
(1999). In 2006, the backstepping control was used by Bin et al. (2006) to synchronize
two coupled chaotic neurons in external electrical stimulation. Wang and Ge (2001)
proposed the Adaptive synchronization of uncertain chaotic systems via backstepping
design. Backstepping design was successfully applied by Tan et a. (2003) during
synchronization of the chaotic systems and also by Y u and Zhang (2003) to control the
uncertain behavior of chaotic systems. Recently, Park (2006), Wu et al. (2009) have
shown that the back stepping method is very simple, reliable and powerful for
controlling the chaotic behavior and synchronization of chaotic systems. But to the best
of my knowledge the synchronization of fractional order systems using backstepping
control has not yet been studied by any researcher. The theme of the present study is to
investigate the synchronization procedure for a number of fractional order chaotic

systems using this smple and reliable backstepping method.

Initially the prediction of a system had been confined through finding the analytical
solution of the formal modelling of the systems via mathematical modelling with a set
of parameters and initial/boundary conditions. But after the advent of modern
computers and related software packages, the ssmulation has become a useful technique
of modelling of many streams of science and engineering as well as computational
sociology. Nowadays it is used in technology to optimize the performance, safety
engineering, aso during modelling of natural and human systems. Simulation is
described as the limitation of operation of a real world system over time. Thus before
performing simulation, it requires to develop a model which will represent key features

of the selected physical or abstract systems. Thus simulation basically represents the
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operation of the system over time. During synchronization of identical or non-identical

chaotic systems the simulation is used to find requirement of minimum time after which

the states of slave system behave similar to the master system.

The synchronization of three chaotic dynamical systemsin integer order are first studied
by the Runzi et a. (2011). It is seen from literature survey that the synchronization
between three and more chaotic systems are few in numbers. Runzi et a. (2011) had
stated the cause of investigation between two drive systems and one response system
through a physical application in secure communication as transmitted signals can be
splitted into several parts, each part loaded in different drive systems which shows that
transmitted signals have stronger anti-attack ability and anti-translated capability than
that transmitted by the usual transmission model. This has motivated me to study the
generadization of synchronization between chaotic systems, when the systems have
memory effects. In this chapter a new type of synchronization scheme known as
combination synchronization of fractional order n-chaotic systems is proposed. The
backstepping method is applied during synchronization of fractional order chaotic
systems using Lyapunov stability theory and a new lemma for Caputo derivative. The
combination synchronization of three and four fractional order chaotic systems are
shown numerically and graphically to show the effectiveness and feasibility of the

proposed scheme and method.

6.2 The scheme of combination synchronization of fractional order n-chaotic
systems

In this scheme, (n-1) drive systems and one response system are assumed to be in
fractional order system.

The drive systems are considered as
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D%, = f,(X,), (6.2)
D'x, = f,(x,), (6.2)
D%y = fra(X0) s (6.3)

and the response system is taken as

D%, = £, (6) +U (4, %, %) (6.4)
where X, = (X5, X3, enreen X2, X, = (X7, X2 e X2, y
X, =X X0 and X = (X, X3 e VX0 with
Xis Xpy eereneene X, 1, X, € R" are the sate vectors of the n-chaotic systems.
f.fy, fog, f,:R">R"  ae the n-continuous vector functions and
U (X, Xppeeee, X, ) P R" xR % X R”nET)mR” is a controller which will be designed
|latter.

Definition 6.1 The fractional order (n-1) drive systems and one response system follow

combination synchronization among n-chaotic systems if there exists n constant

matrixes called scaling matrixes A, A,,....., A, € R" with A, =0 such that

lim|AX +AX, +.....— AX,[ =0, where || . | represents the matrix norm.
It is noted that if A #0,A, =A;=....... =A,, =0 A =1, then this problem is

reduced to the projective synchronization, where | is an nxn identity matrix. If the

scaling matrix A, is considered as a function, then synchronization problem is reduced
into function projective synchronization problem. Again if A = A, =........ =A,, =0,

then the problem becomes a chaos control problem.
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6.3 Systems’ descriptions
6.3.1 Fractional order Newton-Leipnik systems
The fractional order Newton-Leipnik system (Sheu et a. (2008)) was first studied in the

year 2008, which is given by

d q

dt:(l =—a,X, + X, +10X,X,

d q

dt):2 = —X, — 0.4X, +5%, X, (6.5)
dx

dtq3 = a,X; —5X,X,,

when a, takes the values outside of this interval. If a, becomes close to zero, the
system shows uninteresting dynamic and if a, >0.8, the given system becomes

explosive i.e., the solution of this system diverges to infinity for any initial condition

other than the critical points.

For the parameters values a =04, a,=0.175 and the initial condition
(0.9, 0, - 0.18), the Newton-Leipnik system shows chaotic behaviour at q=0.95

which is depicted through Fig. 6.1(a).

6.3.2 Fractional order Liu system
The Liu system (Liu et al. (2009)) was studied in the year 2009, which was later extended

to fractional order Liu system by Gegjji and Bhalekar (2010) as

dy,

dt = _blyl - b4Y22
de
TZZ = bz Y1 — bs Y1Ys (6-6)
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dy,
dt

= _bsys +bey1YZ-

The phase portrait of the system is described through Fig. 6.1(b), which shows that the

system exhibits chaos at the lowest fractional order q=0.92 for the values of parameters

b =1b,=25b,=5b,=1 b, =4, b, =4 andinitial condition(0.2, 0, 0.5).

6.3.3 Fractional order Lotka-Voltra system

The fractional order Lotka-Voltra system (Petras (2011)) is given as

diz

dt—q=0121—022122 +05212 _C623212

diz

qu:—cszz +C,2,2Z, (67)
dz, 2

qo = CrZstCeZZ

The chaotic attractor of the system is described through Fig. 6.1(c) at g=0.95 for the
values of the parameters ¢, =c,=c;=c,=1 ¢, =2, ¢,=27,¢,=3 and initial

conditions(l, 1.4, 1) .

6.3.4 Fractional order Chen system

The fractional order Chen system (Li and Chen (20044)) is considered as

dw,

dtql =d; (W, —w)
dw.

dtq2 = (d; —d)w; —wyw; +d;w, (6.8)
dw.

dtq3 =W,W, —d,W;.
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Fig. 6.1(d) shows the chaotic attractors of the system at the fractional order q=0.95 for

the parameters’ values d, = 35, d, = 3, d, = 28 and theinitial condition (1, 1.4, 1).

v,

xt 05 05 x,(0)

50

(©) (d)

Fig. 6.1 Phase portraits of fractional order (a) Newton-Leipnik system; (b) Liu system;
(c) Lotka-Voltrasystem; (d) Chen system for the order of derivative q = 0.95.

6.4 Synchronization of fractional order Newton-Leipnik, Lotka-Voltra and Liu
systems

For the study of synchronization between three fractional order chaotic systems, two
systems Newton-Leipnik (6.5) and Lotka-Voltra (6.7) are considered as drive system-I
and drive system-Il and third system Liu system is considered as response system. The

response system with the control functions u,, u,, u, isdefined as
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dy

dtql :_blyl_b4y§ +U;

d¢

dt3q/2 =D,y —bsy1Ys + U, (6.9)
dy

dtq3 =-byy; +bgy;y, +U;.

Defining the error functionsas e =y, -z, — X, €, =Y, =7, = X,, € =Y, —Z; — X5, We
obtain the error system as

die

d'[—q:_ 1el_b4e2+¢1+u1

de
dt? =b,e, —b.ee, —be,(z +x)-be (2, + %) + ¢, + U, (6.10)

d¢
dt% = —bs% + bselez + bsez(zi + X1) + b6€1(22 + Xz) + ¢3 + U,

where
¢, =-b(z,+%x)-b,(2,+X,)—C,Z +C,2,Z, — C.Z7 +CZ,Z7 +aX — X, —10X, X,
¢, =-b.(z, + x)(z; + %) +b,(Z, + X,) + C;2, —C,Z,Z, + X, + 0.4X, —5X, X,
¢, = by (Z, + X)(Z, + X,) —b,(Z, + X;) + C, Z, — C, 2,27 — A, X, + 5X, X, .
Now the control functions would be designed using backstepping approach for
combination synchronization of three fractional order chaotic systems.
Theorem 6.1 If the control functions are chosen as
U, =4,
u, =b.v,(z; + X;) —b,v, +b,v, —v, — ¢,

Us = =BGy (2, +X,) + (b5 —bs)V, (2, + %) + (05 — b JVyv, — ¢,
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where v, =g, Vv, =€,, V;=¢;, then the drive systems | & Il will be combination

synchronized with response system.
Proof: To achieve the results, let us use the active backstepping procedure through

following three steps.
Step-1: Definingv, = e, we get

dl, d%,
dt?  dtf

=-bv, -b,e, +¢ +u,, (6.11)

wheree, =, (v,) is regarded as an virtua controller. For designing «,(v,) to
stabilizev, - subsystem, choosing the Lyapunov functionV, as

1
Vl ZEV]'Z'

The(q-th order fractional derivativeof V, w.r.tot is

dV, 1d9%;
dt 2 dt

q

d,
<v,

e (using Lemma-1.1)

le, <v-bv,—ba;(vi)+d +uy].

q

dv.
If we take a,(v,)=0 and u, =-¢,, then dtql <-bVv;} <0, which implies that sub-

system (6.11) is asymptotically stable. Since virtual control function «,(v,) is an
estimate function, defining the error variable v, between e, and «,(v,) as

v, =€, —a,(v,).

We obtain the following (v,,V,) -subsystem as

dv.
dtql =-byv, —b,v,
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dv,
dt*

=b,v, —byv,e; —bes(z, + X)) - by, (25 + X3) + ¢, +U,, (6.12)

where e, = a,(V,,V,) isregarded as an virtua controller.
Step II: To stabilize (v,,V,) - subsystem (6.12), taking Lyapunov function as

1 1
V2 :Vl +§V22 :EV:L2+§V2.

Theq—th order fractional derivativeof V, w.r.tot is

div, 1d% 1d9v;
= — + —
dat* 2 dt* 2 dt°

dfv dfv
<v,—=>+Vv, —2, (from Lemmal.1)
dt? dt*

e, < _b1V12 bV, +V,[b,v, —boviar, (v, V,) —bsar, (Vi, Vv, )(Z, + %) —bsVy (2 + X5) + ¢, + U, ]

If a,(v,Vv,)=0 and u, =b.v,(z, + X3) —b,v, +b,v, —v, — 9, then

do,
it

<-bVv} -V <0, which implies that (v,, v,)-subsystem (6.12) is asymptotically
stable.

Again defining the error variable as

Vy =6 —a,(Vy,V,),

the (v,,V,,V;) - subsystem becomes

d
" ql =-bv, —-b,v,
dv,
dt¢ ==V, +b,v; —bsv,v; —bv,(z + %) (6.13)
dv,
a —0V; +bgViV, + 0V, (2, + %)) + Vi (2, + %,) + 45 + Uy
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Step Ill: To stabilize the (v,,v,,Vv;) - subsystem (6.13), choosing the following

Lyapunov function V, as

1 1 1 1
V3 :V2 +EV§ ZEVlZ +EV§ +§V§

The fractional derivativeof V; is

div, 1d% 1d%; 1d%;
== += +=
dt* 2 dt* 2 dt* 2 dt¢

d, dv,
<v, +V,
dt* dt®

dfv,
+V, , (from Lemmal.1)
dt®
e, < _b1V12 - Vz2 - b5V1V2V3 - b5V2V3(Z1 + Xl) + Va[_b3V3 + b6V1V2 + bevz (21 + X1)
+bv, (2, + X,) + @5 + U,].
Taking u, =-bv,(z, + x,) + (b, —bs)v, (7, + X)) + (b, — b )v,v, — ¢, we  obtain

doV,
dt

<-bVv? -V> -by; <0. Thus the system is asymptotically stable. Thus for

v,=e,V,=6,-a,(v,)=e, and Vv,=e,-a,(v,V,)=€,, the error systems
e — 0, i =1,2,3, which helps to obtain combination synchronization among the three

considered fractional order systems.
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Fig. 6.2 Combination synchronization among three fractional order chaotic systems
(6.5), (6.6) and (6.7) for fractional order q=0.95: (a) between X, (t)+z(t) and vy, (t);
(b) between x,(t)+z,(t) and y,(t); (c) between x,(t)+z,(t) and y,(t); (d) the
evaluation of error functions e, (t),e, (t) and e,(t).
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6.5 Synchronization of fractional order Newton-Leipnik, Liu, Lotka-Voltra

systems and Chen system

In this section to synchronize four fractional order chaotic systems, we consider
fractional order Newton-Leipnik system (6.5), fractional order Liu system (6.6) and
fractional order Lotka-Voltra system (6.7) as the drive systems|, Il and I11 respectively.
The fractional order Chen system (6.8) is taken as response system with control

function ug, uj, u; as

dw. ,

dtql =d;(w, —w;)+u;

dq

dtV(:IZ = (dy —d,)w, —wW,w;, +d,W, +U), (6.14)
dq

dthlg =w,w, —d, W, +Uj.

Defining  error  functions as € =W, -z -y, -X,, 6&=W,—-Z-Y,-X,,
e, =W, — Z; — Y, — X;, we obtain the error system as

q

d :
T?:dl(ez_%)+‘//1+u1

d¢ '
sz:(ds_dl)el_el%_%(21+y1+X1)_e_L(Zs+y3+X3)+dsez+‘//2+u2 (6-15)
die, '

ate =66, +6,(Zy+ Y +X)+€(Z, + Y, +X;)—d,8 +y5 +U,
where

V= dlZZ + (dl +b4Y2)y2 + (d1 _1)X2 - (dl +C1)Z1 _(dl _bl)Y1_(d1 _a1)X1 +C,2,Z, _05212

+Co2,27 —10X,%,
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Yo =(dg = dy)(Z + Y1 + %) =(Z + Y1 + X )(Z + Y5 + %) +05(Z, + Y, +%,) +C32, - C, 27,
-b,y, + by, Y, + X +0.4%, —5X X,

V= (2 + Yy +X)(Z+ Yo + %) =y (25 + Y3+ %) + €2, — G 2,7 +03y; —bgyy, — 8%,
+ 95X X,.

Next control functions u;, u, and u; would be designed using backstepping approach to

achieve combination synchronization among four fractional order chaotic systems.

Theorem 6.2 If the control functions are chosen as

U =-y,

U, =—d,v, +V,(Z; + Y, + X3) —d,Vv, =V, -,

us; =-V, (2, + Y, +X,) —ws,

where v, =, Vv, =€,, V, =¢,, then the drive systems (6.5), (6.6) and (6.7) will be
combination synchronized with response system (6.14).

Proof: For synchronization, backstepping procedure is used through following steps.
Step-1: Considering v, =€,

div, d°f ,
dtql = dt?l =d; (e, —€&)+y, +ug, (6.16)

where e, =, (v,) isregarded as an virtual controller. To stabilize v, -subsystem, let us

define the Lyapunov function V, as

1
Vl ZEV]_Z,

whose fractional derivativeis

d%V, 1d%? _ d%,
=— <V,
dt? 2 dt® it
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e, Svl[dl(al(vl)_vl)+l//1+ui] :

QVl

e <-d,v} <0, which implies that v, -

Taking «,(v,)=0 and u; =-y,, we get

subsystem (6.16) is asymptotically stable. For the virtual control function «,(v;), a
variable v, between e, and «,(v,) isdefined as
Vv, =6, —ay (V).

Then (v,,V,) -subsystem is obtained as

d

qu: dl(VZ _Vl)

dv, ,

e (dy—d)vi —vigs —e(Zy+ Y, + %) —Vi(Z + Y3 + %) +dyV, +y, +U;. (6.17)

Let usconsider v, =a,(v,,V,) isavirtual controller.
Step I1: In this step to stabilize (v,,V,) -subsystem (6.17), let us define the Lyapunov

function V, as

1 1 1
V2 =Vl +EV22 =5V1_2+§V22

Now

div, 1d%; 1d%;
= — + —
dt* 2 dt* 2 dt¢

dfv, dfv,
<v, +V,
dt* dt®

i-e-’ < d1V1V2 - dlvl2 +V2[(d3 - dl)vl —Via, (V11V2)_ a, (Vl’Vz)(Z1 +y,+ Xl)

—Vy(Z3 + Y5 + X3) +dgV, + 7, +US].
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Taking «,(v,v,)=0 and u,=-dv, +V,(Z,+Y;+X%)—-d,v, -V, —w,, we get

d dqt\:2 <-dV -V <0, which makes subsystem (6.17) asymptotically stable.

Consideringv, = €, — ,(v,,V,) , the (v,,V,,V,) -subsystem is obtained as

dv

dtql =d;(v; —v)

dv,

e -V, —d,V, —V,V, -V, (Z, + Y, + X,) (6.18)
dv, ,
F:V1V2+V2(Zl+yl+xi)+vl(22+ Yo + %) —dVy + 5+ U;.

Step I11: In order to stabilize (v,,v,,V;)- subsystem (6.18), choosing the Lyapunov
function as
1 1 1 1
V3 :V2 +EV§ :EV]_Z +§V22 +§V§,
we get

div, 1d% 1d%; 1d9;
== += +—
dat* 2 dt* 2 dt* 2 dt®

d, d, dv,
SV ——F oV, ——FHVy— 5,
dt dt dt

i-e-' < Vl[dl(vz _Vl)] + Vz[_Vz - d1V1 — ViV, _V3(21 +Yy+ Xl)] +V3[V1V2 + V2(21 +Yy,+ X1)
+V,(Z, + Y, + X,) —d,V, + w5 + Us]
= _d1V12 _V§ + Vo[V (Z, + Y, +X;) —dyvs + s +Ug]

q

dv. . - ,
If u =—v,(Z,+Y,+X,) s, quﬁ—lef —Vv5 —d,vZ <0 negative definite. In view

of v,=e, V,=e,-o,(v,)=6,, V,=6€,-a,(v,V,)=¢€,, the error states

e >0, i=2123 will converge to zero after a finite period of time, and thus the

134



CHAPTER 6

combination synchronization among four fractional order chaotic systems will be

achieved.
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40

e, ), o, e

(d)

Fig. 6.3 Combination synchronization among four fractional order chaotic systems
(6.5, (6.6), (6.7 and (6.8) for fractiona order q=0.95: (a) between

X O)+y,t)+z () and w(t); (b) between Xx,(t)+Vy,(t)+2z,(t) and w,(t); (c)
between X, (t)+ y,(t)+2z,(t) and w,(t); (d) the evaluation of error functions
e (). e,(t) and e;(t).
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40

0 0.5 1 15 2 25 3

(b)

Fig. 6.4. The evaluation of error functions e (t), e,(t) and e (t) at q=1:(a) for three
systems; (b) for four systems.

6.6 Numerical simulation and results

During synchronization the earlier values of the parameters and initial conditions of
systems are considered. The time step size is taken as 0.005. Fig. 6.2 shows the
synchronization among three fractional order systems are achieved through active
backstepping approach at q=0.95. Figs. 6.2(a), 6.2(b) and 6.2(c) depict the time
response of the state tragjectories X (t) +z (t) and vy, (t), where i =1, 2, 3 represent the
drive systems (6.5), (6.7) and response system (6.9) respectively. The error states are
displayed through Fig. 6.2(d). The synchronization among four fractional order systems
are achieved through Fig. 6.3 using the same method at q=0.95. Figs. 6.3(a), 6.3(b)
and 6.3(c) show the time response of the states x (t)+ Yy, (t)+z(t) and w,(t), where
i =1 2, 3represent the drive systems (6.5), (6.6), (6.7) and the response system (6.8).
The error states for this case are described through Fig 6.3(d). It is noticed that it takes

less time for synchronization among four systems (Fig. 6.3(d)) compared to that of three
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systems (Fig. 6.2(d)) for our considered systems in both fractiona order as well as

integer order case (Fig. 6.4).

6.7 Conclusion

In the present study, the combination synchronization among a number of fractional
order drive and response systems is successfully demonstrated using backstepping
method. For validation, the combination synchronization of three and four systems are
considered taking two systems and three systems as drive system respectively, while
one system as response system, which clearly exhibit that the applied method is
effective and convenient to achieve global synchronization of a number of non-identical
fractional order chaotic systems. It is worth mentioning that this scientific contribution
of combination synchronization among the fractional order chaotic systems will be
significant towards the further study of nonlinear dynamics among the research

community involved in the area of modelling of fractional order dynamical systems.
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