Chapter 5

Chaos control and function projective synchronization of
fractional order systemsthrough back stepping method

5.1 Introduction

The chaos control and chaotic dynamics of fractional order systems are important topics
to the researchers, especially chaos control and chaos synchronization problems in
nonlinear dynamical system. Chaos synchronization is a process wherein two identical
or non-identical chaotic systems adjust with a given property of their motion to a
common behavior due to a coupling. Thus it appears to be structurally stable. These
ideas have motivated to the researchers to construct mathematical model for
synchronization of two different fractional order chaotic systems. The advantages of
fractiona order systems allow greater flexibilities in the models. The fractional order
differential operator is non local but integer order differential operator is a local
operator in the sense that fractional order differential operator takes into account the fact
that the future state not only depends upon the present state but also upon all of the
history of its previous states. For this realistic property, fractional calculus which wasin
earlier stage considered as mathematical curiosity now becomes the object of extensive
development of fractional order partial differential equations for the purpose of

engineering applications.

The contents of this chapter have been accepted for publication in Theoretical and
Mathematical Physics (Springer).
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Function projective synchronization is the generalization of projective synchronization
which is one of the important synchronization methods that has been widely
investigated to obtain faster communication with its proportional feature. In Function
projective synchronization the drive and response systems are synchronized with a
scaling function. It is obvious that the presence of the scaling function in function
projective synchronization additionally improves the security in communication. Many
types of function projective synchronizations are focused only on integer-order chaotic
systems (Chen and Li (2007), Ojoniyi (2014), Du et a. (2008), Du et al. (2010), Zhang
and Li (2012)), whereas there are few results about the function projective
synchronization for the fractional order chaotic systems (Zhou and Zhu (2011), Zhou

and Cao (2010), Agrawa and Das (2014)).

In the present chapter the dynamical behaviour and chaos control of fractional order T-
system have been studied. It is found that the chaotic attractor exists in the fractional-
order T- system. Fractional Routh—Hurwitz conditions are used to analyze the stability
conditions in the fractional-order T-system and the conditions for linear feedback
control have been obtained for controlling chaos in the considered system. The
backstepping method is used for function projective synchronization of fractional order

T-system and Lorenz system.

5.2 System’s description and its stability

5.2.1 Fractional order T-system

The chaotic dynamical T-system isintroduced by Gheorghe Tigan (Tigan (2004), Tigan
(2005)), which is described by

dx
—=a(y—-x
m (Yy-X)
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ﬂ:(c—a)x—axz 5.1
dt
%z—bz+ Xy,

dt

where a, b, ¢ are the parameters and X, y, z are state variables of the system. When the
values of the parameters are taken as (a, b, ¢) =(2.1, 0.6, 30), and the maximal

Lyapunov exponent of system is 0.37, the T-system exhibits chaos.

The fractional order T-systemis given by

dx

—=a(y—-X

e (y—x)

dq

Tgl:(c—a)x—axz (5.2
diz

——=-bz+xy,

dt® Y

where 0<q<1. Figs. 5.1(a)-(d) depicts that the T-system shows the regular chaotic
behaviour a fractional order =095 for the values of parameters
(a, b, c)=(2.1, 0.6, 30) and theinitial condition (0.1, 1.2, - 0.5). For those parameters
values and initial condition, the trajectories of the T-system are depicted through Figs.

5.2(a)-(d) to show the stable nature of the trgjectoriesat q=0.94.
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Fig. 5.1 Phase portraits of fractional order T-system for fractional order q=0.95.
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Fig. 5.2 Phase portraits of fractional order T-system for fractional order q=0.94.
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5.2.2 Equilibrium points and stability

To find equilibrium points of the system (5.2), we have

ay-x)=0

(c—a)x—axz=0 (5.3
—bz+xy=0,

and the equilibrium points are obtained as

E,=(0,0,0), E, = (2.8234, 2.8234, 13.2857) and E, = (~2.8234, — 2.8234,13.2857) .

The Jacobian matrix of the system (5.2) at the equilibrium point E(X, y, z) isgiven as

—-a a o0
J(E)=|c—a-az 0 -ax|. (5.4
y X -b

The characteristic polynomial of above Jacobian matrix is

P(A) = 22 +2.74% + (2.1X* + 4.412 - 57.33) A + 4.41X* + 4.41X y + 2.646Z — 35.154 . (5.5)
At the equilibrium point E, = (0, 0, 0), the equation (5.5) becomes

P(1) =A% +2.742 —57.331 — 35.154.. (5.6)
The eigenvalues of the equation (5.6) are A, =-8.7761, 1, =6.6761, 4, =-0.60. It is
seen that the equilibrium points E, isasaddle point of index 1 and from definition 1.3 it
isunstablefor 0<qg<1.
At the equilibrium point E, = (2.8234, 2.8234, 13.2857) , the equation (5.5) becomes
P(1) = 2% + 2.742 +18.00024 + 70.3093. (5.7)

The eigenvalues of equation (5.7) are A, =-3.4294, A,, =0.3647+£4.5132i the

equilibrium point E, is the saddle points of index 2 the (definition 1.4). So E, is stable
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for q<0.949. Similarly the equilibrium point E, =(-2.8234, —2.8234,13.2857) is

stablefor q<0.949.

5.2.3 Control of chaos

The fractional order T-system with controller is given by

dx _

——=a(ly-xX) -k (x-X

=y =9~k (=)

de _

Fy:(c—a)x—m—kz(y—y) (5.8)
diz _

F:—bz+xy—k3(z—z),

where k;, k,, k, are control parametersand (X, Y, Z) isthe equilibrium points. Jacobian
matrix of the system (5.8) at equilibrium point E(X, ¥, Z) isgiven as

—a—-k; a 0
JEE)=|c-a-az -k, -ax
y X —b-k,

At a=2.1, b=0.6, c=30, we get the corresponding characteristic polynomial as
P(A)=2° + (K, + K, + Ky + 27) A% +[2.1X* + 4.41Z + (K, + 3/ 5)(K, + k, + 2.1)

+K, (K, +2.1) —58.59)1 +[4.41X ¥ + 2.1X* (K, + K, + 2.1) — 2.1k, X>

+ (k; +3/5)(4.41Z + k, (k, + 2.1) — 58.59)]. (5.9)
In view of fractional order Routh-Hurwitz conditions, we get
a =k +k, +k; +2.7
a, = 2.1X2 + 4.41Z + (k, + 3/5)(k, + K, + 2.1) + k, (K, +2.1) —58.59 (5.10)

a, = 441Xy + 2.1X* (k, + k, + 2.1) — 2.1k, X* + (K, + 3/5)(4.41Z + k, (k, + 2.1) - 58.59) .
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5.2.4 Stabilizing the point E;
Putting the value of E, in equation (5.10) and taking k, =4, k, =10 and k, =1, we
have D(P)>0, a >0, a,>0, aa,—a, >0. All eigenvalues of the equation (5.9) are

real and negative. So the system (5.8) is localy asymptotically stable for 0<q<1,

which is shown through Fig. 5.3(a).

5.2.5 Stabilizing the points E, and E,

Substituting the value of E, in equation (5.10) and considering k, =1, k, =5 and
k,=-3/5, wehave D(P)>0, a >0, a,>0, a,a,—a, >0. Hence all the eigenvalues
of equation (5.9) are real and negative. So the system (5.8) is locally asymptotically
stable for 0<q<1 (Fig. 5.3(b)). Smilarly for k; =1, k, =6 and k, =-2, the system
(5.8) is locally asymptotically stable for 0<q<1 at the equilibrium pointE, (Fig.

5.3(0)).
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x(®), y(t), z(t)

(©

Fig. 5.3 Plots of x(t), y(t), z(t) of the controlled system (5.8): (a) at equilibrium point
E,; (b) at the equilibrium point E, ; (c) at the equilibrium point E;.

5.3 Function projective synchronization between fractional order non identical T-
system and L orenz system

The fractional order Lorenz system (Wu and Shen (2009), Grigorenko (2003)) is given
by

d%x
dt_q:a(y_x)

dq
Tqy —X(r-2)-y (5.11)

diz
dt_q_xy Bz,

where « is the Prandtl number, y is the Rayleigh number and g is the size of the

region approximated by the system. The phase portraits of Lorenz system is shown

through Fig. 5.4 for the parameters values « =10, #=8/3, y=28 and initia

condition=(0.1, 0.1, 0.1) at g=0.993.
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Fig. 5.4 Phase portrait of the Lorenz system for the order of derivative q=0.993.

In this section in order to do function projective synchronization between fractional

order T-system and Lorenz system,

we consider fractional order T-system as the master system as

dx,
dt = a(yl - Xl)
dq
T?q/l =(c-a)x -axz (5.12)
diz
G0 - AT

and the fractional Lorenz system istaken as slave system as

d%x
dtqz =0((y2 - Xz) + Ul(t)
dq
=% 2) =Y, 0, (0) (5.13)
diz
quz XY, _ﬁzz +U3(t).
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Taking the error states as e =x, —-mXx,, €, =y, —-myy, and & =z, —-m;z, where m,

m, and m, are scaling functions, the error dynamical system becomes

dq

dt? :a(ez_ei)+W1+u1(t)

d,

go =& -8)-emz —emx, —e,+y, + U, (t) (5.14)
d,

dt¢ :e162+elm2y1+e2rnlxl_ﬂes+‘//3+u3(t)a

where y, = am,y, —amx, —ma(y, - x)
Vo =Mk — MMz X —myly; +(C—a)x —ax,z]
Vs =mmyxy, —m[(5-0)z +xy]
Step I: Let usconsider w, = e, then fractional derivative of w;is

diw, d%

at = ate =a(e, — W) +y; +uy(t), (5.15)

where e, = o, (W,) is regarded as virtual controller. To stabilize w; - subsystem, we
define the Lyapunov function V, as

1
Vl ZEWJ_Z

whose g-th time derivativew.r.totis

dv, 1dqwl2 dw, )
=— <w, using Lemmal.l
dt® 2 dte todte (using )

e,  <wla(a(W)-w)+y, +u(t)].
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Taking o, (W,) = w, M g u, (t) = —w,, we get ddi\:l <-w? <0 is negative definite,
(04

which implies that w; -subsystem (5.15) is asymptotically stable. For the virtual control
function «,(w,), we define avariable w, between e, and «,(w;) as
W, =€ —a;(Wy).

Then, (w,,w,) -subsystem is obtained as

diw,

pre =aW, —W,,

dw, __ -)- - 5.16
a oW, + Wy (7 =€) = WM,z — €My X, + 1/, + Uy (1), (5.16)

where e, = a,(w,,w,) may be considered as virtual controller.

Step 11: In this step to stabilize (w;, w,) -subsystem (5.16), let us define the Lyapunov
function V, as

1 1 1
Vv, =V1+§W§ =§wl2 +§W22'

Now

div, 1d'w’ 1d'Ww
= — + —
dt® 2 dt* 2 dt®

dw, dw,
dt*

e,  <-W —ow; +W,[aw, + W (7 — e, (W, W) = Wimyz, — o, (W, W, )My X, + 17, + U ()]

If o,(W,w,)=0 and u,(t)=-w, +wmz —wy —aw,, then ddcl\:z <-W —aw; <0

makes subsystem (5.16) asymptotically stable.

Consideringw, = e, —a,(w,,W,), we get the following (w,, w,, W, ) -subsystem as
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diw,

g e

dw

dtqz =—a (W, + W, ) — W, W5 — WM, X (5.17)
dw,

W W,
dtq3 =w, (W, + W, —;1) +wWm,y, + (W, +W, —;1)”‘0(1 — W+ + Uy (1) .

Step I11: In order to stabilize (w,,w,,W,)- subsystem (5.17), choosing the Lyapunov
function as

1 1 1 1
V3 =V2 +§W32 =§W12 +EW§ +§W§,

we get

dqu_ldquJrldqvvﬁJrldqvvg
dt 2 dt 2 dtY 2 dt¢

dw, dw, dw,
+ W, +W,
dt* dt* dt*

<w,

: W,
e, <-W —aW; — AW + Wo[—W, — Wm X, + W, (W, + W, ——2) + Wm, Y, + (W, + W,
a

W,
_;l)rnlxl +ys +Us(t)].
W W,
If Us(t) = =5 — (W, + W, _;)mlxl + WMy X — W (W, + W, _;) —WMmy, + W,

dv,
dt®

<-W—oW, - AW <0 negative  definite.  In  view of @ w, =e,

W, =e2—al(wl)=e2—el+%, w, =6, —a,(W,W,) =&, theerrors e, e, and e, will

converge to zero after a finite period of time, and thus the function projective

synchronization between fractional order T-system and Lorenz system is achieved.
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Fig. 5.5 State trgjectories of error functions e (t), e,(t) and e,(t) of master system

(5.12) and dave system (5.13) for fractional order g = 0.993.

5.4 Numerical ssimulation and results

In numerical simulation the initial values of master system and slave system are taken
as  (x(0), v1(0), 2(0)) = (0.1, 1.2,-0.5) and (x,(0), y,(0), z,(0) = (0.1, 0.1 0.1)
respectively. Thus the initial value of error systems will be
(&(0), &,(0), &(0)) = (0, 1.1, 0.6) . The time step is taken as 0.005.

Now we are taking the scaling function as periodic function as

m, =ay, cos(a,X,) + ay;

m, = a,, cos(a,,y,) + ay

M, = &y, CoS(ay,2,) + ag; -

For the values of parameters a, =05 a,=02 a,=01 a,=01 a,=03

a, =02 a;=02 a,=01 a,;=03 itis seen from Fig. 5.5 that the error
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functions asymptotically converge to zero as time become large for the order of

derivatives q=0.993, which shows that the master system (5.12) is synchronized with

the dave system (5.13).

5.5 Conclusion

Three important goals have been achieved in this chapter. First one, the local stability of
the T-system with fractional order time derivative is analyzed. Second one is employing
the control function of fractional order T-system at various equilibrium points. The
stability of the equilibrium points using the fractional Routh—Hurwitz criterion and the
sufficient conditions for control of the fractional order T-system by linear feedback
control have been studied. It is observed that the fractional order T-system can be
controlled to its equilibrium points. The stability theorems of fractional-order systems
guarantee that the chaos control occurs if the necessary conditions are satisfied.
Simulation results show that the feedback control is easy to implement even for
controlling the fractional order chaotic systems. Third one is the successful
implementation of the backstepping method to achieve function projective

synchronization between fractiona order T-system and Lorenz system.
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