Chapter 4

Complex projective synchronization of fractional order
complex dynamical systems using nonlinear control method

4.1  Introduction

The dynamical systems have been widely applied to describe a variety of physical
phenomena, such as amplitudes of electromagnetic fields, detuned laser systems and
thermal connection of liquid flow (Ning and Haken (1990), Roldan et al. (1993),
Toronov and Derbov (1997), Luo and Wang (2013)) etc. The severa complex
dynamical systems of physical interest have been studied and proposed by the many
researchers (Ning and Haken (1990), Mahmoud and Mahmoud (2010), Liu and Liu
(2011), Liu and Liu (2010), Nian et a. (2010). The complex dynamica systems are
used in various important fields of physics and engineering. One of the examples is
laser physics where the atomic polarization and electric field amplitudes in aring laser
system of two-level atoms are complex quantities (Fowler et a. (1983), Rauh et al.
(1996)). The complex chaotic systems are efficiently used in communications, and aso
in security of the transmitted information (Mahmoud et a. (2007a), Mahmoud et al.
(2008)). In recent years, the results of many researchers have proposed about the
properties of dynamics in real space and complex space (Mahmoud and Mahmoud
(2010), Liu and Wang (2007), Wu et al. (2012), Liu and Zheng (2009), Liu et al. 2011)).
So there are plenty of the scopes for researchers to explore the dynamical behavior in

fractional order complex nonlinear systems.

The contents of this chapter have been communicated in ASME Journal of Computational
and Nonlinear Dynamics.
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In 1982, complex Lorenz system was first introduced by Fowler et a. (1982), and its
dynamical properties studied by Mahmoud et al. (2007a). But the factional order
complex Lorenz system was proposed and studied by Luo and Wang (2013). In 2007,
the complex Lu system was proposed by Mahmoud et al. (2007b), and fractional order
complex Lu system was studied by the Jiang et al. (2014).

In 2012, Wu et a. (2012) have studied complex projective synchronization in coupled
chaotic complex dynamical systems. In 2013, Mahmud and Mahmud (2013) have
studied complex modified projective synchronization of two chaotic complex nonlinear
systems. In 2014, Liu (2014) has done complex modified hybrid projective
synchronization of different dimensional fractional order complex chaos and real
hyperchaos. But in fractional order systems, the complex projective synchronizations
has not been studied.

In this chapter, the complex projective synchronization is studied in fractional order
complex dynamical systems using nonlinear control method. The effectiveness of the

method for synchronization is shown through error analysis and results are displayed

graphically.

4.2 Nonlinear control method for projective synchronization of fractional order
complex nonlinear systems
Let us consider two fractional order complex nonlinear systems of which first one is

master (drive) system as

dix.,
dt*

= AX, + (X)),

where x, =X, + X, iscomplex state variable with
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dq

dtq Axm+f(x)

dq AX f 4.1
_— +1,(%,) (4.)

and the second one is response (slave) system as

dvy,
dt®

= By, +9(y,) +u(®),

where y, =y, + jy,, is complex state variable, and u(t) =uy (t)+ juy(t) is control

function with

dqy
dtq Bysl + gl(ys_l) + l"Il (t)
dy, i
where u; (t) = (U, Ug,eoveeee Uy, )" and uy(t) = (Uy, Uy ,U,.)". Now we define

complex error function e, between drive and response systems for complex projective
synchronization as

e =€ +j6 =Ys—

where M =M, + jM, =diag(d,, ¢y,...coorrnn. B) s = +jm , 1=12, e n.
Then the error function will be

e, =Yy, —MiX, +M,X,

e, =Y, —MX,, +M,x,

2

Case-I: If lime, _lLrL]HySl My X, +M,x,, [ =0 and
lime, _[LTHVSZ M, X, szmlH:O, SR - N— 1) and
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€, = (6,8 ,&,,)" , then we obtain complex projective synchronization between
the systems (4.1) and (4.2).
Case-1l: When ¢ =¢, =..cccunnenn. =¢,=], then the complex complete

synchronization is obtained between master and response systems.

Case-l1I: If we take ¢, =@, =..cceee.e. =¢, = a real number, then the projective

synchronization is obtained between complex systems (4.1) and (4.2).

The error system reduced to
die,
dtq = Bys + g(ys) -M (Axm +f (Xm)) + U(t) )

which can be separated into real and imaginary parts as

dq

dtequ =Bg, +(B-AM,x, —(B—AM,x,, +0,(Ys)— M, f,(x,)+M,f,(x, )+uy (1)

dq

erz i
e =Be_ +(B-AM,x,, +(B-AM, X, +0,(Y, )M, f,(x, )M, f(x,)+u,(). (4.3)

Now defining the Lyapunov function as
V= 1(e,Ter +e'e)
2 1 1 2 12

and taking g—th order derivative of V, we get

dv 1( d¢ d®
q —5 _q(e;efl)-i__q(e:zefz)
dt 2\ dt dt
1(d%: d%
= —4—
2| dte dt®
d, d

<e, G e dtqrz . (using lemma (1.1))
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d', ~ d%,
dt¢ ' dtd

Substituting the values of from equation (4.3) and choosing the

appropriate control functions u; (t), u,(t) to make q—th order derivative of Lyapunov

q

function negative definite. i.e., (?:it\q/ <0, which helps to get the synchronization

between the systems (4.1) and (4.2).

4.3 Systems’ descriptions
4.3.1 Fractional order complex Lorenz system

The fractional order complex Lorenz system (Luo and Wang (2013)) is given as

dx

dtq = al(XZ _Xl)

dx

dtq2 =X X — XX 4.9
dix, 1, <

dt :E(X1X2 +X%,) —a5Xs,

where 0<qg<1 is the fractional order derivative and a,a,,a, are system
parameters, X, = X, + jX, and X, = X, + jX,, j =+/—1 are the complex state variables
and X, = X, is a real state variable. Now we separate into real and imaginary part of
system (4.4) in the following form

!

dx

qu' ’ !

dtqz = ai(x4 - Xz)

dqx’ ! ! I\,

dtf =8,% — X3 — XX (4.5)
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dqle ' ' 1\
dte =X =X — XX
dqx‘; ! ! ! !
o= 6, — 3

when the values of the parameters are taken as a, =10, a, =180, and a, =1, the
system is chaotic and the phase portraits of the system (4.5) a q=0.95 in ()
X — X —X; space, (b) X —X;, — X, space, (C) X, — X, —X; space, (d) X, —X; — X, space,

(€) X, —x; — X space, (f) x; — X, — X, space are shown through Fig. 4.1.
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Fig. 4.1 Phase portraits of the complex Lorenz system for the order of derivative
g=0.95.

4.3.2 Fractional order complex Lu system

The fractional order complex Lu system (Jiang et al. (2014)) is described as

dvy,

dt =by(y, - 1)

de

dt)q’z =-Y1Y; +0,Y, (4.6)
de 1, _

TZBZE(ylyz"'ylyz)_bsyy

where v, =y, +jy, and Y, =Y+ Y, , ] =+/-1 are the complex state variables and
Y, =Y is area state variable. System (4.6) separate into real and imaginary part as

follows

qy,/
Yo b(y,-y)

q,.,

dy. C
qu:bl(yzl_yz)

dq : Iy ! !
dtZS =—Y1¥s +b,Y; (4.7)
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=-Y,¥5 +b,Y,

qo - Vst YaYe—hoys.

The phase portraits of (4.7) are depicted through Fig. 4.2 in (Q) y; — Y, — Y5 space, (b)
Yi— Y2~ Yispace, (€) Y1 — Y, — Y5 space, (d) Y, — Vs — Y, space, (€) Y, — Y, — s space,
) vys—-V,—-Y. space a =095 for the parameters  values

b, =40, b,=22 and b, =5.
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Fig. 4.2 Phase portraits of the complex Lu system for the order of derivative q=0.95.

4.4 Complex projective synchronization between fractional order complex Lorenz

and Lu systems

Fractional order complex Lorenz system is taken as master system as

dq , ! !

dt:(1 =a,(%— )

qu' ! !

dtqz :ai(x4_x2)

dqx’ ! ! !

mf=%&—&—&& (4.8)
quﬁ; ' ’ 1\

dte =X =X — XX

qué I/ ! ! !

e R L

and fractional order complex Lu systemsis taken as response system as

dq
Tz/l = bl(y2 - yl) + ul(t)
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d%y,
dt®

=-Y1Y; +b2y2 +u2(t) (4-9)

dvy, 1, _
dtZS =5 (Y2 + ¥1¥,) ~0sY5 + Uy (1),

where u,(t) =u;(t)+ juy(t) , u,(t)=uz(t)+ juy(t) and u,(t)=ug(t) are control
functions.

The equation (4.9) reducesto

dq 4 ! / [
TZl=bl(y3 v+

q,,

d ! ! !
TZZ = bl(yA - yz) + uz(t)

dqyé 'y, ! !
dt ==Y1Y¥s +0,y5 + U5 (1) (4.10)

dvy,
dte

==Y, Ys + 0, Y, +U,(t)

d?yg
dt?

= YiY5+ Yo Y, — by +ug(t).

We define the error function between drive and response systems as

e=€+je=y-Mx,e=€+jg=y,-M,x, and e,=€ = y,—M,x,, where M is

M, O O m + jm, 0 0
scaling matrix andtakenas M =| 0 M, 0 |= 0 m,+jm, O
0 0 M, 0 0 m

Separating real and imaginary parts of above error function as

€ = Y3 — MyXg + M,X, (4.11)
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€ = Yu—MX, —M, X,
€& = Y5~ MyXs,

we obtain the error dynamical system as

dq 4 / / / 4 ! ! '

2=y (& - ) - - (3, )X mlaX, - (& ~B)X] M -, ()

dqe; / / ' / ! !

e =by(e; —&)—mlax, —(a,—b)x] -m,[a,x; —(a, —b)x]+mbx, + mb,x,
+U, (1)

dq%' , ' ' ) ' ! v

Do~ Malanx; = (L4+0,)% =X ]+ My [, = (1+by) X, = X, %] (4.12)
— Y1Ys + Us(t)

dqe; ’ ' ' 1! ’ ’ 1! r, '

F =b,e, —my[a,Xx; — (1+b,)X, —X;Xs] — m,[a,x — (L+10,)%; — X X] = Y5 s + Ug (1)

dqeé , 1 ) ’ '\, '\ !

o = D MG 36X, — (3 —ba)X6T+ YiYs + oYl + U (1),

In order to determine the controller, let us the Lyapunov function V (e) as
1 / / / /! /
V(e =S (e ref vl vl e, (4.13)

whose q—th order derivativew.r.to t is

dV(e) _1 ¢’ dlef d'e’ die? dief
dtd 2" dt dtd dtd dt? dtd '

aa’ qa’ aa! [SPN
d el + ! d ez + / d e3 +e:1 d e4
dt* dt* dt* dt*

, , diel :
< (€ +€ e ). (usinglemmal.l) (4.14)

di¢ d%, d%; d%
dtd ' odt? ' dt? ' dtd

After putting the values of

a4/
and ddt?’ from equation (4.12)

in equation (4.14) and
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m, + jm, 0 0 1+j3 0 O
Considering M = 0 m+jm, O |=| 0 2+j5 0],
0 0 m, 0 0o 3

so that controllers are

U (t) = -be +[a,x; - (a, —b)x] -Jax, —(a, -b)x;] - mbyx; + mbx,

U, (t) = -hie) +[a,x, — (8, —b)x;]+Jax; - (a —b)x ] -myb x, —mjb X,

Us (1) = —&5 —b,e + A a,x — (1+ by )X — x5 - Fa X, — (1+0,) X, -]+ y1ys  (4.15)
Uy (1) = €, = b€, + 3, — (1+b,)x, =35 ]+ Ja,x — (1+b,) % =X ] + Y ¥

Us () = 3XX + 56 — (8 —B3)Xs] = ¥1Ys — Vo Vi

we get the q-th order derivative of the Lyapunov function V(e) as

e “d\iq(e) <-be’-be’-€’-€?-he’ <0, i.e, negative definite.

Hence !im||e(t)|| =0 and thus the complex projective synchronization between fractional

order complex Lorenz and Lu systemsis achieved.

¢,
o
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Fig. 4.3 The evolution of the error functions atq=0.95: (a) evaluation of €(t); (b)
evaluation of €,(t); (c) evauation of €(t); (d) evaluation of €,(t); (e) evauation of
e(t).
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4.5 Results and discussion

In this section, the initial conditions of fractional order complex Lorenz system is taken
asx (0) =2+ j3, x,(0) =5+ j6 and x;(0) =9. The initial condition of fractional order
complex Lu system is taken as y,(0) =1+ j2, y,(0) =3+ j4 and y,(0) =5. Choosing
the scaling matrix M as M =diag(1+ j3, 2+ j5, 3), we get the initial condition of error
function as e =8-j7, e, =23- j33 and e, =-22. For these values of parameters the
complex projective synchronization are shown through Fig. 4.3 a q=0.95, where the

error functions converge to zero as time becomes large. Thus it can be concluded that
the applied method is very much effective to synchronize the complex chaotic systems
even for fractional order case.

4.6 Conclusion

The present chapter investigates the complex projective synchronization between two
fractional order complex systems viz., Lorenz and Lu systems. Based on Lyapunov
stability theory, the synchronization of the systems is done with proper design of control
functions. The graphical representation of the numerical results with error states tending
to zero as time becomes large clearly exhibits that the nonlinear control method is very
much reliable and effective even for synchronization of fractiona order complex

systems.
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