
                       

Chapter 3 
 
 
 
 
Phase and anti-phase synchronizations of fractional order 
hyperchaotic systems with uncertainties and external 
disturbances using nonlinear active control method

Chaos theory has many useful applications in many areas of engineering such as digital 

communication, secure communication, power electric and power quality, biological 

systems, chemical reactions analysis and design and information processing. 

Synchronization and anti-synchronization are interesting area of research in chaos 

theory (Fujisaka and Yamada (1983), Pecora and Carroll (1990), Chen and Dong 

(1998), Elabbssy et al. (2006), Lu et alt. (2002), Chen and Lu (2003), Li and Xu 

(2004)). It is widely used in many fields of physics and engineering (Wang (2003)). 

Recently, more works have been done in the study of chaos synchronization. Different 

types of synchronization such as generalized synchronization, complete 

synchronization, phase synchronization, projective synchronization, lag synchronization 

function projective, adaptive synchronization etc. (Agrawal et al. (2012a), Chang and 

Chen (2010), Cai et al. (2012), Srivastava et al. (2014b)) used even in fractional order 

and also in coupled complex system. Fractional order derivative has become an active 

field of research to the scientists and engineers since fractional order system response 

ultimately converges to the integer order system. A wide range of problems in different 

branches of engineering and biology have already been studied by a number of 

researchers from different parts of the world to explore the potential of the fractional 

  

3.1 Introduction 

                                                 
The contents of this chapter have been published in International Journal of Dynamics and 
Control (Springer), 2015. DOI: 10.1007/s40435-015-0186-x 
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derivative. The usage of first order time derivative with fractional order time derivative 

is not only applicable for non-Gaussian but also for Non-Markovian systems. Another 

important point is that fractional order systems have gained popularity in the 

investigation of dynamical systems since they allow a greater flexibility in the model 

and also for its nonlocal behaviour which takes into account  the fact that the future 

state not only depends upon the present state but also upon all the history of its previous 

states. 

The word chaos is derived from the Greek words “ osχα ” is an active research topic for 

last few decades to the researchers working in the area of nonlinear dynamical system. 

Chaotic system is a bounded nonlinear deterministic system having aperiodic long term 

behavior, which is very much sensitive on initial conditions. Hyperchaotic system is 

classified as chaotic system with more than one positive Lyapunov exponent. 

Hyperchaotic system is used to improve the security of chaotic communication system. 

The hyperchaos in fractional order dynamical system was first studied by Li and Chen 

(2004b), where dynamics of fractional Rossler system was studied through numerical 

simulations. Chaos synchronization via scalar transmitted signal can be found in the 

research contribution of Cafagna and Grassi (2011), where an observer based method is 

used to synchronize a class of fractional order chaotic systems. In 2012, Cafagna and 

Grassi (2012a) have used the observer- based projective synchronization to synchronize 

fractional order hyperchaotic Rossler systems. In 2006, Dong et al. (2006) synchronized 

the hyperchaotic Rossler system with uncertain parameters using nonlinear active 

control method. In 2014, Bhalekar (2014) synchronized the fractional order 

hyperchaotic systems using active control method. But to the best of author's 

knowledge, this powerful method has not yet been used during the study of 
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synchronization and anti-synchronization of hyperchaotic systems in fractional order 

cases. 

The synchronization between chaotic systems with uncertainties and disturbances are 

not easy jobs for researchers since there are always possibilities of destroying 

synchronization under the effects of those parameters especially for fractional order 

systems. In 2012, Chen et al. (2012) have studied disturbance-observer-based robust 

synchronization control of uncertain chaotic systems. Jawaadaa et al. (2012) studied 

robust active sliding mode anti-synchronization of hyperchaotic systems with 

uncertainties and external disturbances. But phase and anti phase synchronizations of 

fractional order hyperchaotic systems with uncertainties and external disturbances using 

nonlinear active control method is first of its kind.  

In this chapter the phase and anti-phase synchronizations between non-identical 

fractional order hyperchaotic systems viz., Lu and 4D integral order hyperchaotic 

systems are studied using nonlinear active control method in the presence of parametric 

uncertainties and external disturbances. Numerical simulation results are displayed 

graphically which clearly exhibit that the nonlinear active control method is effective, 

easy to implement and reliable for both the phase and anti-phase synchronizations of 

two nonlinear fractional order uncertain hyperchaotic systems. 

3.2 Problem formulation 

Consider an uncertain fractional order chaotic system as a master system as 

10),()()( 1111 <<++∆+= qtdxfxAAxD q
t                                      (3.1) 

and another uncertain fractional order chaotic system as the slave system as  

),()()()( 2222 tutdyfyAAyDq
t +++∆+=                                                     (3.2) 
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where nT
n Rxxxx ∈= ].......,,[ 21  and nT

n Ryyyy ∈= ].......,,[ 21  are the state vectors, 

nnRAA ×∈21,  are constant matrices with proper dimensions, nn RRff →:, 21  are the 

nonlinear functions of the systems, nnRAA ×∈∆∆ 21 ,  are parametric uncertainties of 

chaotic systems with ,11 δ≤∆A ,22 δ≤∆A  where 1δ , 2δ  are positive constants and 

)(,)( 21 tdtd are the external disturbances of uncertain chaotic systems with 

,)( 11 ρ≤td ,)( 22 ρ≤td where 0, 21 >ρρ  and 
nRtu ∈)(  is the control input vector of 

the uncertain chaotic system (3.2). Now controller )(tu is to be designed in such a way 

that the master and slave systems are synchronized or anti-synchronised through the 

proper definitions of errors. 

If the synchronization error is defined by xye −= , then the corresponding error 

dynamics can be obtained as  

),()(),()()(

)()()()()()()(

112122

11112222

tutdyxFtdeAAA

tutdxfxAAtdyfyAAe=D q
t

+−++∆+∆+=

+−−∆+−++∆+

  
                (3.3) 

where .))(()()(),( 1122121 yAxAAAxfyfyxF ∆−−∆++−=  

If the anti-synchronization error is defined by xye += , then the corresponding error 

dynamics can be obtained as  

),()(),()()(

)()()()()()()(

122122

11112222

tutdyxFtdeAAA

tutdxfxAAtdyfyAAe=D q
t

++++∆+∆+=

+++∆++++∆+

  
                (3.4) 

where .))((()()(),( 1221122 yAxAAAxfyfyxF ∆−∆+−++=  

3.3 Nonlinear active control method to design the controller 

Let us define the Lyapunov function of error system (3.3) as 
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ede +++≤ .  (using Lemma 1.1)                          (3.5) 

Putting the values of q

q

dt
ed 1 , q

q

dt
ed 2 , ….. q

n
q

dt
ed

, and choosing the controller )(tu  in such 

a way that the thq −  order derivative of the Lyapunov function )(eV  becomes negative 

definite i.e., 0)(
<q

q

dt
eVd , which implies that the systems (3.1) and (3.2) are 

synchronized according to definition of error systems. 

If there is any eigen value of the error system is equal to zero, then another type of 

synchronization phenomenon called phase synchronization occurs, in which the 

difference between various states of synchronized systems may not necessarily 

converge to zero, but is less than or equal to a constant. The same procedure may be 

used for anti-phase synchronization process, in which the state vectors have the same 

absolute values but opposite in sign. 

3.4 Systems’ descriptions 

3.4.1 The fractional order hyperchaotic Lu system 

The fractional order Lu hyperchaotic system (Pan et al. (2011)) is given as 

4121
1 )( xxxa

dt
xd
q

q

+−=  

2331
2 xaxx

dt
xd
q

q

+−=  
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3221
3 xaxx

dt
xd
q

q

−=                                                                                                       (3.6) 

4421
4 xaxx

dt
xd
q

q

+= , 

where 321 ,, xxx  and 4x  are states variables and 321 ,, aaa  and 4a  are constant 

parameters. The phase portraits of the system (3.6) in 321 xxx −− , 421 xxx −−  spaces 

are depicted through Fig. 3.1 for 95.0=q  at 20,3,36 321 === aaa  and 14 −=a . The 

lowest order of the systems to the hyperchaotic is 3.8 (at ),95.0=q  which is the sum of 

orders of all fractional derivatives in the systems. Thus the range of q  is 195.0 ≤≤ q  

for which Lu system is hyperchaotic. 

-20
0

20

-20
0

20
40

0

10

20

30

40

x1(t)x2(t)

x 3(
t)

 
-20

0

20

-20
0

20
40

-100

-50

0

50

100

x1(t)x2(t)

x 4(t)

 

                                (a)                                                                  (b) 

Fig. 3.1 Phase portraits of Lu hyperchaotic system for 95.0=q : (a) in 321 xxx −−  
space; (b) in 421 xxx −−  space. 

3.4.2 The fractional order hyperchaotic 4D Integral order system 

The fractional order 4D Integral order hyperchaotic system (Deng et al. (2009)) is given 

by 

21
1 yay

dt
yd
q

q

−=  
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2
321

2 yyy
dt

yd
q

q

−=  

433221
3 ybybyb

dt
yd
q

q

−−−=                                                                                         (3.7) 

43
4 cyy

dt
yd
q

q

+= , 

where 321 ,, yyy  and 4y  are states variables and 321 ,,, bbba  and c  are the constant 

parameters. The phase portraits of (3.7) in 321 yyy −− , 421 yyy −−  spaces are 

depicted through Fig. 3.2 for 95.0=q  at 0.6,0.1,0.1,56.0 321 ==== bbba  and 

8.0=c . Here also lowest value of q  is 0.95 for which the system is hyperchaotic. 

-5
0

5

-5

0

5
-2

-1

0

1

2

y1(t)y2(t)

y 3(
t)

 
-5

0
5

-5

0

5
-1

0

1

2

y1(t)y2(t)

y 4(
t)

 

                                (a)                                                                  (b) 

Fig. 3.2 Phase portraits of 4D Integral order hyperchaotic system for 95.0=q : (a) in 

321 yyy −−  space; (b) in 421 yyy −−  space. 

3.5 Phase synchronization between fractional order uncertain hyperchaotic Lu and 

4D Integral order systems using nonlinear active control method 

In this section the phase synchronization between fractional order Lu and 4D Integral 

order hyperchaotic systems is studied, which still remain hyperchaotic in presence of 

uncertainties and disturbances (Figs. 3.3-3.4). The uncertain fractional order Lu 

hyperchaotic system is defined as a master system as 
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)20sin(8.0)( 34121
1 txxxxa

dt
xd
q

q

+++−=  

)20cos(3.0 42331
2 txxaxx

dt
xd
q

q

+−+−=  

)20sin(25.0 13221
3 txxaxx

dt
xd
q

q

++−=                                                                       (3.8) 

)20cos(29.0 24421
4 txxaxx

dt
xd
q

q

+−+= , 

where uncertain parameter 
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td . Fig. 3.3 shows the phase portraits of the fractional order Lu 

hyperchaotic system with uncertainties and disturbances in 321 xxx −− , 421 xxx −−  

spaces for the order of the derivative 95.0=q . 

The uncertain fractional order 4D Integral order hyperchaotic system is considered as a 

slave system as 

)()100sin(1.01.02.0 14321
1 tutyyyay

dt
yd
q

q

++−+−=  

)()100cos(1.001.0 23
2
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dt

yd
q

q

++−−=  

)()100sin(2.003.0 32433221
3 tutyybybyb

dt
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where uncertain parameter 
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and Ttututututu )](),(),(),([)( 4321=  is the controller to be 

designed. The phase portraits of fractional order 4D Integral order hyperchaotic system 

with uncertainties and disturbances in ,321 yyy −− 421 yyy −−  spaces are depicted 

through Fig. 3.4. 
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                                (a)                                                                  (b) 

Fig. 3.3 Phase portraits of Lu hyperchaotic system with uncertainties and disturbances 
for 95.0=q : (a) in 321 xxx −−  space; (b) in 421 xxx −−  space. 
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                                (a)                                                                  (b) 

Fig. 3.4 Phase portraits of 4D Integral order hyperchaotic system with uncertainties and 
disturbances for 95.0=q : (a) in 321 yyy −−  space; (b) in 421 yyy −−  space. 

From equations (3.8) and (3.9) we get the following error dynamical systems as 

)()20sin(

)100sin(1.01.16.0)1()(1.02.0

1

4321114321
1

tut

txxxaxaaeeeae
dt

ed
q

q

+−

+−−+−++−+−=  

)()20cos(

)100cos(1.03.001.001.0

2

2
32314323131

2

tut

tyyxxxxxaxee
dt

ed
q

q

+−

+−++−−+−=        3.10) 

)()20sin(2)100sin(2.0

)()03.0(5.0)03.0(

3

2143322211433221
3

tutt

xxxbxbaxbxebebeb
dt

ed
q

q

+−−

−−−++−−−−+−=

 

),()20cos(2

)100cos(2.0)(98.09.004.098.004.0

4

3144321431
4

tut

txxxacxxxceee
dt

ed
q

q

+−

−−−++++++=

 

where 4,3,2,1, =−= ixye iii  are error states.
 

In order to determine the controller, the Lyapunov function )(eV  is defined as 

)(
2
1)( 2

4
2
3

2
2

2
1 eeeeeV +++= ,                                                                                      (3.11) 

whose thq −  order derivative w. r. to t  is 
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             ).( 4
4

3
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2
2

1
1 q

q

q

q

q

q

q

q

dt
ede

dt
ede

dt
ede

dt
ede +++≤                                                     (3.12) 

Substituting the values of 4,3,2,1, =i
dt

ed
q

i
q

 from equation (3.10) in equation (3.12) 

and choosing the controller as 

)20sin(
)100sin(1.01.16.0)1()(1.02.0)( 432111432111

t
txxxaxaaeeeaeetu

+
−+++++−+−+−−=

 

)20cos()100cos(1.03.001.001.0)( 2
3231432313212 ttyyxxxxxaxeeetu +−+−−++−+−−=

 

)20sin(2
)100sin(2.0)()03.0(5.0)03.0()( 214332221143213

t
txxxbxbaxbxebebtu

+
+++−−+++++=

 

),20cos(2
)100cos(2.0)(98.09.004.098.004.0)( 314432144314

t
txxxacxxxeceeetu

+
++−−−−−−−−−=  

we get the thq −  order derivative of the Lyapunov function )(eV  as  

0)( 2
4

2
32

2
2

2
1 <−−−−≤ eebee

dt
eVd

q

q

. 

Thus it is concluded that 0)(lim =
∞→

te
t

, and hence the synchronization between master 

and slave systems is achieved. 

Also the error system is reduced to 

iq
i

q

e
dt

ed
−= , 5,4,3,2,1=i .                                                                                      (3.13) 
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All the eigen values of the error systems are negative and hence satisfy the condition 

4,3,2,1,5.0)arg( => iqi πλ  (Cafagna and Grassi (2012b)) which will lead the system 

(3.13) asymptotically converge to zero as ∞→t  and hence synchronization between 

systems (3.8) and (3.9) is achieved. 
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   (e) 

 

   (f) 

Fig. 3.5 Phase synchronization for signals: (a) between 1x  and 1y ; (b) between 2x  and 

2y  (c) between 3x  and 3y ; (d) between 4x  and 4y ; (e) The evolution of the error 
functions of uncertain hyperchaotic systems; (f) The evolution of the error functions of 
hyperchaotic systems, for fractional order derivative .950.=q  
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3.6 Anti-phase synchronization between fractional order uncertain hyperchaotic 
Lu and 4D Integral order systems using nonlinear active control method 

In this section during the study of anti-phase synchronization, the fractional order Lu 

hyperchaotic system (3.8) is taken as master system and fractional order 4D Integral 

order hyperchaotic system (3.9) is considered as a slave system. Defining the error 

states as 4,3,2,1, =+= ixye iii  and proceeding as before, the error dynamical system 

becomes 

)()20sin(

)100sin(1.01.16.0)1()(1.02.0

1

4321114321
1

tut

txxxaxaaeeeae
dt

ed
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2

2
32314323131

2
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tyyxxxxxaxee
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+−−−++−−=
         

(3.14) 
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3144321431
4
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dt
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++−

+−−−−−++=

 

Defining the Lyapunov function )(eV  as given in equation (3.11) and choosing the 

controller as 
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−−

−−+−+++−+−−=

 

)20cos(

)100cos(1.03.001.001.0)( 2
3231432313212

t

tyyxxxxxaxeeetu

−

−+++−−++−−=

 

)20sin(2)100sin(2.0

)()03.0(5.0)03.0()( 214332221143213

tt

xxxbxbaxbxebebtu

−+

−−−−+−−++=

 



 
 

CHAPTER 3  
 

84 
 

).20cos(2)100cos(2.0

)(98.09.004.098.004.0)( 314432144314

tt

xxxacxxxeceeetu

−+

−−++++−−−−=
 

It is finally obtained 0)( 2
4

2
32

2
2

2
1 <−−−−≤ eebee

dt
eVd

q

q

, which implies that the error 

system (3.14) is asymptotically stable and thus the anti-synchronization between 

fractional order Lu and 4D Integral order hyperchaotic systems is achieved. 

Again using the control functions, the error system will be reduced to 

.4,3,2,1, =−= ie
dt

ed
iq

i
q

  

Since all the eigen values of the above system are negative, it may be concluded that the 

desired anti-synchronization between the systems is achieved.  
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   (f) 

Fig. 3.6. Anti-phase synchronization for signals : (a) between 1x  and 1y ; (b) between 

2x  and 2y ; (c) between 3x  and 3y ; (d) between 4x  and 4y ; (e) The evolution of the 
error functions of uncertain hyperchaotic systems; (f) The evolution of the error 
functions of hyperchaotic systems, for fractional order derivative .950.=q  

3.7 Numerical simulation and results 

In the numerical simulation the parameters of the fractional order Lu and 4D Integral 

order hyperchaotic systems are taken as ,1,20,3,36 4321 −==== aaaa  and 

8.0,0.6,0.1,0.1,56.0 321 ===== cbbba  respectively. The initial conditions of the 

master and slave systems are taken as )10 12, 14,- -10,())0(),0(),0(),0(( 4321 =xxxx  

and )0.5 0.8, 0.6, 1.2,())0(),0(),0(),0(( 4321 =yyyy  respectively. Hence the initial 

conditions of error system will be )9.5- 11.2,- 14.6, 11.2,())0(),0(),0(),0(( 4321 =eeee . 

During synchronization of the systems the time step size is taken as 0.005. 

Now choosing ,1,,1,0 42321 −=−=−== λλλλ b  the phase synchronization between 

signals 1x  and 1y  is achieved. It should be noted that, when 

,1,,1,0 42321 −=−=−== λλλλ b  signals 2x  and 2y , 3x  and 3y , 4x  and 4y  become 

synchronized. If ,1,,0,1 42321 −=−==−= λλλλ b  ,1,0,1,1 4321 −==−=−= λλλλ  
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and ,0,,1,1 42321 =−=−=−= λλλλ b  are taken, phase synchronizations between 

signals 2x  and 2y , 3x  and 3y , 4x  and 4y  are obtained respectively. State trajectories 

of the phase synchronization of master and slave systems are depicted through Fig. 3.5 

for the order of the derivative .950.=q  

During anti-synchronization, the initial conditions are taken as 

)10.5 12.8, 13.4,- -8.8,())0(),0(),0(),0(( 4321 =eeee . Now proceeding as above, with 

proper choices of eigen values, the obtained state trajectories during the anti-phase 

synchronization of master and slave systems are displayed through Fig. 3.6 at .950.=q  

Fig. 3.5(e) shows that time taken for synchronization between fractional uncertain Lu 

and 4D integral order hyperchaotic systems with disturbances is more as compared to 

that of the simple fractional order Lu and 4D integral order hyperchaotic systems 

depicted through Fig. 3.5(f). While during anti-synchronization between fractional order 

uncertain Lu and 4D integral order hyperchaotic systems, it is found that it takes less 

time during the first one (Fig. 3.6(e)) than the later one (Fig. 3.6(f)). 

3.8. Conclusion  

In this chapter the major contribution is that the successful use of nonlinear active 

control method to achieve perfect control of two fractional order hyperchaotic systems 

along a desired trajectory. The proper design of control function through a new lemma 

to achieve synchronization and anti-synchronization through error states tend to zero as 

time becomes large is another contribution of the study. It is worth mention that a 

comparative study of measurement of time of synchronization and anti-synchronization 

with and without the presence of uncertain and disturbance terms through numerical 

simulation and graphical presentation will definitely lead the researchers working in the 

field of fractional order dynamical systems towards a new direction. 


