Chapter 2

Stability analysis, chaos control of fractional order Vallis and
El-Nino systems and their synchronization

2.1 Introduction

The chaotic system is a nonlinear deterministic system which posseses complex
dynamical behaviors which are extremely sensitive to initial conditions and having
bounded trajectories in the phase space. The study of dynamic behavior in nonlinear
fractional order systems has become an interesting topic to the scientists and engineers.
Fractional calculus is playing an important role for the analysis of nonlinear dynamical
systems. Through fractional calculus approach many systems in interdisciplinary fields
can be described by the fractional differential equation such as dielectric polarization,
viscoelastic system, electrode-electrolyte polarization and electronic wave (Bagley and
Calico (1991), Koeller (1984), Koeller (1986), Heaviside (1971)). Another importance
of fractional calculusis that it provides an excellent tool for the description of memory
and hereditary properties, for which it is used in various physical areas of science and
engineering.

Effect of chaos in nonlinear dynamics is studied during last few decades by the
researchers from different parts of the world. This effect is most common and has been
detected in a number of dynamical systems of various types of physical nature. In
practice it is usually undesirable and restricts the operating range of many mechanical

and electrical devices. This type of control of dynamica system has attracted a great
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deal of attention by the researchers in society of engineering. The chaos control of
systems can be divided into two categories, first one is to suppress the chaotic
dynamical behaviors and second one is to generate or enhance chaos in nonlinear
systems known as chaotincation or anti-control of chaos. So far various types of
methods and techniques have been proposed for control of chaos such as feedback and
non-feedback control (Chen and Dong (1993), Yassen (2003a), Yassen (2005)),
adaptive control(Yassen (2003b), Liao and Lin (1999)) and backstepping method (Lu
and Zhang (2001)) etc. Synchronization of two dynamical systems is the phenomenon
where one dynamical system behaves according to the behavior of the other dynamical
system. In chaos synchronization, two or more chaotic systems are coupled or one
chaotic system drives another system. Pecora and Carroll (1990) were first to introduce
a method to synchronize drive and response systems of two identical or non-identical
systems with different initial conditions.

In this chapter, the chaos control and stability analysis of Vallis and EI-Nino systemsin
fractional order system, and also the synchronization between the considered systems
are studied. A nonlinear control method is used for chaos control of fractional order
Vallis and EI-Nino systems, and also during their synchronization. Both the systems
were proposed by J. Vallisin 1986 for the description of temperature fluctuations in the
western and eastern parts of equatorial ocean, which have a strong influence on the
Earth’s global climate. The first model Vallis system does not allow trade winds,
whereas the second model El-Nino system describes the nonlinear interactions of the
atmosphere, and trade winds in the equatoria part of pacific ocean. The main feature in
this chapter is that the study of time of synchronization between the systems through
numerical simulation for different particular cases as systems pair approaches

fractional order from integer order.
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2.2 Design of controller for fractional order chaotic system using nonlinear control
method

Consider the fractional order chaotic system as the master system as

D/ x = Px+Qf (x), (2.1
where 0< q <1 isthe order of the fractiona time derivative, X =[x, X,,...X,]" € R" is
the state vector, P and Q are the nxn matrices consisting of the system parameters
and f :R" — R" isanonlinear function of the system.

Consider another fractional order chaotic system as a slave system described as

D'y =Ry+Qg(y)+u(t), (2.2)
where y =[V,,¥,,....y,]" € R" isthe state vector of the system, P, and Q, arethe nxn
matrices of the system parameters, g : R" — R" isanonlinear part of the function of the
system and u(t) isthe controller of the system (2.2).

During synchronization, defining the error as e= y— X, the error dynamical system is
obtained as

Die=Re+Qg(y) +(R - P)x—Qf (x) +u(t). (2.3)
During the synchronization, the aim is to find the appropriate feedback controlleru(t),
so that the error dynamics (2.3) is stabilized in order to get !Lrg”e(t)” =0,V &0)eR".
Now, defining the following Lyapunov function as

1
V(e) ==€ee,
(e >

whose q-th order fractional derivativew.r.tot is

dV(e) 1d%e'e) 1d°
dt® 2 dt° 2 dt“

2

(€

2

+€ +u+ €)
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d de, de, :
<(g—=+e—=+...... , (using Lemma 1.1 24
(& g0 T&ge T te Oltq) (using ) (2.4)
die dY, d

Substituting the values of - and choosing appropriate control

dt® ' ogt® T gt

function u(t), theq—th order derivative of the Lyapunov function V(€)becomes

V(e

e < 0, which helpsto get synchronization between the systems (2.1)

negativei.e., d

and (2.2).

2.3 Systems’ descriptions and its stability

2.3.1 Fractional order Vallis system

The Vallis model (Magnitskii and Sidorov (2006), Magnitskii, and Sidorov (2007)) is

described by

X y-ax

dt H

dy

— =XZ- 25
ot y (2.5)
dz

—=1-xy-2z

a Y

where X is the speed of water molecules on the surface of ocean, y=(T,-T,)/2,
z=(T,+T,)/2, T, and T, are temperatures accordingly in western and eastern parts
of ocean, 1 and a are positive parameters.

The fractional order Vallis system can be described as

dt“

d%

F: XZ—-Yy (26)
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diz

dt—q=1—xy—Z.

2.3.2 Equilibrium points and stability

To find the equilibrium points of the system (2.6), we have

q
Dix=Dly=Dfz=0, where D/ s;—q.

The equilibrium points are obtained as

E =(0,0,1) and E =[i\/(“_a), i\/a(”_a),i}
o a 7"

For convenience the point E,; is shifted to the point of origin through the transformation
z — z+1 and the system (2.6) reduces to

dx

i

dvy
— L = XZ+ X— 2.7
e y (2.7)

dt*

For the parameters 4 =121 and a=5 and the initial condition (0.1,1.2,0.5), the
tragjectories of the Vallis system are depicted through Figs. 2.1(a)-(d) for fractiona order
g=0.97. Again for the same parameters values and initial conditions, the Vallis
system shows chaotic behaviour at the lowest fractiona order g=0.981, the

trajectories of which are described through Figs. 2.2(a)-(d).
The equilibrium points of the system (2.7) are

E =(0,0,0), E, = (4.8166, 0.1990, — 0.9586) and

E, = (-4.8166, — 0.1990, — 0.9586) .
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The Jacobian matrix of the Vallis system (2.7) at the equilibrium point E(X, Y, 2) is

-a u 0
JE)=|z+1 -1 X (2.9)
-y -%x -1

Putting the values of a=5 and u =121, the characteristic polynomial of the above
Jacobian matrix will be

P(1) = 2° +72* = (-X* +121Z +110) 4 - 1217 + 5X* + 121Xy - 116 . (2.9)
At the equilibrium point E, = (0, 0, 0), the equation (2.9) becomes

P(1) = 2>+ 74° -1104 - 116. (2.10)
The eigenvalues of the equation (2.10) are 4, = -14.1803, 1, =8.1803, A, =-1.0000.
It is seen that the equilibrium point E, is a saddle point of index 1 and from definition
1.3, itisunstablefor 0<q<1.

At the equilibrium point E, = (4.8166, 0.1990, —0.9586) , the equation (2.9) becomes
P(1) = 2* + 74 + 29.1902/ + 231.9676 . (2.11)
The eigenvalues of equation (2.11) are 4, =-7.3331, A,,=0.1666+5.6219i. The
equilibrium point E, is the saddle point of index 2 (definition 1.4). E, is stable for
0<0g<0.981. Similarly the equilibrium point E; = (-4.8166, —0.1990, —0.9586) is

also stablefor 0 < q < 0.981.
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Fig. 2.2 Phase portraits of fractional order Vallis system for fractional order q= 0.981.

2.3.3 Control of chaos using nonlinear control method

Let the fractional order Vallis system is taken as a controlled system with control

functions u.(t), i =1, 2, 3to stabilize unstable periodic orbit or fixed point as given in

equation (2.7).

Let (X, Y, Z) isthe solution of the system (2.7), then we have

d'x
a4
'y . _
?: Z+X—y
diz __
@ YT

Defining error functionsas € = X—X,

defined as

dq

= 1~ a8+ U()

d“ —

dt? =€ — €+ XZ— XZ+ U,(t)

&=y-y

46

(2.12)

and e =z-7Z,theerror systemis

(2.13)
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d,
at?

= —€ — Xy + XY + Uy(t).

To stabilize the error system, define the Lyapunov function as
1 1 1

V@i g@y 2’
2el 2% 2%

whose g-th order fractional derivativeis

dV _1d% 1d'%¢ 10
d 2 dt® 2 dt® 2 dtf

d¢ ,  de  d'&

< + , (fromLemmal.l
eldtq ezdtq %dtq ( )

e, <elue,—ae +u(t)]+e[e —e, +Xz2—XZ+U, ()] +ef-e; — xy+ Xy + Uy (t)].

If we take u(t)=-ue, U,(t)=-6-Xxz+XZ and u,(t)=xy—Xy, it becomes

% <-ael - €& — € <0. This shows that the trajectories (x(t), y(t), z(t)) convergeto

thepoint (X, Y, Z).

2.3.4 Stabilizing the points E;, E, and E,

It is clear from Figs. 2.3(a)-(c) that at (X, Y, Z) =(0,0,0) = E , the system (2.7) is
stable a the point E for the order 0<qg<1l  Similaly for
(X, Y, Z) = (4.8166, 0.1990, — 0.9586) = E, and (X, Y, Z) = (—4.8166, — 0.1990,
—0.9586) = E,, the system (2.7) is aso stable for the order 0< g <1. The plots of the
control functions u,(t), u,(t), u,(t) used to stabilize the fractional order chaotic system

are depicted through Fig. 2.3(d), which clearly show that the chosen functions tend to

zero as time approaches infinity at the equilibrium point E, . It can be shown that the

nature of the above functions at other two equilibrium points E, and E, are similar.
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Fig. 2.3 Plots of X(t), y(t), z(t) of the controlled system (2.7): (a) at equilibrium point
E,; (b) at the equilibrium point E,; (c) at the equilibrium point E,; (d) plots of control
functions u(t), u,(t), u,(t) a E.
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2.3.5. Fractional order EI-Nino system

El-Nino system is nonlinear and non-autonomous system represented by three
differential equations as (Magnitskii and Sidorov (2006), Magnitskii, and Sidorov
(2007))

dx ,
Pt (y—2)—b(x-f(t))

dy
—=XZ-y+cC 2.14
o y (2.14)

g——xy—z+c
dt ’

where X, y and z are the speed of surface ocean current, temperature of water
accordingly on western and eastern bounds of water pool respectively, f(t) is the

periodic function considering influence of trades winds.

Taking f(t) =0 to make an autonomous system as

dx

— = ' (y—2)—bx

” H(y-2)

%zxz—yﬂz (2.15)
g——xy—z+c

at '

The fractional order EI-Nino system is described by

dx

—=4'(y-2)-bx

e H(y-2)

dy

——=XZ—-Vy+C 2.16
T y (2.16)
at® '
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2.3.6 Equilibrium points and stability

To find the equilibrium points of the system (2.16), we have
H(y-2)-bx=0

xz-y+c=0

-xy—z+c=0.

The equilibrium points are obtained as

P = (0,c,¢) and g{\/@bﬂ/?bﬁ,b 2,ibc bJ
y

2

. [ [2uc . b—[2ubc— b7 b+\/2ybc—b2}
3| - ) :
b 24

24
Making a shifting through y — y+c and z— z+c, the system (2.16) will be reduced

to the following form

d9x
——=p'(y—2)—bx
e H(y—2)

d%
— = XZ+ XC— 2.17
e y (2.17)

d'z_ —Xy—XC—Z
dt* '

For the parameters 1/ = 83.6, b=10and ¢ =12 and theinitial condition (-2, 3,5), the
El-Nino system shows chaotic behaviour at g = 0.934, the lowest fractional order (see

Figs. 25 (a)-(d)). For the same values of parameters and initia conditions the

trgjectories of the system at = 0.93 are described through Figs. 2.4(a)-(d).

The equilibrium points of the system (2.17) are calculated as
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R=(000), P, = (14.1294, —11.0951, —12.7852) and
P, = (-14.1294, -12.7852, -11.0951).

The Jacobian matrix of the EI-Nino system (2.17) at the equilibrium point P(X, y, 2) is

_b #! _ﬂl
JP)=| z+c -1 X
~y-¢c - -1

Putting the values of x' =83.6, b =10 and c =12, we obtain characteristic polynomial

of the above Jacobian matrix as

P(A) = A* +122% — (-X* + 83.6Y + 83.6Z + 1985.40) 1 + 10x* — 83.6y — 83.6Z + 83.6X y — 83.6X Z
—1996.40.

At the equilibrium point B, = (0, 0, 0),

P(1) = 2° +124% -1985.401 —1996.40 .

Solving P(1) =0, weget 4, =-50.5183, A, =39.5183, A, =-1.0000.

Now B, isasaddle point of index 1 and from definition 1.3, it is unstable for 0< g <1.

At the equilibrium point P, = (14.1294, —11.0951, —12.7852) , the polynomial becomes

P(1) = 2 +124* + 210.63301 + 3992.7687 and thus the eigenvalues are

A =-15.2956, A4,,=1.6478+16.0725. P, is the saddle point of index 2 (definition

1.4). So P, IS stable for 0<g<0.934. Similarly a

P, = (-14.1294, —12.7852, —11.0951), the eigenvalues are obtained as A, = —15.2956,

A, 3 =1.6478£16.0725i, and this showsthat P, isstablefor 0< q<0.934.
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Fig. 2.4 Phase portraits of fractional order EI-Nino system for fractional order g=0.93.
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Fig. 2.5 Phase portraits of fractional order EI-Nino system for fractional order

q=0.934.

2.3.7 Control of chaos using nonlinear control method
Consider the fractional order EI-Nino system as a controlled system with control

functions u, (t), u,(t) and u,(t) for stabilizing unstable periodic orbit and (X, Yy, Z) be

the solution of the system (2.17) so that

dx

CX (Y -2)-bx

e H(Y-2)

-

%:_Z+)_(C—)7 (2.18)
9z - %c-z

dt?

Defining the error function €(t) and Lyapunov function V as in section 2.3.3 for
stabilizing the error system, we get the g-th order derivative of V as

dvVv
dt®

< el[/u'(ez _e3) _bel + ul(t)] +e2[cq -6+ XZ_X*Z+U2(t)] +e3[—cq —& - Xy+ X_y
+Ug(D)].
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Taking u(t)=-x'(e,—&), U(t)=-Cg—Xxz+XZ and u,(t) =ce + xy— Xy, we get

av —bef — & — €} <0, which implies the trajectories (x(t), y(t), z(t))converge to

dt*

X, ¥.2).

2.3.8 Stabilizing the points B, P, and P,

It is seen from Figs. 2.6(a)-(c) that at R =(00,0),
P, = (14.1294, -11.0951, -12.7852) and P, =(-14.1294, —-12.7852, —11.0951), the
system (2.17) is stable for the order 0 < g <1. Like previous system, the chosen control

functions for this fractional order chaotic system converge to zero at all the equilibrium

points B, P,, P, astime approaches infinity. The plots at F, are shown through Fig.

2.6(d).

X(t)

— — Z(t)
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Fig. 2.6 Plots of X(t), y(t), z(t) of the controlled system (2.17): () at equilibrium point
P,; (b) at the equilibrium point P,; (c) at the equilibrium point P, ; (d) plots of control
functions u,(t), u,(t), u,(t) a .

2.4 Synchronization between fractional order Vallis and EI-Nino systems using
nonlinear control method
In this section to study the synchronization between fractional order Vallis and EI-Nino

systems, we consider the fractional order Vallis system as the master system as

dq

dtz(l = [y, —ax,

dq

e R (2.19)
dq

i AR

and the fractional order El-Nino system as slave system as

dx,
dt®

= 1'(Y, = 2,) —bx, + v (t)
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dy,

e = %2, + %C— Y, +V,(t) (2.20)
diz, ¢

e = —X,Y, = %C— 2, +Vy(t),

where v (t), v, (t)and v,(t) arethe control functions. Defining error functions as

6=%—-X%,&=Y,-y,and e=2-2,

the error system is obtained as

d* , , ,
dt? = 1'(6,— &) —be +(a-b)x + (&' — ) Yy — 17 + vy (1)

d,

dtd =08 —€ +(C—1)x + %2, — X7 +V,(t) (2.21)
d

dt% =—C8 — €~ XC— XY, + XV, +Vy(t) .

In order to stabilize the error system, let us consider the Lyapunov function as

V(e =S +e+ ). (222)
Choosing the control functions as

vi(t) =-4'(e,-&)-(a-b)x - (4 - 1)y, + 1z,

Vo(t) = —cg - (C-1)x - %2, + %7,

V3(t) = C& + XC+ XY, = X Vi

the q-th order derivative of the Lyapunov function V(€) becomes

dq(\jige) <-be’-€ —€ef <0, which concludes that !im||e(t)||20, and hence the

synchronization between master and response systems is achieved.
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Fig. 2.7 State trgjectories of master system (2.19) and slave system (2.20) for fractional
orderq = 0.7: (a) synchronization between x, and x,; (b) synchronization between vy,

and vy, ; (c) synchronization between z, and z, ; (d) the evolution of the error functions
g(t), e (t) and e,(t).
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Fig. 2.8 State trajectories of the systems (2.19) and (2.20) for fractional orderq=0.9:
(8 synchronization between x, and Xx,; (b) synchronization between y, and v, ; (c)
synchronization between z and z,; (d) the evolution of the eror functions

g(t), & (t) and e(t).
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Fig. 2.9 State trajectories of the systems (2.19) and (2.20) for orderq = 0.981: (a)
synchronization between x, and x,; (b) synchronization between y, and vy,; (C)
synchronization between z and z,; (d) the evolution of the error functions
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Fig. 2.10 State trgjectories of the systems (2.19) and (2.20) for gq=1: (a
synchronization between x, and x,; (b) synchronization between y, and vy,; (C)
synchronization between z, and z,; (d) evolution of the error functions g (t), e,(t) and

&(t) -
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2.5 Numerical simulation and results

In this section, the earlier considered values of the parameters of systems are taken. The
initial conditions of master and slave systems are (x,(0), y,(0), z(0)) = (0.1,1.2, 0.5)
and (x,(0), v,(0), z,(0)) = (-2, 3, 5) respectively. Hence the initial conditions of error
system will be (e (0), e,(0), &(0)) = (-2.1, 1.8, 45). During synchronization of the
systems the time step size is taken as 0.005. The synchronization betweenx, —X,,
y, -V, and z —z,are depicted through Figs. 2.7-2.10 at q=0.7, 0.9, 0.98], 1.0
respectively. The time for synchronization of the considered fractiona order chaotic

systems clearly exhibits that it takes less time for synchronization when the order of the

derivative approaches from standard order to the fractional order.

2.6 Conclusion

Four important goals have been achieved through the analysis of the present study. First
one is the stability analysis to locate the range of fractional order beyond which the
systems show chaotic behaviour. Second one is the synchronization between the
considered fractional order systems and also chaos control of both the systems using
nonlinear control method. The third one is the proper design of the control functions so
that the error states decay to zero as time approaches infinity which helps to get the
required time for synchronization. The most important part of the study is the
comparison of time of synchronization through effective numerical simulation and
graphical presentations for different particular cases as systems pair approaches from
standard order to fractional order. The author believes that the outcome of the results
will be appreciated and utilized by the scientists and engineers working in the field of

atmospheric science and oceanography.
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