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Stability analysis, chaos control of fractional order Vallis and 
El-Nino systems and their synchronization 

Effect of chaos in nonlinear dynamics is studied during last few decades by the 

researchers from different parts of the world. This effect is most common and has been 

detected in a number of dynamical systems of various types of physical nature. In 

practice it is usually undesirable and restricts the operating range of many mechanical 

and electrical devices. This type of control of dynamical system has attracted a great 

  

2.1 Introduction 

The chaotic system is a nonlinear deterministic system which posseses complex 

dynamical behaviors which are extremely sensitive to initial conditions and having 

bounded trajectories in the phase space. The study of dynamic behavior in nonlinear 

fractional order systems has become an interesting topic to the scientists and engineers. 

Fractional calculus is playing an important role for the analysis of nonlinear dynamical 

systems. Through fractional calculus approach many systems in interdisciplinary fields 

can be described by the fractional differential equation such as dielectric polarization, 

viscoelastic system, electrode-electrolyte polarization and electronic wave (Bagley and 

Calico (1991), Koeller (1984), Koeller (1986), Heaviside (1971)). Another importance 

of fractional calculus is that it provides an excellent tool for the description of memory 

and hereditary properties, for which it is used in various physical areas of science and 

engineering.  

                                                       
The contents of this chapter have been accepted for publication in IEEE/CAA Journal of 
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deal of attention by the researchers in society of engineering. The chaos control of 

systems can be divided into two categories, first one is to suppress the chaotic 

dynamical behaviors and second one is to generate or enhance chaos in nonlinear 

systems known as chaotincation or anti-control of chaos. So far various types of 

methods and techniques have been proposed for control of chaos such as feedback and 

non-feedback control (Chen and Dong (1993), Yassen (2003a), Yassen (2005)), 

adaptive control(Yassen (2003b), Liao and Lin (1999)) and backstepping method (Lu 

and Zhang (2001)) etc. Synchronization of two dynamical systems is the phenomenon 

where one dynamical system behaves according to the behavior of the other dynamical 

system. In chaos synchronization, two or more chaotic systems are coupled or one 

chaotic system drives another system. Pecora and Carroll (1990) were first to introduce 

a method to synchronize drive and response systems of two identical or non-identical 

systems with different initial conditions. 

In this chapter, the chaos control and stability analysis of Vallis and El-Nino systems in 

fractional order system, and also the synchronization between the considered systems 

are studied. A nonlinear control method is used for chaos control of fractional order 

Vallis and El-Nino systems, and also during their synchronization. Both the systems 

were proposed by J. Vallis in 1986 for the description of temperature fluctuations in the 

western and eastern parts of equatorial ocean, which have a strong influence on the 

Earth’s global climate. The first model Vallis system does not allow trade winds, 

whereas the second model El-Nino system describes the nonlinear interactions of the 

atmosphere, and trade winds in the equatorial part of pacific ocean. The main feature in 

this chapter is that the study of time of synchronization between the systems through 

numerical simulation for different particular cases as systems’ pair approaches 

fractional order from integer order. 
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2.2 Design of controller for fractional order chaotic system using nonlinear control 

method 

Consider the fractional order chaotic system as the master system as 

)(xQfPxxDq
t += ,                                                                                                      (2.1) 

where 10 << q  is the order of the fractional time derivative, nT
n Rxxxx ∈= ]....,,[ 21  is 

the state vector, P  and Q  are the nn ×  matrices consisting of the system parameters 

and nn RRf →:  is a nonlinear function of the system. 

Consider another fractional order chaotic system as a slave system described as 

),()(11 tuygQyPyDq
t ++=                                                                                           (2.2) 

where nT
n Ryyyy ∈= ]....,,[ 21  is the state vector of the system, 1P  and 1Q  are the nn×  

matrices of the system parameters, nn RRg →:  is a nonlinear part of the function of the 

system and )(tu  is the controller of the system (2.2). 

During synchronization, defining the error as xye −= , the error dynamical system is 

obtained as 

)()()()( 111 tuxQfxPPygQePeDq
t +−−++= .                                                            (2.3) 

During the synchronization, the aim is to find the appropriate feedback controller )(tu , 

so that the error dynamics (2.3) is stabilized in order to get 0)(lim =
∞→

te
t

, ∀  nRe ∈)0( . 

Now, defining the following Lyapunov function as 

eeeV T

2
1)( = , 

whose thq −  order fractional derivative w. r. to t  is 

)......(
2
1)(

2
1)( 22

2
2
1 nq

q

q

Tq

q

q

eee
dt
d

dt
eed

dt
eVd

+++==  



 
 

CHAPTER 2 

42 
 

             
)......( 2

2
1

1 q
n

q

nq

q

q

q

dt
ede

dt
ede

dt
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Substituting the values of  q

q

dt
ed 1 , 

q

q

dt
ed 2 , ….. 

q
n

q

dt
ed

and choosing appropriate control 

function )(tu , the thq −  order derivative of the Lyapunov function )(eV becomes 

negative i.e., 0)(
<q

q

dt
eVd , which helps to get synchronization between the systems (2.1) 

and (2.2). 

2.3 Systems’ descriptions and its stability 

2.3.1 Fractional order Vallis system  

The Vallis model (Magnitskii and Sidorov (2006), Magnitskii, and Sidorov (2007)) is 

described by 

axy
dt
dx

−= µ  

yxz
dt
dy

−=                                                                                                                   (2.5) 

,1 zxy
dt
dz

−−=  

where x  is the speed of water molecules on the surface of ocean, ,2/)( ew TTy −=  

,2/)( ew TTz +=  wT  and  eT  are temperatures accordingly in western and eastern parts 

of ocean, µ  and a  are positive parameters. 

The fractional order Vallis system can be described as 

axy
dt

xd
q

q

−= µ  

yxz
dt

yd
q

q

−=                                                                                                               (2.6) 
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.1 zxy
dt

zd
q

q

−−=  

2.3.2 Equilibrium points and stability 

To find the equilibrium points of the system (2.6), we have 

,0=== zDyDxD q
t

q
t

q
t  where .q

q
q
t dt

dD ≡  

The equilibrium points are obtained as 

)1,0,0(1 =E  and  








 −
±

−
±=

µµ
µµ aaa

a
aE ,

)(
,)(

3,2 . 

For convenience the point 1E  is shifted to the point of origin through the transformation 

1+→ zz  and the system (2.6) reduces to 

axy
dt

xd
q

q

−= µ  

yxxz
dt

yd
q

q

−+=                                                                                                          (2.7) 

.zxy
dt

zd
q

q

−−=  

For the parameters 121=µ  and 5=a  and the initial condition  )5.0,2.1,1.0( , the 

trajectories of the Vallis system are depicted through Figs. 2.1(a)-(d) for fractional order 

97.0=q . Again for the same parameters’ values and initial conditions, the Vallis 

system shows chaotic behaviour at the lowest fractional order 981.0=q , the 

trajectories of which are described through Figs. 2.2(a)-(d). 

The equilibrium points of the system (2.7) are 

),0,0,0(1 =E  )9586.0,1990.0,8166.4(2 −=E  and  

)9586.0,1990.0,8166.4(3 −−−=E . 
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The Jacobian matrix of the Vallis system (2.7) at the equilibrium point ),,( zyxE is 

















−−−
−+

−
=

1
11

0
)(

xy
xz

a
EJ

µ
.                                                                                           (2.8) 

Putting the values of 5=a  and 121=µ , the characteristic polynomial of the above 

Jacobian matrix will be 

1161215121)110121(7)( 2223 −++−++−−+= yxxzzxP λλλλ .                         (2.9) 

At the equilibrium point ),0,0,0(1 =E the equation (2.9) becomes 

1161107)( 23 −−+= λλλλP .                                                                                   (2.10) 

The eigenvalues of the equation (2.10) are ,1803.141 −=λ  ,1803.82 =λ  0000.13 −=λ . 

It is seen that the equilibrium point 1E  is a saddle point of index 1 and from definition 

1.3, it is unstable for 10 << q . 

At the equilibrium point )9586.0,1990.0,8166.4(2 −=E , the equation (2.9) becomes 

9676.2311902.297)( 23 +++= λλλλP .                                                                 (2.11) 

The eigenvalues of equation (2.11) are ,3331.71 −=λ  i6219.51666.03,2 ±=λ . The 

equilibrium point 2E  is the saddle point of index 2 (definition 1.4). 2E  is stable for 

981.00 << q . Similarly the equilibrium point )9586.0,1990.0,8166.4(3 −−−=E  is 

also stable for 981.00 << q . 
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Fig. 2.1 Phase portraits of fractional order Vallis system for fractional order .97.0=q  
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Fig. 2.2 Phase portraits of fractional order Vallis system for fractional order .981.0=q  

2.3.3 Control of chaos using nonlinear control method 

Let the fractional order Vallis system is taken as a controlled system with control 

functions 3,2,1),( =itui to stabilize unstable periodic orbit or fixed point as given in 

equation (2.7). 

Let ),,( zyx  is the solution of the system (2.7), then we have 

xay
dt

xd
q

q

−= µ  

yxzx
dt

yd
q

q

−+=                                                                                                        (2.12) 

zyx
dt

zd
q

q

−−= . 

Defining error functions as xxe −=1 ,   yye −=2    and   zze −=3 , the error system is 

defined as 

)(112
1 tuaee

dt
ed
q

q

+−= µ  

)(221
2 tuzxxzee

dt
ed
q

q

+−+−=                                                                                   (2.13) 
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)(33
3 tuyxxye

dt
ed
q

q

++−−= . 

To stabilize the error system, define the Lyapunov function as 

2
3

2
2

2
1 2

1
2
1

2
1 eeeV ++= , 

whose q-th order fractional derivative is 

q

q

q

q
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          q
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dt
ede

dt
ede

dt
ede 3

3
2

2
1

1 ++≤ ,   (from Lemma 1.1) 

i.e.,   )]([)]([)]([ 33322121121 tuyxxyeetuzxxzeeetuaeee ++−−++−+−++−≤ µ . 

If we take ,)( 21 etu µ−=  zxxzetu +−−= 12 )(  and ,)(3 yxxytu −=  it becomes 

02
3

2
2

2
1 <−−−≤ eeae

dt
Vd
q

q

. This shows that the trajectories ))(),(),(( tztytx  converge to 

the point ),,( zyx . 

2.3.4 Stabilizing the points 1E , 2E  and 3E  

It is clear from Figs. 2.3(a)-(c) that at 1)0,0,0(),,( Ezyx == , the system (2.7) is 

stable at the point 1E  for the order .10 << q  Similarly for 

2)9586.0,1990.0,8166.4(),,( Ezyx =−=  and ,1990.0,8166.4(),,( −−=zyx  

3)9586.0 E=− , the system (2.7) is also stable for the order 10 << q . The plots of the 

control functions )(),(),( 321 tututu  used to stabilize the fractional order chaotic system 

are depicted through Fig. 2.3(d), which clearly show that the chosen functions tend to 

zero as time approaches infinity at the equilibrium point 1E . It can be shown that the 

nature of the above functions at other two equilibrium points 2E  and 3E  are similar.  
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   (c) 

 

  (d) 

Fig. 2.3 Plots of )(),(),( tztytx of the controlled system (2.7): (a) at equilibrium point 

1E ; (b) at the equilibrium point 2E ; (c) at the equilibrium point 3E ; (d) plots of control 
functions )(),(),( 321 tututu  at  1E . 
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2.3.5. Fractional order El-Nino system 

El-Nino system is nonlinear and non-autonomous system represented by three 

differential equations as (Magnitskii and Sidorov (2006), Magnitskii, and Sidorov 

(2007)) 

))(()( tfxbzy
dt
dx

−−−′= µ  

cyxz
dt
dy

+−=                                                                                                           (2.14) 

,czxy
dt
dz

+−−=  

where yx,  and z  are the speed of surface ocean current, temperature of water 

accordingly on western and eastern bounds of water pool respectively, )(tf  is the 

periodic function considering influence of trades winds. 

Taking 0)( ≡tf  to make an autonomous system as 

bxzy
dt
dx

−−′= )(µ  

cyxz
dt
dy

+−=                                                                                                           (2.15) 

czxy
dt
dz

+−−= . 

The fractional order El-Nino system is described by 

bxzy
dt

xd
q

q

−−′= )(µ  

cyxz
dt

yd
q

q

+−=                                                                                                         (2.16) 

czxy
dt

zd
q

q

+−−= . 
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2.3.6 Equilibrium points and stability 

To find the equilibrium points of the system (2.16), we have 

0)( =−−′ bxzyµ  

0=+− cyxz  

0=+−− czxy . 

The equilibrium points are obtained as 

),,0(1 ccP =  and  











 −−−+
−=
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µ

µ
µµ

2
2

,
2

2
,12 22

2
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b
cP  
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 −+−−
−−=

µ
µ

µ
µµ

2
2

,
2

2
,12 22

3
bbcbbbcb

b
cP . 

Making a shifting through cyy +→  and czz +→ , the system (2.16) will be reduced 

to the following form 

bxzy
dt

xd
q

q

−−′= )(µ  

yxcxz
dt

yd
q

q

−+=                                                                                                       (2.17) 

zxcxy
dt

zd
q

q

−−−= . 

For the parameters ,6.83=′µ  10=b and 12=c  and the initial condition  )5,3,2(− , the 

El-Nino system shows chaotic behaviour at ,934.0=q  the lowest fractional order  (see 

Figs. 2.5 (a)-(d)). For the same values of parameters and initial conditions the 

trajectories of the system at 93.0=q  are described through Figs. 2.4(a)-(d). 

The equilibrium points of the system (2.17) are calculated as 
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),0,0,0(1 =P  )7852.12,0951.11,1294.14(2 −−=P  and 

).0951.11,7852.12,1294.14(3 −−−=P  

The Jacobian matrix of the El-Nino system (2.17) at the equilibrium point ),,( zyxP  is 

















−−−−
−+

′−′−
=

1
1)(
xcy

xcz
b

PJ
µµ

. 

Putting the values of 10,6.83 ==′ bµ  and 12=c , we obtain characteristic polynomial 

of the above Jacobian matrix as 

.40.1996
6.836.836.836.8310)40.19856.836.83(12)( 2223

−
−+−−++++−−+= zxyxzyxzyxP λλλλ

At the equilibrium point )0,0,0(1 =P , 

40.199640.198512)( 23 −−+= λλλλP .                                                                                

Solving 0)( =λP , we get ,5183.501 −=λ  ,5183.392 =λ  .0000.13 −=λ  

Now 1P  is a saddle point of index 1 and from definition 1.3, it is unstable for 10 << q . 

At the equilibrium point )7852.12,0951.11,1294.14(2 −−=P , the polynomial becomes 

7687.39926330.21012)( 23 +++= λλλλP  and thus the eigenvalues are 

,2956.151 −=λ  .0725.166478.13,2 i±=λ  2P  is the saddle point of index 2 (definition 

1.4). So 2P  is stable for 934.00 << q . Similarly at 

),0951.11,7852.12,1294.14(3 −−−=P the eigenvalues are obtained as ,2956.151 −=λ  

,0725.166478.13,2 i±=λ and this shows that 3P  is stable for 934.00 << q . 
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Fig. 2.4 Phase portraits of fractional order El-Nino system for fractional order .93.0=q  
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Fig. 2.5 Phase portraits of fractional order El-Nino system for fractional order 

.934.0=q  

2.3.7 Control of chaos using nonlinear control method 

Consider the fractional order El-Nino system as a controlled system with control 

functions )(and)(),( 321 tututu   for stabilizing unstable periodic orbit and ),,( zyx  be 

the solution of the system (2.17) so that 

xbzy
dt

xd
q

q

−−′= )(µ  

ycxzx
dt

yd
q

q

−+=                                                                                                      (2.18) 

zcxyx
dt

zd
q

q

−−−= . 

Defining the error function )(te  and Lyapunov function V  as in section 2.3.3 for 

stabilizing the error system, we get the q-th order derivative of V  as  

)].(

[)]([)]()([

3

313221211321

tu

yxxyeceetuzxxzeceetubeeee
dt

Vd
q

q

+

+−−−++−+−++−−′≤ µ
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Taking )()( 321 eetu −′−= µ ,  zxxzcetu +−−= 12 )(  and yxxycetu −+= 13 )( , we get 

02
3

2
2

2
1 <−−−≤ eebe

dt
Vd
q

q

, which implies the trajectories ))(),(),(( tztytx converge to 

),,( zyx .
 

2.3.8 Stabilizing the points 1P , 2P  and 3P  

It is seen from Figs. 2.6(a)-(c) that at )0,0,0(1 =P ,  

)7852.12,0951.11,1294.14(2 −−=P  and ,)0951.11,7852.12,1294.14(3 −−−=P  the 

system (2.17) is stable for the order 10 << q . Like previous system, the chosen control 

functions for this fractional order chaotic system converge to zero at all the equilibrium 

points 1P , 2P , 3P  as time approaches infinity. The plots at 1P  are shown through Fig. 

2.6(d). 
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   (d) 

Fig. 2.6 Plots of )(),(),( tztytx  of the controlled system (2.17): (a) at equilibrium point 

1P ; (b) at the equilibrium point 2P ; (c) at the equilibrium point 3P ; (d) plots of control 
functions )(),(),( 321 tututu  at 1P . 

2.4 Synchronization between fractional order Vallis and El-Nino systems using 

nonlinear control method 

In this section to study the synchronization between fractional order Vallis and El-Nino 

systems, we consider the fractional order Vallis system as the master system as 

11
1 axy

dt
xd
q

q

−= µ  

1111
1 yxzx

dt
yd
q

q

−+=                                                                                                 (2.19) 

111
1 zyx

dt
zd
q

q

−−=  

and the fractional order El-Nino system as slave system as 

)()( 1222
2 tvbxzy

dt
xd
q

q

+−−′= µ  
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)(22222
2 tvycxzx

dt
yd
q

q

+−+=                                                                                      (2.20) 

),(32222
2 tvzcxyx

dt
zd
q

q

+−−−=  

where )(1 tv , )(2 tv and )(3 tv  are the control functions. Defining error functions as 

121 xxe −= , 122 yye −=  and 123 zze −= , 

the error system is obtained as 

)()()()( 1111132
1 tvzyxbabeee

dt
ed
q

q

+′−−′+−+−−′= µµµµ  

)()1( 21122121
2 tvzxzxxcece

dt
ed
q

q

+−+−+−=                                                             (2.21) 

)(31122131
3 tvyxyxcxece

dt
ed
q

q

++−−−−= . 

In order to stabilize the error system, let us consider the Lyapunov function as  

)(
2
1)( 2

3
2
2

2
1 eeeeV ++= .                                                                                              (2.22) 

Choosing the control functions as 

111321 )()()()( zyxbaeetv µµµµ ′+−′−−−−′−= , 

1122112 )1()( zxzxxccetv +−−−−= , 

1122113 )( yxyxcxcetv −++= , 

the thq −  order derivative of the Lyapunov function )(eV  becomes 

0)( 2
3

2
2

2
1 <−−−≤ eebe

dt
eVd

q

q

, which concludes that 0)(lim =
∞→

te
t

, and hence the 

synchronization between master and response systems is achieved. 
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    (d) 

Fig. 2.7 State trajectories of master system (2.19) and slave system (2.20) for fractional 
order 7.0=q : (a) synchronization between 1x  and 2x ; (b) synchronization between 1y  
and 2y ; (c) synchronization between 1z  and 2z ; (d) the evolution of the error functions 

)(),( 21 tete and )(3 te . 
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    (c) 

 

    (d) 

Fig. 2.8 State trajectories of the systems (2.19) and (2.20) for fractional order 9.0=q : 
(a) synchronization between 1x  and 2x ; (b) synchronization between 1y  and 2y ; (c) 
synchronization between 1z  and 2z ; (d) the evolution of the error functions 

)(),( 21 tete and )(3 te . 
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Fig. 2.9 State trajectories of the systems (2.19) and (2.20) for order 981.0=q : (a) 
synchronization between 1x  and 2x ; (b) synchronization between 1y  and 2y ; (c) 
synchronization between 1z  and 2z ; (d) the evolution of the error functions 

)(),( 21 tete and )(3 te . 
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Fig. 2.10 State trajectories of the systems (2.19) and (2.20) for 1=q : (a) 
synchronization between 1x  and 2x ; (b) synchronization between 1y  and 2y ; (c) 
synchronization between 1z  and 2z ; (d) evolution of the error functions )(),( 21 tete and 

)(3 te . 
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2.5 Numerical simulation and results 

In this section, the earlier considered values of the parameters of systems are taken. The 

initial conditions of master and slave systems are )5.0,2.1,1.0())0(),0(),0(( 111 =zyx  

and )5,3,2())0(),0(),0(( 222 −=zyx  respectively. Hence the initial conditions of error 

system will be )5.4,8.1,1.2())0(),0(),0(( 321 −=eee . During synchronization of the 

systems the time step size is taken as 0.005. The synchronization between 21 xx − , 

21 yy −  and 21 zz − are depicted through Figs. 2.7-2.10 at ,7.0=q  ,9.0  ,981.0  0.1  

respectively. The time for synchronization of the considered fractional order chaotic 

systems clearly exhibits that it takes less time for synchronization when the order of the 

derivative approaches from standard order to the fractional order. 

2.6 Conclusion 

Four important goals have been achieved through the analysis of the present study. First 

one is the stability analysis to locate the range of fractional order beyond which the 

systems show chaotic behaviour. Second one is the synchronization between the 

considered fractional order systems and also chaos control of both the systems using 

nonlinear control method. The third one is the proper design of the control functions so 

that the error states decay to zero as time approaches infinity which helps to get the 

required time for synchronization. The most important part of the study is the 

comparison of time of synchronization through effective numerical simulation and 

graphical presentations for different particular cases as systems pair approaches from 

standard order to fractional order.  The author believes that the outcome of the results 

will be appreciated and utilized by the scientists and engineers working in the field of 

atmospheric science and oceanography.  

 


