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Introduction 

1.1 History of fractional calculus 

The theory of fractional calculus is the generalization of the differentiation and 

integration of arbitrary order and its origin with classical integral and differential 

calculus. The beginning of the fractional calculus (Miller and Ross (1993)) is the 

answer to the G. W. Leibniz's letter to L' Hospital in 1695 raising the following 

question: “Can the meaning of derivatives with integer order be generalized to 

derivatives with non-integer orders?”. In addition, L’ Hospital replied to Leibniz by 

another question: “What if the order will be 1/2?”, then Leibniz replied through another 

letter dated September 30, 1695, the exact birth of the fractional calculus! “It will lead 

to a paradox, from which one day useful consequences will be drawn”. After this 

question, the fractional derivative has been an ongoing topic for more than 300 years. 

Many mathematicians viz., J. Liouville, B. Riemann, H. Weyl, J. Fourier, N. H. Abel, S. 

F. Lacroix, G. W. Leibniz, A. K. Grunwald and A. V. Letnikov contributed to this 

theory over the years.  

Nowadays, the theory of fractional calculus becomes a hot topic of research among 

scientists, mathematicians, researchers and engineers and it has been successfully 

applied by them in various scientific and engineering field such as viscoelasticity 

(Bagley and Calico (1991), Koeller (1984)), fluid mechanics (Kulish and Lage (2002), 

Das et. al (2010)), material science (Carpinteri et al. (2004)), quantum mechanics 
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(Yildirim (2011)), colored noise, dielectric polarization (Sun et al. (1984)), 

electromagnetic wave (Heaviside (1971)), bioengineering (Magin (2004)), biological 

model (Magin (2010), Gokdogan et al. (2012)), electromechanical system (Sabatier et 

al. (2004)), etc.   

The theory of fractional calculus gives us flexibility for the generalization of the order 

of the derivative and integration from integer to any real number. Nevertheless, the 

name “fractional calculus” is kept for the general theory. Again due to the non-local 

property of fractional order differential operator, it takes into account the fact that the 

future state depends upon the present state as well as all of the history of its previous 

states. For this realistic property, the fractional order systems are becoming popular. 

Another reason behind using fractional order derivatives is that these are naturally 

related to the systems with memory which prevails for most of the physical and 

scientific system models. The fractional derivative of a function depends on the values 

of the function over the entire interval. Thus it is suitable for modelling of the systems 

with long range interactions both in space and time. Fractional derivative has the 

flexibility which allows incorporating different types of information. The fractional 

calculus which was in earlier stage considered as mathematical curiosity now becomes 

the object for the extensive development of fractional order partial differential equations 

for its applications in various physical areas of science and engineering. Geometric and 

physical interpretations of fractional differentiation and fractional integration can be 

found in Podlubny's work (Podlubny (1999)). 

Lemma 1.1 (Norelys et al. (2014)) Let Rtx ∈)( be a continuous and derivable function. 

Then for any time instant 0tt ≥ , 
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1.2 Some definitions of frcational derivative 

1.2.1 Grunwald-Letnikov fractional derivative  

The Grunwald-Letnikov fractional derivative of order 0>q  of a function )(xf  is 

defined as 

)()1(lim)(
00

khxf
k
q

hxfD
n

k

kq

axnh
h

q
ta −








−= ∑

=

−

−=
→

, 

where 

)1(!
)1(

!
)1)....(2)(1(

+−Γ
+Γ

=
+−−−

=







kqk

q
k

kqqqq
k
q

. 

1.2.2 Riemann-Liouville fractional integral 

The Riemann-Liouville fractional integral operator of order 0>q  of a function )(xf  is 

defined as 
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,0>x                                                              (1.1) 

.)()(0 xfxfJ x =  

1.2.3 Riemann-Liouville fractional derivative  

The Riemann-Liouville fractional derivative operator of order 0>q  of a function )(xf  

is defined as  

Ν∈<<−= − nnqnxfJ
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dxfD qn
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The basic properties of the Riemann-Liouville fractional integral operator q
xJ  for 

0,,1, ≥−≥∈ qpCf µµ  and 1−≥γ  are given as follows: 
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Definition 1.1 A function 0,)( >xxf  is said to be in the space }0{, 0 ∪=∈ NNnC n
µ  

iff  µCf n ∈)( . 

1.2.4 Caputo fractional derivative 

In 1967, Caputo given a definition of fractional derivative of a function 0,)( >xxf  is 

defined as 
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There are following two basic properties of the Caputo fractional order derivative:  

(1) Let 01 , NnCf n ∈∈ − , then nqxfDq
x

c ≤<0),(  is well defined and 1)( −∈CxfD q
x

c . 

(2) Let Nnnqn ∈≤≤− ,1 and 1, −≥∈ µµ
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Definition 1.2 A real function 0,)( >xxf , is said to be in the space ,, ℜ∈µµC  if there 

exists a real number µ>p , such that )()( 1 xfxxf p= , where ),0[)(1 ∞∈Cxf . 

1.3 Dynamical system 

A dynamical system is a system which changes over time according to a set of fixed 

rules that determine how one state of the system moves to another state. The dynamical 

system can be described as a system of n first-order differential equations as system of 

motion as 

,,........,1),,,......,( 1 nirxxf
dt
dx

ni
i ==                                                                            (1.4) 

where )(txi are dynamical quantities whose time dependence is generated by the 

equation (1.4), starting from specified initial conditions nixi ,.......,1),0( = , and t is the 

independent variable which can be read as time. The if  are nonlinear functions of the 

)(txi  and are characterized by the parameter(s) r.  

Examples of dynamical systems are the solar system (sun and planets), Hamiltonian 

equations of motion in classical mechanics, the weather, the rate equations for chemical 

reactions or the evolution equations in population dynamics. 

1.3.1 Mathematical definition of dynamical system 

A continuously differentiable function nn RRRf →×:  is called dynamical system if it 

satisfies the following properties 

(i) xxf =),0( , for all nRx∈  

(ii) ),()),(,( xstfxsftf += , for all nRx∈  and Rst ∈, , 
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where nR  is the state space, a member nRx∈  is a state of the system, and ),( xtf is the 

state, to which the system arrives after time t  starting from the state x . 

1.4 Classification of dynamical system 

There are following types of dynamical systems. 

1.4.1 Linear system 

Linear systems must verify the following two properties  

(i) )()()( yfxfyxf +=+  

(ii) )()( xfkxkf = . 

These two properties are called the superposition and homogeneity respectively for 

given two different inputs x and y in the domain of the function f and for any real 

number k . 

Any function which does not satisfy superposition and homogeneity conditions is called 

nonlinear.  

The dynamics of linear systems are also can be written in the form of 

xtAX )(= ,                                                                                                                  (1.5) 

where )(tA  is an nn×  matrix.  

1.4.2 Nonlinear system  

A nonlinear dynamical system is described by a set of nonlinear differential equations in 

the following form 

),( txfX = ,                                                                                                                 (1.6) 
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where x  is the 1×n state vector, and f  is the 1×n nonlinear vector function. The 

number of states n  is called the order of the system.  

1.4.3 Autonomous system 

The set of nonlinear differential equations (1.6) is said to be autonomous if f  does not 

depend explicitly on time. In this case system’s state equation can be written as 

)(xfX = .                                                                                                                    (1.7) 

If f  depends on time, then the system is called non-autonomous system. 

1.4.4 Discrete time dynamical system 

A continuously differentiable function nn RRZf →×:  is called discrete time 

dynamical system if it is satisfies the following properties 

(i) xxf =),0( , for all nRx∈  

(ii) ),()),(,( xmkfxmfkf += , for all nRx∈  and Zmk ∈, , 

A discrete time dynamical systems will be derived from a difference equation and the 

difference equation can be defined by a map. Let nn RRg →:  be a continuous function 

and consider a difference equation 

 )(1 kk ygy =+  

with initial condition xy =0 . The function kyxkf =),(  satisfies the properties of the 

definition of discrete time dynamical system. Thus a difference equation determines a 

discrete time dynamical system. 
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1.5 Lyapunov exponent 

Lyapunov exponents measure the rate of divergence or convergence of two nearby 

trajectories. It is a quantitative measure of sensitive dependence on initial condition, 

which is the silent feature of the Lyapunov exponents.  

 

Fig. 1.1 Trajectories starting from two nearby points 

Consider initially between two trajectories, at time ,0=t  there is a point 0x  and a 

nearby point ,00 δ+x 0δwhere  is the initial separation between the trajectories and 

assume extremely small. Suppose )(tδ represents the separation of trajectories after a 

period of time t  (Fig. 1.1). The exponential growth rate of )(tδ is a number λ  defined 

as 

.)( 0
tet λδδ ≈   

Taking the natural logarithm on both sides of above equation, we obtain 
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Thenλ  is treated as a Lyapunov exponent. Now, 

(i) If 0<λ , the trajectory attracts to a fixed stable point or stable to periodic orbit. 

The Negative Lyapunov exponents are characteristic of dissipative or non-

conservative systems, such types of systems exhibit asymptotic stability, if the 

Lyapunov exponent is more negative, then the systems have the greater stability. 
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If −∞=λ  the systems have super stable fixed points and super stable periodic 

points.  

(ii) If 0=λ , the trajectories will be a neutral fixed point or an eventually fixed 

point. Zero Lyapunov exponent indicates that the system is in some sort of 

steady state mode. A physical system with Lyapunov exponent Zero is 

conservative. This type of system exhibits Lyapunov stability.

(iii) If 

  

0>λ , the trajectories will be unstable and chaotic. 

                                                          

(a)  (Dissipative)                              (b) (Dissipative)                         (c) (Conservative) 

Trajectories attracting                  Trajectories attracting                 Neutral Fixed point to 

a fixed point  0<λ                      to a periodic orbit 0<λ                and orbits 0=λ  

A system has many Lyapunov exponents as per the number of dimensions of the phase 

space. Any system contains atleast one positive Lyapunov exponent is called a chaotic 

system and if system has more than one positive Lyapunov exponent is called 

hyperchaotic system. 

A more specific and useful formula for the Lyapunov exponentλ  can be derived as 

follows: 

If vector form of a dynamical system written as 

),),(()( rtXf
dt

tXd
=


                                                                                                    (1.8) 
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where Tffff ],,[ 321=  and TtxtxtxX )](),(),([ 321=  is the state space vector, r is a set of 

parameters. The equations for small deviations Xδ  from the trajectory X  are  

3,2,1,),()),(()( == jitXrtXJtX ji δδ  , 

where 
j

i
ji x

fJ
∂
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=
 
is the Jacobian matrix. Then an equation for Lyapunov exponents iλ  

of the dynamical system (1.8) is defined by 
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For the calculation of Lyapunav exponents, a simple procedure has been developed by 

Benettin et al. (1980) which estimates the largest Lyapunov exponent directly from the 

equations governing the system. Wolf et al. (1985) generalized Bennetin’s method to 

time series data, known as Wolf’s method.  Although Wolf's article only discussed the 

computation of non-negative Lyapunov exponents, it can be used effectively to compute 

the largest Lyapunov exponent of a chaotic system. Frank et al. (1990) improved Wolf's 

method to compute the largest Lyapunov exponent in a wider range of chaotic systems. 

After that Janaki et al. (1998) had given different methods of computing Lyapunov 

exponents for continuous-time dynamical systems. If a dynamical system has positive 

Lyapunov exponents, then nearby trajectories separate exponentially fast and are 

unpredictable. Therefore, positive Lyapunov exponent for a particular dynamical system 

is a quantitative measure of chaos. 

1.6 Stability of the systems 

Consider an autonomous system of the following form 

))(()( txf
dt

tdx
=  with 0)0( xx = ,                                                                                 (1.9) 
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where nRDtx ∈∈)(  is the state vector of the system, D  is the neighborhood of the 

equilibrium point. and  nRDf →:  continuous function on D . Let ex  is the 

equilibrium point of the function f so 0)( =exf , then 

(i) The equilibrium point ex  is said to be Lyapunov stable, if for every 0>ε  there exist 

a )(εδδ =  such that, if δ<− exx )0( , then for every 0≥t  we have ε<− extx )( . 

Lyapunov stability of system (1.9) of an equilibrium point ex  means that solutions of 

systems starting “close enough” to the equilibrium (within a distance δ  from it) remain 

“close enough” forever (within a distance ε  from it). It must be true for any ε  which 

one may want to choose. 

(ii) The equilibrium point ex  of the system (1.9) is said to be asymptotically stable, if it 

is Lyapunov stable and there exists 0>δ  such that, if δ<− exx )0( , then 

0)(lim =−
∞→ et

xtx . 

Asymptotic stability of the system (1.9) means that solutions which start close enough 

not only remain close enough but also eventually converge to equilibrium. 

(iii) The equilibrium point ex  of the system (1.9) is said to be exponentially stable, if it 

is asymptotically stable and there exists 0>α , 0>β , 0>δ  such that, if 

δ<− exx )0( , then t
ee exxxtx βα −−≤− )0()( , for 0≥t . 

Exponential stability means, the solutions of systems not only converge, but in fact 

converge faster than or at least as fast as a rate t
e exx βα −−)0( . 
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1.6.1 Lyapunov first method 

Theorem 1.1. Let 0=x  be an equilibrium point of a nonlinear system (1.9) and 

consider ),...,1( nii =λ  are the eigenvalues of the matrix 
0=∂

∂
=

xx
fA , where A is the 

Jacobin matrix of the system. 

(i) If 0Re <iλ  for all i  then 0=x  is asymptotically stable for the nonlinear system. 

(ii) If 0Re >iλ  for one or more i , then 0=x  is unstable for the nonlinear system. 

(iii) If 0Re <iλ for all i and at least one 0Re =iλ , then 0=x may be either stable, 

asymptotically stable or unstable for the nonlinear system. 

1.6.2 Lyapunov second method (Lyapunov direct method) 

Theorem 1.2 Let 0=x  be an equilibrium point of a nonlinear system (1.9). Let 

RDxV →:)(  be a positive definite continuously differentiable function on a 

neighborhood D  of 0=x , such that 0)( ≤xV  in D . Then, the equilibrium point 0=x  

is stable. Moreover, if 0)( <xV  in }0{−D , then the point 0=x  is said to be 

asymptotically stable. )(xV  is called a Lyapunov function. 

Theorem 1.3 Let 0=x  be an equilibrium point of a nonlinear system (1.9). Consider 

RnRV →:  be a positive definite continuously differentiable function, such that 

∞→)(xV as ∞→x  and 0)( ≤xV , 0≠∀ x , then 0=x  is globally asymptotically 

stable. 

1.7 Stability of the fractional order systems 

Consider a fractional order dynamical system as 
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),,()( 1 zyxftxDq
t =  

),,()( 2 zyxftyD q
t =                                                                                                              (1.10) 

),,,()( 3 zyxftzDq
t =  

where )1,0(∈q  and q
tD  is the Caputo derivative. The Jacobian matrix at equilibrium points 

of the above system is  
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Theorem 1.4 (Matignon (1996), Li and Ma (2013)) The system (1.9) is locally asymptotically 

stable if all the eigenvalues of the Jacobian matrix at its equilibrium point satisfy the condition 

.
2

)arg( πλ q
>                                                                                                                        (1.12) 

The characteristic equation of the Jacobian matrix (1.11) at their equilibrium points will 

be  

32
2

1
3)( aaaP +++= λλλλ                                                                                       (1.13) 

and its discriminant is given by 

2
3

3
2

3
13

2
21321 2744)(18)( aaaaaaaaaPD −−−+= .                                                     (1.14) 

The fractional order Routh-Hurwitz conditions (Srivastava et al. (2014a), Ahmed et al. 

(2006)) for the system are given as 
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(a) If ,0)( >PD  then the necessary and sufficient conditions for the equilibrium point to 

be locally asymptotically stable if .0,0,0 32131 >−>> aaaaa  

(b) If ,0,0,0,0)( 321 >≥≥< aaaPD  then the equilibrium point is locally 

asymptotically stable for .3/2<q  However, if ,3/2,0,0,0)( 21 ><<< qaaPD  then 

all the roots of equation (1.13) satisfy the condition .
2

)arg( πλ q
<  

(c) If ,0)( <PD ,0,0,0 32121 =−>> aaaaa  then the equilibrium point is locally 

asymptotically stable for all 10 << q . 

(d) The necessary condition for the equilibrium point to be locally asymptotically stable 

if .03 >a  

In studying the existence of chaotic attractors and the synchronization between 

fractional order systems, the previous stability results play an important role.  

The fractional differential system will be stable, if all the eigenvalues of the Jacobian 

matrix are calculated at equilibrium point of the outside of the sector region. According 

to the above results, stable and unstable regions with order q  are shown in Fig. 1.2. 

From the figure it is clear that stability sector region for the fractional order system is 

greater than for integer order system. The stability region for an integer system will be 

only left side of imaginary axis while for fractional order system, it will be in the right 

side also. 

Definition 1.3 (Faieghi and Delavari (2012)) An equilibrium point E of a system is 

called a saddle point of index 1 if the Jacobian matrix at point E has one eigenvalue 

with a non-negative real part (i.e., unstable).  
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Definition 1.4 An equilibrium point E of a system is called a saddle point of index 2 if 

the Jacobian matrix at point E has two unstable eigen values. 

The scrolls are generated only around the saddle points of index 2. Saddle point of 

index 1 is responsible only for connecting scrolls. 

 

Fig. 1.2 Stability region of linear fractional-order system with order q . 

1.8 Definition of chaos 

1.8.1 Devaney's definition of chaos (Devaney (1989)) 

Let X XXf →: be a set. A continuous map  is said to be chaotic on X  if 

(i) f  has sensitive dependence on initial conditions. 

(ii) f  is transitive. 

(iii) the periodic points of f are densed in X . 

JJf →:A map  has sensitive dependence on initial conditions if there exists 0>δ  

such that, for any Jx∈  and any neighborhood N  of  x , there exists Ny∈  and 0≥n  

such that δ>− )()( yfxf nn . The sensitive dependence on initial conditions means 

that if there exists a positive real number δ  (a sensitive constant) such that for every 
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point x  in X  and every neighborhood N  of x  there exists a point y  in N  and a non-

negative integer n  such that the thn  iterates )(xf n  and )(yf n  of x  and y  are more 

than δ  distance. 

JJf →:A map  is said to topologically transitive if for any pairs of open sets 

JVU ⊂,  there exists 0>k  such that φ≠∩VUf k )()( . 

f  is transitive means for all non-empty subsets VU ,  of J  there exists a natural 

number 0>k  such that VUf k ∩)()(  is nonempty. Consequently, the dynamical 

systems cannot be decomposed into two disjoint open sets which are invariant under the 

map. It will be notable that if a map possesses a dense orbit, then it is clearly topological 

transitive. 

Definition 1.5  

In 1994 Strogatz mentioned chaos by following quotation as “Chaos is a periodic long-

term behaviour, in a deterministic system that exhibits sensitive dependence on initial 

condition”. 

Aperiodic long-term behaviour means that there are trajectories which do not settle 

down to fixed points, periodic orbits, or quasi-periodic orbits as time tends to infinity. 

Deterministic means that the system has no random or noisy inputs or parameters. This 

irregular behaviour arises from the system's nonlinearity, rather than from noisy driving 

forces. Sensitive dependence on initial conditions means that a small change in the 

initial state will lead to progressively larger changes in later system states or each point 

in such a system is arbitrarily closely approximated by other points with significantly 

different future trajectories. 
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1.9 Historical background of chaos 

The chaos theory was started in 19-th century in the study of problem of Henri Poincaré 

on the motion of three objects in mutual gravitational attraction (e.g. a star and two 

planet) the so-called three-body problem. By considering the behavior of the orbits 

arising from sets of initial points, Poincare was able to show that orbits are aperiodic, 

and yet not increasing infinitely (deterministic) nor approaching any fixed point or limit 

cycles.  

In 1898 J. Hadamard observed general divergence of trajectories in spaces in terms of 

negative curvature. He was able to show that all trajectories are unstable. In that case all 

particle trajectories diverge exponentially from one another, with a positive Lyapunov 

exponent. 

In 1963, the meteorologist E. N. Lorenz (Lorenz (1963)) discovered the butterfly effect 

while trying to forecast the weather. He did a computer simulation of a set of simplified 

differential equations for fluid convection in which he saw complicated behavior that 

seemed to depend sensitively on initial conditions. Lorenz also showed that the solution 

settled down in a fascinating butterfly shaped set of points, which caused the 

consideration of this high level sensitive dependence on initial conditions to become 

commonly known as “butterfly effect”. He concluded that the earth’s weather is a 

chaotic and therefore a long-range prediction is an impossible task. 

In 1971, David Ruelle and Floris Takens described "strange attractors" in an alternative 

mathematical explanation of the turbulence in fluid dynamics based (Ruelle and Takens 

(1971)). 

In 1975, Li and Yorke (1975) explained the sustained aperiodic and unpredictable 

behaviors arising in deterministic nonlinear maps. In the research article, they described 
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the term chaos for the various phenomena that demonstrated aperiodicity along with 

sensitive dependence on initial condition. 

Currently, the chaos theory becomes an active research topic for last few decades to the 

researchers working in the area of nonlinear dynamical system and has many useful 

applications in many areas of engineering such as digital communication, secure 

communication, power electric and power quality, biological systems, chemical 

reactions analysis and design and information processing etc. 

1.10 Synchronization  

Synchronization of chaotic systems is the phenomenon that may occur when two or 

more chaotic oscillators are coupled. It is also a process in which two or more chaotic 

systems (identical or non-identical) adjust a given property of their motion to a common 

behavior, due to coupling or forcing. This is a difficult problem due to their extremely 

sensitive dependence on initial conditions. Any initial correlation presents between 

identical systems, starting from very close initial conditions exponentially decrease to 

zero with time. Mathematically synchronization is achieved when the difference of state 

vectors of master and slave systems converges to zero when time approaches to infinity 

i.e. ,0)()(lim =−
∞→

tytx
t

 where )(tx  and )(ty  are the state vectors of the master and 

slave systems respectively. 

1.11 Types of synchronization 

The different types of synchronization are given below: 
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1.11.1 Synchronization/Complete synchronization 

In complete synchronization, the differences of state variables of synchronized systems 

with different initial values converge to zero when time approaches to infinity. This is 

observed in coupled chaotic systems and chaotic systems with noise perturbation.  

Mathematically, consider two chaotic systems as 

))(()( txftx =                                                                                                             (1.15) 

))(),(())(()( tytxutygty += ,                                                                                    (1.16) 

where nRtytx ∈)(),(  are the state vectors, ))(),(( tytxu  is the controller and 

nn RRgf →:,  is continuous nonlinear vector function. 

The systems (1.15) and (1.16) are said to be synchronized when ,0)()(lim =−
∞→

txty
t  

for 

initial conditions of )0(x  and )0(y . 

1.11.2 Anti-synchronization 

Two chaotic systems are said to be anti-synchronized, when the respective states of 

chaotic systems have the same magnitude but opposite in sign.  

Mathematically the anti-synchronization of two systems is achieved, 

when ,0)()(lim =+
∞→

txty
t

 where )(tx  and )(ty  are the state vectors of the drive and 

response systems respectively. 

1.11.3 Phase synchronization  

In phase synchronization the coupled chaotic systems keep their phase difference 

bounded by a constant while their amplitudes remain uncorrelated. The phase 

synchronization, usually applied upon two waveforms of the same frequency with 

identical phase angles with each cycle. However, it can be applied if there is an integer 
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relationship of frequency such that the cyclic signals share a repeating sequence of 

phase angles over consecutive cycles. 

1.11.4 Hybrid synchronization 

Hybrid synchronization for drive and response systems of three states are defined in this 

way, that first and third states of the two systems are synchronized, and the second state 

of the systems are anti-synchronized so in hybrid synchronization, synchronization and 

anti- synchronization co-exist in the system.  

1.11.5 Projective synchronization 

A synchronization technique in which the master and slave systems synchronize up to a 

constant scaling factor ,β  known as Projective synchronization. Consider the following 

master system and slave system with control function as 

)(xFx =                                                                                                                      (1.17) 

),()( yxuyGy += ,                                                                                                   (1.18) 

where 
nRyx ∈,  are the state vectors, ),( yxu  is the vector controller and 

nn RRgf →:,  are continuous nonlinear vector functions. Next define the error system 

as 

)()()( txtyte β−= ,                                                                                                   (1.19) 

where β  is the real constant. Then the systems (1.17) and (1.18) are said to be 

projective synchronized if the error system (1.19) is asymptotically stable i.e., 

0)(lim =
∞→

te
t

. 
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In particular, if 1=β  and 1−=β , the projective synchronization is further simplified 

to complete synchronization and anti-phase synchronization respectively. 

In 1999 Mainieri and Rehacek (1999) introduced the Projective synchronization in 

partially linear systems, where the responses of two identical systems synchronize up to 

a constant scaling factor.  

1.11.6 Complex projective synchronization 

Let us consider two complexes nonlinear systems of which first one is master (drive) 

system as 

),( mmm xfAxx +=  

where 
21 mmm jxxx +=  is complex state variable with 

)(
111 1 mmm xfAxx +=  

)(
222 2 mmm xfAxx +=                                                                                                                      (1.20) 

and the second is response (slave) system as 

),()( tuygByy sss ++=  

where 
21 sss jyyy += is complex state variable and )()()( 21 tjututu ir +=  is control 

function with  

)()( 11 111
tuygByy r

sss ++=  

)()( 22 222
tuygByy i

sss ++= ,                                                                                       (1.21) 

where T
n

r uuutu ),..........,,()( 12311 −=  and .),..........,,()( 2422
T

n
i uuutu =  Now complex 

error function re between drive and response systems are defined for complex projective 

synchronization as 
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,
21 msrrr Mxyjeee −=+=  

where ),............,,( 2121 ndiagjMMM φφφ=+= , i
l

r
ll jmm +=φ ,  nl ,.............,2,1= . 

Then the error function will be 

2111 21 mmsr xMxMye +−=  

1222 21 mmsr xMxMye +−= . 

Case-I: If 0limlim
2111 21 =+−=

∞→∞→ mmstrt
xMxMye  and 

0limlim
1222 21 =−−=

∞→∞→ mmstrt
xMxMye , T

nr eeee ),.............,,( 12311 −=  and 

T
nr eeee ),.............,,( 2422

= , then the complex projective synchronization is obtained 

between the systems (1.20) and (1.21). 

Case-II: When ,...............21 jn ==== φφφ  then complex complete synchronization 

between master and response systems can be obtained. 

Case-III: If we take ==== nφφφ ...............21  a real number, then the projective 

synchronization between complex systems (1.20) and (1.21) can be obtained. 

1.11.7 Function projective synchronization  

The Function projective synchronization is generally known as FPS in which drive and 

response systems are synchronized up to a desired scaling function. FPS is one of the 

important synchronization methods that has been widely investigated to obtain faster 

communication with its proportional feature. 

Consider the following master system and slave system with control function as 

)(xFx =                                                                                                                      (1.22) 

),()( yxuyGy +=  ,                                                                                                  (1.23) 
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where 
nRyx ∈,  are the state vectors, ),( yxu  is the vector controller and 

nn RRgf →:, are continuous nonlinear vector functions, defining the error system as 

)()()()( txttyte β−= ,                                                                                               (1.24) 

where )(tβ  is the continuously differentiable function with  tt ∀≠ 0)(β . 

Then the systems (1.22) and (1.23) are said to be function projective synchronized, if 

there exists a scaling function )(tβ  such that  0)(lim =
∞→

te
t

. 

1.11.8 Dual synchronization 

We consider first two master (drive) system as 

Master systems-I: 

),(XfX =                                                                                                                  (1.25) 

where X  is state variable.  

Master system-II: 

),(YgY =                                                                                                                    (1.26) 

whereY  is state variable. 

The linear combination of the master systems I & II, gives rise to 

,][],....,[],....,[ 2121
11

ξTTTTT
nn

n

i
ii

n

i
iim C

Y
X

BAYBXAYbbbXaaaYbXaV +







=+=+=+= ∑∑

==

 

where T
naaaA ],....,[ 21=  and T

nbbbB ],....,[ 21= are known and TTT BAC ][= . 

The next two response (slave) system as 

Response system-I: 



 
 

CHAPTER 1 
 

24 

 

,)( )1(uxfx +=                                                                                                           (1.27) 

where x  is state variable with 

Responce system-II: 

,)( )2(uygy +=                                                                                                           (1.28) 

where y  is state variable and )()1( tu , )()2( tu  are control 

functions, 2,1,],,...,[)( )()(
2

)(
1

)( == iuuutu Ti
n

iii  

The linear combination gives 

.][],....,[],....,[ 2121
11

ηT

m

mTTTT
nn

n

i
ii

n

i
iis C

Y
X

BAyBxAybbbxaaaybxaV +







=+=+=+= ∑∑

==

 

The goal to obtain the dual synchronization between master and slave systems. Now 

defining the error function between the master (1.25), (1.26) and response (slave) 

systems (1.27), (1.28) as 

ms VVe −= , 

which gives rise to .0limlim =−=
∞→∞→

ξη
tt

e  

The master systems (1.25), (1.26) and response systems (1.27), (1.28) are said to be 

dual function projective synchronized if ,0lim =
∞+→

e
t

 where ⋅  denotes matrix norm. 

1.11.9 Combination synchronization 

In combination synchronization, we are assuming two drive systems and one response 

system. 

The master systems are considered as 
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)( 111 xfx =                                                                                                                  (1.29) 

)( 222 xfx =                                                                                                                 (1.30) 

and the response system is taken as 

),,()( 21 yxxUyfy += ,                                                                                             (1.31) 

where )........,,,( 11
2

1
11 nxxxx = , )........,,,( 22

2
2
12 nxxxx =  and )........,,,( 21 nyyyy =  with 

n
nn Rxxxx ∈− ,,..........,, 121  are the state vectors of the chaotic systems. 

nn RRfff →:,, 21  are continuous vector functions and ),,( 21 yxxU is a controller. 

The master systems (1.29), (1.30) and one response system (1.31) are said to be 

combination synchronization if there exists three constants matrixes called scaling 

matrixes nRAAA ∈321 ,, and 03 ≠A  such that 

0lim 32211 =−+
+∞→

yAxAxA
n

, where .  represents the matrix norm. 

It is noted that if IAAA n ==≠ ,0,0 21  then this problem is reduced to the projective 

synchronization, where I is an nn ×  identity matrix. If the scaling matrix 1A  is 

considered as a function, then synchronization problem is reduced into function 

projective synchronization problem.  

1.11.10 Dual combination synchronization 

In this section the dual combination synchronization is proposed among four master and 

two slave systems. First two master systems are defined in equation (1.25) and (1.26). 

Next two master systems are defined as 

Master systems-I: 

),(XfX ′=′                                                                                                                (1.32) 



 
 

CHAPTER 1 
 

26 

 

where X ′  is state variable. 

Master system-II: 

),(YgY ′=′                                                                                                                  (1.33) 

where Y ′  is state variable. 

The linear combination of the master systems I & II, gives rise to 

.][

],....,[],....,[ 2121
11

ξ ′+







′
′

=

+=′+′=′+′=′ ∑∑
==

TTT

TT
nn

n

i
ii

n

i
iim

C
Y
X

BA

YBXAYbbbXaaaYbXaV
  

Now, the corresponding two response (slave) systems with control functions are 

described in equations (1.27) and (1.28). 

Now defining the error function between the master systems (1.25), (2.26) and (1.32), 

(1.33) and slave systems (1.27), (1.28) as 

mms VVVe ′−−= ,  

two get 0limlim =′−−=
∞→∞→

ξξη
tt

e . 

The master systems (1.25), (1.26), (1.32) and (1.33), and the slave systems (1.27) and 

(1.28) are said to be in dual combination synchronized, if ,0lim =
∞+→

e
t

 where ⋅  

denotes matrix norm. 

1.12 Methods for synchronization  

1.12.1 Active control method 

The active control method was first proposed by E. W. Bai and K. E. Lonngren (Bai and 

Lonngren, (1997)) in 1997, and synchronizes the identical Lorenz chaotic system using 

active control method. After this, in 2000, Bai and Lonngren (2000) showed the 
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sequential synchronization of two Lorenz systems using this method. In 2000, the active 

control method successfully applied for synchronization of two different chaotic 

systems viz., easy periodic system and Rossler system by Ho and Hung (2002). In 2007, 

Li and Yan (2007) investigated chaos synchronization of fractional order Lorenz, 

Rossler and Chen systems taking one system as master and other as slave system. In 

2008, Vincent (2008) presented chaos synchronization between two nonlinear systems 

using two different techniques viz., active control and back stepping control in terms of 

transient analysis. In the same year, Zhou and Cheng (2008) showed synchronization 

between different fractional order chaotic systems viz., Rossler & Chen systems and 

Chua & Chen systems. Recently, Srivastava et. al. (2014b) have successfully applied 

the active control method for anti-synchronization between identical and non-identical 

fractional order chaotic systems. The active control method has received huge attention 

during the last few years. 

The active control method for synchronization of two identical chaotic systems can be 

illustrated using chaotic Lu system. The Lu system is described by following set of 

nonlinear differential equations as 

)( xyax −=  

cyxzy +−=                                                                                                                                      (1.34) 

.bzxyz −=    

The system (1.34) is chaotic for the parameter values 3,36 == ba  and 20=c . Here 

The aim is to make synchronization of system (1.34) by using active control method. 

The master (drive) system is taken as  

)( 111 xyax −=  
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1111 cyzxy +−=                                                                                                                                 (1.35) 

1111 bzyxz −=   

and the slave (response) system as 

)()( 1222 tuxyax +−=  

)(22222 tucyzxy ++−=                                                                                                                 (1.36) 

,)(32222 tubzyxz +−=  

where )(and)(),( 321 tututu are control functions. For synchronization, defining the 

error states as 

121 xxe −=  

122 yye −=                                                                                                                                        (1.37) 

123 zze −= . 

The error dynamical system is obtained from (1.35) and (1.36) as 

)()( 1121 tueeae +−=  

)(2221122 tuzxzxcee +−+=                                                                                                          (1.38) 

)(3112233 tuyxyxbee +−+−= . 

The active control function is )(and)(),( 321 tututu  are defined as 

)()( 11 tvtu =  

)()( 222112 tvzxzxtu ++−=                                                                                                            (1.39) 

)()( 311223 tvyxyxtu ++−= . 

Hence  

)()( 1121 tveeae +−=  

)(222 tvcee +=                                                                                                                                  (1.40) 



 
 

CHAPTER 1 
 

29 

 

)(333 tvbee +−= , 

where )(and)(),( 321 tvtvtv  are the linear control functions, which are the functions of 

321 and, eee . There are many possible choices for the control functions 

)(and)(),( 321 tvtvtv . Let us choose 












=













3

2

1

3

2

1

)(
)(
)(

e
e
e

A
tv
tv
tv

,                                                                                                    (1.41) 

where A  is a 33× constant matrix. For the system (1.40) to be asymptotically stable, the 

elements of the matrix A  are properly chosen so that the closed loop system (1.40) will 

have all eigen values with negative real parts. There is no unique choice for matrix A . 

A good choice can be as follows 

















−
−−

−−
=

100
010
01

b
c

aa
A . 

For this particular choice, the closed loop system (1.40) has eigenvalues those are found 

to be 1and1,1 −−− . This choice will lead to the error states 321 and, eee  converge to 

zero as time t approaches to infinity and this implies that the synchronization of two 

chaotic Lu systems is achieved. The active control method realizes robust 

synchronization of two identical chaotic systems. This method is simple and easy to 

implement in practical applications. 

1.12.2 Nonlinear control method 

In 2005, J. H. Park (Park (2005)) studied the chaos synchronization of chaotic systems 

via nonlinear control method. Dong et al. (2006) studied synchronization of the 

hyperchaotic Rossler system with uncertain parameter using the same method in the 
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year 2006. In 2009, Xin (2009) proposed the projective synchronization using this 

method. The method was successfully used by Li and Ge (2011) during the study of 

pragmatical adaptive synchronization of different orders chaotic systems with uncertain 

parameters and also by Singh et al. (2014) during synchronization and ant-

synchronization of chaotic systems. 

The procedure of the method for synchronization is given below 

First consider the fractional order chaotic system as the master system as 

)( iii xQfPxx += , ,10 << q  ni ...,,2,1= ,                                                              (1.42) 

where nT
ni Rxxxx ∈= ]....,,[ 21  is the state vectors, P  and Q  are the nn×  matrix of the 

system parameters and nn RRf →:  is a nonlinear function of the system.  

Consider another fractional order chaotic system described by the dynamic as a slave 

system as 

),()(11 tuygQyPy iiii ++=   ni ...,,2,1= ,                                                                     (1.43) 

where nT
ni Ryyyy ∈= ]....,,[ 21 , is the state vector of the system, 1P  and 1Q  are the 

nn×  matrix of the system parameters, nn RRg →:  is a nonlinear function of the 

system and )(tui  are the control function of the system. 

Defining the error states as nixye iii ...,,2,1, =−= , the error system becomes 

).()()()( 111 tuxQfxPPygQePe iiiiii +−−++=                                                          (1.44) 

During the synchronization the aim is to find the appropriate feedback controller )(tui  

so that the error dynamics (1.44) can be stabilized in order to get 0)(lim =
∞→

te
t

, for all 

nRe ∈)0( . 

Now, defining the Lyapunov function as 
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,
2
1)( i

T
ii eeeV =  with .].....,,,[)( 21

T
ni eeete =  

The derivative of )( ieV  w. r. to t  is  

dt
eed

dt
edV i

T
ii )(

2
1)(

=  

         
    )......(

2
1 22

2
2
1 neee

dt
d

+++=  

                ∑
=

=
n

i

i

dt
de

1

2

2
1

 

                ∑
=

=
n

i

i
i dt

de
e

1
.    

Choosing the control functions as )()()()1()( 111 iiiii xQfygQxPPePtu +−−−+−= , we 

get                 

,)(
1

2∑
=

−=
n

i
i

i e
dt

edV
                                                                                                      (1.45) 

which shows that the Lyapunov function )( ieV becomes negative definite so as to get 

the required synchronization of the systems (1.42) and (1.43). 

1.12.3 Backstepping method 

The backstepping design is a recursive procedure which combines choice of Lyapunov 

function with the design of feedback control functions. There are many advantages of 

the method as it is a systematic procedure for controlling chaotic dynamic. It can be 

applied over circuits and systems. In 1999, Mascolo and Grassi (1999) have controlled 

chaotic dynamic using backstepping design while its application to the Lorenz system 

and Chua’s circuit. In 2001, Wang and Ge (2001) proposed the Adaptive 

synchronization of uncertain chaotic systems via backstepping design. In the same year, 
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Lu and Zhang (2001) controlled the Chen’s chaotic attractors using backstepping design 

based on parameters identification. In the year 2003, Tan et al. (2003) synchronized the 

chaotic systems using backstepping design and again in the same year Yu and Zhang 

(2003) controlled the uncertain behavior of chaotic systems using backstepping design. 

Recently, Park (2006) and Wu et al. (2009) have shown that the backstepping method is 

very simple, reliable and powerful for controlling the chaotic behavior and 

synchronization of chaotic systems. 

The backstepping design method for synchronization of two identical chaotic systems 

can be illustrated using chaotic Lorenz system. The Lorenz system is described by 

following set of nonlinear differential equations as 

)( 111 xyax −=  

1111 )( yzcxy −−=                                                                                                                           (1.46) 

1111 bzyxz −= .                                                                                                    

The system (1.46) is taken as master system and the slave system is described as 

)()( 1222 tuxyax +−=  

)()( 22222 tuyzcxy +−−=                                                                                                            (1.47) 

)(32222 tubzyxz +−= , 

where )(1 tu , )(2 tu  and )(3 tu  are control inputs. Here the aim is to investigate the 

synchronization of systems (1.46) and (1.47). 

Now defining the error states as 121 xxe −= , 122 yye −=  and 123 zze −= , one can 

obtain the following error dynamical system as 
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)()( 1121 tueeae +−=  

)()( 211311212 tuzeexeeee +−+−−=                                                                                          (1.48) 

)()( 31121133 tuyeexebee ++++−= .                                                                     
 

Equations (1.48) can be considered in terms of control problem where the system is to 

be controlled by the control inputs )(1 tu , )(2 tu  and )(3 tu , which are functions of error 

vectors 1e , 2e  and 3e . As long as these control inputs can stabilize the system, the error 

vectors 1e , 2e , 3e  converge to zero as time t goes to infinity and as a result the systems 

(1.46) and (1.47) are synchronized with each other. Here the bckstepping design 

procedure consists three steps. At the i-th step, the virtual control function iα  can be 

obtained by constructing Lyapunov function Vi

11 ew =

. 

Step I: Defining , we get 

,)()( 11211 tuweaew +−==                                                                                       (1.49) 

where )( 112 we α=  is regarded as an virtual controller. For the designing of )( 11 wα  to 

stabilize 1w - subsystem, choosing the Lyapunov function 1V  as  

2
11 2

1 wV = . 

The derivative of 1V  w. r. to t  is 

dt
dw

dt
dV 2

11

2
1

=  

dt
dww 1

1=   

)]())(([ 11111 tuwwaw +−= α . 
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If 0)(1 =tu  and 
a
www 1

111 )( −=α , then 02
1

1 <−= w
dt

dV , which implies that 1w -

subsystem (1.49) is asymptotically stable. Since virtual control function )( 11 wα  is an 

estimate function, defining the following error variable between 2e  and )( 11 wα  as 

)( 1122 wew α−=  

one can obtain the following ),( 21 ww -subsystem as 

12
1 waw

dt
dw

−=  

)()( 21131112
2 tuzwexwcwaw

dt
dw

+−+−+−= ,                                                           (1.50) 

where ),( 2123 wwe α=  is regarded as an virtual controller. 

Step II:  In this step to stabilize ),( 21 ww  - subsystem (1.50), choose Lyapunov function 

as 

2
2

2
1

2
212 2

1
2
1

2
1 wwwVV +=+= . 

The derivative of  2V  w. r. to t  is 

dt
dw

dt
dw

dt
dV 2

2
2
12

2
1

2
1

+=  

        
dt

dww
dt

dww 2
2

1
1 +=  

 )](),()([ 21121211122
2
121 tuzwwwxwcwawwwwaw +−+−+−+−= α . 

If 0),( 212 =wwα  and 11122 )()1()( zwwacwatu ++−−= , then 02
2

2
1

2 <−−= ww
dt

dV  

makes subsystem (1.50) asymptotically stable. 

Now defining the error variable 3w  as 
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),( 21233 wwew α−= , 

the ),,( 321 www  - subsystem is 

12
1 waw

dt
dw

−=  

12311
2 )( awwwxw

dt
dw

−−+−=                                                                                    (1.51) 

)())(( 311
1

12113
3 tuyw

a
wwwxwbw

dt
dw

++−+++−= . 

Step III: To stabilize the ),,( 321 www  - subsystem (1.51), choosing the following 

Lyapunov function 3V  as 

2
3

2
2

2
1

2
323 2

1
2
1

2
1

2
1 wwwwVV ++=+= . 

The derivative of  3V  is 

dt
dw

dt
dw

dt
dw

dt
dV 2

3
2
2

2
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2
1

2
1

2
1
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dt

dww
dt

dww
dt

dww 3
3

2
2

1
1 ++=    

      )].(

))(([

3

11
1

121133
2
2132321

2
1

tu

yw
a
wwwxwbwwwxwwwwww

+

+−+++−+−−−−=  

Let, 11
11

11
2
133 )11()1()( yw

a
xwxww

a
wbtu −+−−+−= ,  

then 02
3

2
3

2
1

3 <−−−= www
dt

dV
 is negative definite. Thus the system (1.51) is 

asymptotically stable. For 11 ew = ,
a
eeewew 1

121122 )( +−=−= α  and 
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321233 ),( ewwew =−= α , )3,2,1( =iei  tend to zero asymptotically which helps to 

obtain synchronization between fractional order  Lorenz systems. 

1.13 Numerical approximation method 

Numerical methods used for solving ODEs have to be modified for solving fractional 

differential equations (FDEs). The predictor-corrector scheme is derived for drive-

response systems. This scheme is the generalization of Adams–Bashforth–Moulton one 

(Diethelm et al. (2004), Diethelm and Ford (2004)). The approximate solution of 

nonlinear fractional-order differential equations is interpreted by means of this 

algorithm in the following way. 

The following differential equation  

,tt,y=ftyDq
t ))(()(         Tt ≤≤0 ,                                                                               (1.52) 

,yy kk )(
0)0()( =         ][,,.......1,0 qk =       

is equivalent to the Volterra integral equation  

ds.sy,sfst
qΓ

+
k
tyty

t
q

kq

k

k ))(()(
)(

1
!

)(
0

1
1][

0

)(
0 ∫∑ −

−

=

−=                                                      (1.53) 

Setting, NTh = , +∈== ZNnnhtn ,........1,0, ,  The equation (1.53) can be discredited 

as 

,ty,tfa
q+Γ
h+ty,tf
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h

k
t

y=ty jhh

n
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))()1((1
qq

q

n+j, jnjn+
q

h=b −−−                                                                                (1.57)                                                   

The error estimate is 

)()()(max
,.....1,0

p
jhjNj

hotyty =−
=

)1,2min( qp += in which .                                    (1.58)                              

  

 

 

 

 

 

 

 

 

 

 

 

 


