List of Figures

Figure 1.1 Lorenz system

- Figure 1.2 22 Phase portrait of the fractional order Lorenz system at the derivative order (a) $q_1 = q_2 = q_3 = 0.99$; (b) $q_1 = q_2 =$ $q_3 = 0.98$
- 52 Figure 2.1 Phase portraits of the complex Lorenz system for the order of derivative q = 0.95 in (a) $x_1 - x_2 - x_3$ space; (b) $x_1 - x_2 - x_4$ space; (c) $x_1 - x_2 - x_5$ space; (d) $x_2 - x_3 - x_4$ space; (e) $x_2 - x_3 - x_5$ space; (f) $x_3 - x_4 - x_5$ space.
- Phase portraits of the complex Lu system for the order of Figure 2.2 56 derivative q = 0.96 in (a) $y_1 - y_2 - y_3$ space; (b) $y_1 - y_2 - y_4$ space; (c) $y_1 - y_2 - y_5$ space; (d) $y_2 - y_3 - y_4$ space; (e) $y_2 - y_3 - y_5$ space; (f) $y_3 - y_4 - y_5$ space.
- Figure 2.3 Phase portraits of the complex T system for the order of 60 derivative q = 0.94 in (a) $z_1 - z_2 - z_3$ space; (b) $z_1 - z_2 - z_4$ space; (c) $z_1 - z_2 - z_5$ space; (d) $z_2 - z_3 - z_4$ space; (e) $z_2 - z_3 - z_5$ space; (f) $z_3 - z_4 - z_5$ space.
- Figure 2.4 Plots of state trajectories of system (2.10) and system (2.17) for 65 standard order q=1 between (a) $x_1(t)$ and $y_1(t)$; (b) $x_2(t)$ and $y_2(t)$; (c) $x_3(t)$ and $y_3(t)$; (d) $x_4(t)$ and $y_4(t)$; (e) $x_5(t)$ and $y_5(t)$.
- Figure 2.5 Plots of error functions between system (2.10) and system 67 (2.17): for the order of the derivatives (a) q = 0.70;

Page No.

20

(b) q = 0.85; (c) q = 1.

- Figure 2.6 Plots of state trajectories of system (2.13) and system (2.22) for 72 standard order q = 1 between: (a) $y_1(t)$ and $z_1(t)$; (b) $y_2(t)$ and $z_2(t)$; (c) $y_3(t)$ and $z_3(t)$; (d) $y_4(t)$ and $z_4(t)$; (e) $y_5(t)$ and $z_5(t)$.
- Figure 2.7 Plots of error functions between system (2.13) and system 73 (2.22) for: (a) q = 0.70; (b) q = 0.85; (c) q = 1.

Figure 2.8 Plots of state trajectories of system (2.10) and system (2.22) for 77 standard order q = 1 between: (a) $x_1(t)$ and $z_1(t)$; (b) $x_2(t)$ and $z_2(t)$; (c) $x_3(t)$ and $z_3(t)$; (d) $x_4(t)$ and $z_4(t)$; (e) $x_5(t)$ and $z_5(t)$.

- Figure 2.9 Plots of error functions between system (2.10) and system 79 (2.22) for: (a) q = 0.70; (b) q = 0.85; (c) q = 1.
- Figure 3.1 Phase portraits of the fractional order complex Lorenz system 89 with uncertain parameters for the order of the derivative q = 0.95 in: (a) $x_1 - x_2 - x_3$ space; (b) $x_1 - x_2 - x_4$ space; (c) $x_1 - x_2 - x_5$ space; (d) $x_2 - x_3 - x_4$ space; (e) $x_2 - x_3 - x_5$ space; (f) $x_3 - x_4 - x_5$ space.
- Figure 3.2 Phase portraits of the fractional order complex T-system with 93 uncertain parameters for the order of the derivative q = 0.94 in: (a) $y_1 - y_2 - y_3$ space; (b) $y_1 - y_2 - y_4$ space; (c) $y_1 - y_2 - y_5$ space; (d) $y_2 - y_3 - y_4$ space; (e) $y_2 - y_3 - y_5$ space; (f) $y_3 - y_4 - y_5$ space.

- Figure 3.3 Plots of state trajectories of drive system (3.11) and response 97 system (3.15) for fractional order q = 0.95 between: (a) $x_1(t)$ and $y_1(t)$; (b) $x_2(t)$ and $y_2(t)$; (c) $x_3(t)$ and $y_3(t)$; (d) $x_4(t)$ and $y_4(t)$; (e) $x_5(t)$ and $y_5(t)$.
- **Figure 3.4** Plots of error functions between of drive system (3.11) and 98 response system (3.15) at fractional order q = 0.95; (a) with uncertain term; and (b) without uncertain term.
- Figure 4.1 Phase portrait of the fractional order Chen system in 103 $x_1 - x_2 - x_3$ space at the order q = 0.96.
- **Figure 4.2** Phase portrait of the fractional order Qi system in $y_1 y_2 y_3$ 104 space for the order of derivative q = 0.96.
- Figure 4.3 State trajectories of drive system (4.1) and response system 108 (4.3) for fractional order q = 0.96 using active control method between: (a) x_1 and y_1 ; (b) x_2 and y_2 ; (c) x_3 and y_3 .
- Figure 4.4 The evolution of the error functions $e_1(t)$, $e_2(t)$ and $e_3(t)$ 109 using active control method at: (a) q = 0.92; (b) q = 0.96; (c) q = 1.

Figure 4.5 State trajectories of drive system (1) and response system (3) 115 for fractional order q = 0.96 between: (a) x_1 and y_1 ; (b) x_2 and y_2 ; (c) x_3 and y_3 using backstepping method.

Figure 4.6 The evolution of the error functions $e_1(t)$, $e_2(t)$ and $e_3(t)$ 116 using backstepping method at: (a) q = 0.92; (b) q = 0.96; (c) q = 1.

- Figure 5.1 Phase portraits of (a) time-delay advanced Lorenz system, and 123(b) time-delay advanced Lorenz system with uncertainties and disturbances.
- Figure 5.2 Phase portraits of (a) double time-delay Rossler system; 125(b) double time-delay Rossler system with uncertainties and external disturbances.
- Figure 5.3 State trajectories of drive system (5.5) and response system 129 (5.8) between: (a) $x_1(t)$ and $x_2(t)$, (b) $y_1(t)$ and $y_2(t)$, (c) $z_1(t)$ and $z_2(t)$.
- **Figure 5.4** The evolution of the error functions $e_1(t)$, $e_2(t)$ and $e_3(t)$. 129
- **Figure 6.1** Phase portraits of the complex Lorenz system in 138 (a) $x_{11} - x_{12} - x_{15}$ space, and (b) $x_{12} - x_{13} - x_{14}$ space.
- Figure 6.2 Phase portraits of the complex Lu system in (a) $x_{21} x_{22} x_{25}$ 140 space, and (b) $x_{22} x_{23} x_{24}$ space.
- Figure 6.3 Phase portraits of the complex T system in (a) $y_{11} y_{12} y_{15}$ 142 space, and (b) $y_{12} - y_{13} - y_{14}$ spaces.
- Figure 6.4 Phase portraits of the complex Chen system in 144 (a) $y_{21} - y_{22} - y_{25}$ space, and (b) $y_{22} - y_{23} - y_{24}$ space.

Figure 6.5 Phase portraits of the complex two coupled system in 146 (a) $z_{11} - z_{12} - z_{15}$ space, and (b) $z_{12} - z_{13} - z_{14}$ space.

Figure 6.6 Phase portraits of the nonlinear complex chaotic system in 148 (a) $z_{21} - z_{22} - z_{25}$, and (b) $z_{22} - z_{23} - z_{24}$ spaces.

- Figure 6.7 State trajectories of the complex chaotic systems (6.15), (6.17), 155 (6.19), (6.21), (6.26) and (6.27) between : (a) $x_{11}(t) + y_{11}(t)$ and $z_{11}(t)$; (b) $x_{12}(t) + y_{12}(t)$ and $z_{12}(t)$; (c) $x_{13}(t) + y_{13}(t)$ and $z_{13}(t)$; (d) $x_{14}(t) + y_{14}(t)$ and $z_{14}(t)$; (e) $x_{15}(t) + y_{15}(t)$ and $z_{15}(t)$; (f) $x_{21}(t) + y_{21}(t)$ and $z_{21}(t)$; (g) $x_{22}(t) + y_{22}(t)$ and $z_{22}(t)$; (h) $x_{23}(t) + y_{23}(t)$ and $z_{23}(t)$; (i) $x_{24}(t) + y_{24}(t)$ and $z_{24}(t)$; (j) $x_{25}(t) + y_{25}(t)$ and $z_{25}(t)$.
- **Figure 6.8** The plot for the evaluation of error functions 156 $e_{ii}(t), i = 1, 2; j = 1, 2, \dots, 5.$
- Figure 7.1 Phase portraits of the complex Lorenz system for the order of 171 derivative q = 0.95 in (a) $x_{11} - x_{12} - x_{13}$ space, (b) $x_{11} - x_{12} - x_{14}$ space, (c) $x_{11} - x_{12} - x_{15}$ space, (d) $x_{12} - x_{13} - x_{14}$ space, (e) $x_{12} - x_{13} - x_{15}$ space, (f) $x_{13} - x_{14} - x_{15}$ space.
- Figure 7.2 Phase portraits of the complex T system for the order of 175 derivative q = 0.94 in (a) $x_{21} - x_{22} - x_{23}$ space, (b) $x_{21} - x_{22} - x_{24}$ space, (c) $x_{21} - x_{22} - x_{25}$ space, (d) $x_{22} - x_{23} - x_{24}$ space, (e) $x_{22} - x_{23} - x_{25}$ space, (f) $x_{23} - x_{24} - x_{25}$ space.
- Figure 7.3 Dual combination synchronization of complex chaotic systems 182 (7.14), (7.16)-(7.20) at q = 0.95 between: (a) $x_{11}(t) + y_{11}(t)$ and $z_{11}(t)$; (b) $x_{12}(t) + y_{12}(t)$ and $z_{12}(t)$; (c) $x_{13}(t) + y_{13}(t)$ and $z_{13}(t)$; (d) $x_{14}(t) + y_{14}(t)$ and $z_{14}(t)$; (e) $x_{15}(t) + y_{15}(t)$ and $z_{15}(t)$; (f) $x_{21}(t) + y_{21}(t)$ and $z_{21}(t)$; (g) $x_{22}(t) + y_{22}(t)$ and $z_{22}(t)$; (h) $x_{23}(t) + y_{23}(t)$ and $z_{23}(t)$; (i) $x_{24}(t) + y_{24}(t)$ and

(xxiii)

$$z_{24}(t)$$
; (j) $x_{25}(t) + y_{25}(t)$ and $z_{25}(t)$.

- Figure 7.4 The evaluation of error functions $e_{ij}(t)$, $i = 1, 2; j = 1, 2, \dots, 5$ at 183 q = 0.95.
- **Figure 7.5** The evaluation of error functions $e_{ij}(t)$, $i = 1, 2; j = 1, 2, \dots, 5$ at 184 q = 1.