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Chapter 7 

Dual combination synchronization of the 

fractional order complex chaotic systems 

 

7.1 Introduction 

Due to advent of high speed computational facilities and the development of fractional 

order real systems, integer order complex systems, fractional order chaotic systems, many 

interesting and important results have been found during synchronization of the chaotic 

systems which have important applications in various fields such as physical systems 

(Lakshmanan and Murali (1996)), ecological systems (Blasius et al. (1999)), chemical 

systems, modelling brain activity, system identification (Cuomo and Oppenheim (1993)), 

pattern recognition phenomena and secure communication (Murali and Lakshmanan 

(2003)). Recently, finite-time synchronization for high dimensional chaotic systems has 

been applied in secure communication by Liu et al. (2015), which shows that the systems 

can realise monotonous synchronization and the information signal can be recovered 

undistorted. Wu et al. (2016) have used linearized method during chaos synchronization 

and have shown the potential role of fractional chaotic maps for secure communication. 

Synchronization of two identical and non-identical fractional order chaotic systems using 

active control method was studied by Golmankhaneh et al. (2015). The fractional order 

complex Lorenz system and its complete synchronization were studied by Luo and Wang 
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(2013a). The fractional order complex Lu system was introduced by Jiang et al. (2014)  

where the authors realised its anti-synchronization.  The fractional order complex T 

system was presented, and its functional projective synchronization was achieved by Liu 

et al. (2014). The fractional order complex Chen system was studied by Luo and  Wang 

(2013a) and applied its hybrid synchronization to secure digital communication. Complex 

modified hybrid projective synchronization was investigated between the fractional order 

complex chaos and real hyperchaos by Liu (2014). The problem of hybrid projective 

synchronization of fractional order complex chaotic systems with time delays was 

considered by Velmurugan and Rakkiyapan (2016).  

Dual synchronization is a special circumstance in synchronization in which two different 

pairs of chaotic systems, i.e., two master systems and two slave systems are synchronized. 

In the combination synchronization, three chaotic systems, i.e., two master systems and 

one slave system are synchronized. The dual synchronization in integer order systems 

was first proposed by Liu and Davis (2000), where a pair of master systems was 

synchronized with another pair of slave systems.  Xiao et al. (2013) have constructed a 

theory frame about dual synchronization and the method was successfully used to design 

a synchronization controller to achieve synchronization of fractional order chaotic 

systems. Jiang et al. (2015) proposed a generalised combination complex synchronization 

taking two fractional order complex chaotic systems as master systems and one fractional 

order complex system as slave system. The importance of combination synchronization in 

secure communication has already been established by Runzi et al. (2011) by splitting the 

transmitted signals into several parts, each part loaded in different master systems or by 

means of splitting time into intervals so that the signals in different intervals are loaded in 
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different master systems in order to ensure that the transmitted signals have stronger anti-

attack and anti-translated capability. For the three different pairs, i.e., four master systems 

and two slave systems, the dual combination synchronization was studied by Sun et al.  

(2016a) for the integer order real chaotic systems. Motivated by the above discussion, the 

authors have investigated the dual combination synchronization for the six fractional 

order complex chaotic systems which has not yet been explored. Since in the present 

scenario, the numbers of variables are increased in the complex space, it will be more 

secure and interesting to transmit and receive signals in the application of 

communication. As the fractional order complex systems are in complex variables, it 

provides the best instrument to describe a variety of physical phenomena such as 

amplitudes of the electromagnetic field, thermal convection of liquid flow, detuned laser 

system etc.  

To implement this scheme, there are many effective techniques which have been 

successfully applied to achieve the chaos synchronization viz., OGY method, active 

control method, adaptive control method, sliding mode control method, linear and 

nonlinear feedback method, time-delay feedback approach, backstepping approach, etc. It 

is noticed that the Lyapunov stability theory is effective and convenient to synchronize or 

anti-synchronize since the Lyapunov exponents are not required for these calculations. 

Since the method has been well tested to many practical systems, the authors have 

successfully applied this approach in the present article.  Numerical simulation results, 

which are carried out using Adams-Bashforth-Mounton method show the method is easy 

to implement and reliable for synchronizing the fractional order complex Lorenz and T 

systems.  
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The rest of the chapter is organised as follows. The scheme for the dual combination 

synchronization is introduced in Section 7.2. The stability of the proposed scheme is 

studied in Section 7.3. In Section 7.4, the descriptions of the fractional order systems viz., 

complex Lorenz and T systems and their chaotic nature are given. The illustration of the 

scheme and numerical simulation results are carried out in Section 7.5 and Section 7.6 

respectively. Finally, the conclusion is drawn in Section 7.7. 

7.2 The scheme for dual combination synchronization 

In this section, the dual combination synchronization among four master and two slave 

fractional order systems is designed. Let first two master systems are given as 

 ( ) ,111 XfXDq =                                                                                                 (7.1) 

 ( ) ,222 XfXDq =               ,10 ≤< q                                                                 (7.2) 

where T
nxxxX ],,,[ 112111 =  and T

mxxxX ],,,[ 222212 =  are the two state complex 

vector spaces of  uncoupled master systems (7.1) and (7.2) ;  nn CCf →:1  and 

mm CCf →:2  are the two known complex vector valued functions. The coupled master 

system 1M  generates a complex vector signal in the form 

 T
mmnn xaxaxaxaxaxaM ],,,,,,,[ 222222212111121211111 =  

        















=

2

1

2

1

0
0

X
X

A
A

,AX=                                                                              (7.3) 

where ],,,[ 112111 naaadiagA = and ],,,[ 222212 maaadiagA =  are the two known 

matrices; ia1  and ja2  cannot be zero at the same time ( ).,,2,1,,,2,1 mjni  ==   
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Next  two master systems are considered as 

 ( ) ,111 YgYDq =                                                                                                    (7.4) 

 ( ) ,222 YgYDq =                                                                                                   (7.5) 

where T
nyyyY ],,,[ 112111 =  and T

myyyY ],,,[ 222212 =  are the two state complex 

vector spaces of the uncoupled master systems (7.4) and (7.5); nn CCg →:1  and 

mm CCg →:2   are the two known complex vector valued functions. Hence the coupled 

master system 2M  generates a complex vector signal in the form 

 T
mmnn ybybybybybybM ],,,,,,,[ 222222212111121211112 =  

              















=
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1

2

1

0
0

Y
Y

B
B

,BY=                                                                                (7.6) 

where [ ]nbbbdiagB 112111 ,,, = and [ ]mbbbdiagB 222212 ,,, =  are the two known 

matrices; ib1  and jb2  cannot be zero simultaneously ( ).,,2,1,,,2,1 mjni  ==  

Now the corresponding two slave systems are described as 

 ( ) ,1111 UZhZDq +=                                                                                           (7.7) 

 ( ) ,2222 UZhZD q +=                                                                                         (7.8) 

where T
nzzzZ ],,,[ 112111 =  and T

mzzzZ ],,,[ 222212 =  are the state vectors of two 

uncoupled slave systems (7.7) and (7.8) ; nn CCh →:1 and mm CCh →:2  are the two 

known complex vector valued functions; nnnn CCCCU →××:1  and 

mmmm CCCCU →××:2  are controller vector valued functions to be designed.  Then 

the coupled slave system 1S  is generated a complex vector signal in the form 
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 T
mmnn zczczczcxczcS ],,,,,,,[ 222222212111121211111 =  
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C
C

,CZ=                                                                                 (7.9) 

where [ ]ncccdiagC 112111 ,,, = and [ ]mcccdiagC 222212 ,,, =  are the two known 

matrices; ic1  and jc2  cannot be zero at the same time ( ) .,,2,1,,,2,1 mjni  ==  

The error vector signal for dual combination synchronization is defined as  

 121 RSQMPMe −+=  

     ,RCZQBYPAX −+=  

where ,P Q and R  are called scaling matrices. 

For the convenience of the ensuing discussion, let us assume ,P Q  and R  are diagonal 

matrices. Then e  is reduced to 

 ,
222222222

111111111

2

1








−+
−+

=







ZCRYBQXAP
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e
e

                                                          (7.10) 

where ,],[ 21
TTT eee = ,

0
0
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R  such that  

,],,,[ 112111
T

neeee = ,],,,[ 222212
T

meeee =  [ ] ,,,, 112111 npppdiagP =  

[ ] ,,,, 222212 mpppdiagP =  [ ] ,,,, 112111 nqqqdiagQ =  [ ] ,,,, 222212 mqqqdiagQ =  

[ ]nrrrdiagR 112111 ,,, =  and [ ] .,,, 222212 mrrrdiagR =  
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Definition 7.1 Dual combination synchronization of the master systems (7.1), (7.2), (7.4) 

and (7.5), and the slave systems (7.7) and (7.8) is achieved, if ,0)(lim =
∞→

te
t

 where ⋅  

denotes matrix norm. 

Remark 7.2 If the matrices ,ICBA ===  then it is easy to verify that the proposed 

scheme is applicable for  

(1) combination synchronization  if 0111 === RQP  or .0222 === RQP  

(2) projective synchronization if (i) ;021 == QQ  ,011 == RP ,2 IP = ;2 DR = or 

,022 == RP ,2 IP = ;1 DR = or (ii) ;021 == PP  ,011 == RQ ,2 IQ = ;2 DR =  or 

,022 == RQ ,1 IQ = .1 DR =  

(3) complete synchronization if (i) ;0111 === RQP  ,02 =P ;22 IRQ == or 

,22 IRP == ;02 =Q or (ii) ;0222 === RQP  ,01 =P ;11 IRQ ==  or ,11 IRP ==

.01 =Q  

(4) chaos control problem if 0== BA or .0== QP  

Remark 7.3 If ,IRQP ===  the proposed scheme is applicable for the dual 

synchronization for ,ICA == 021 == BB  or  ,021 == AA ICB ==  and also 

applicable for all kinds of synchronization mentioned in Remark 7.2 and many more 

cases with appropriate choices of matrices. 
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7.3 Stability analysis 

In order to achieve the dual combination synchronization, let us design the control vector 

functions as 

 ,1
1

1
1

11111
1

1
1

1111
1

1
1

111 iiiiiiiiiiiiiii erckgbqrcfaprchu −−−−−− +++−=  ni ,,2,1 =  

 ,2
1

2
1

22222
1

2
1

2222
1

2
1

222 jjjjjjjjjjjjjjj erckgbqrcfaprchu −−−−−− +++−= mj ,,2,1 =  (7.11) 

where T
nuuuU ],,,[ 112111 = , T

muuuU ],,,[ 222212 = , T
nffff ],,,[ 112111 = , 

T
mffff ],,,[ 222212 = , T

ngggg ],,,[ 112111 = , T
mgggg ],,, 222212 = , 

T
nhhhh ],,,[ 112111 = ,    T

mhhhh ],,,[ 222212 = and 1k  and 2k  are constants. 

Theorem 7.4 Dual combination synchronization of the considered systems is achieved if  

01 >k  and .02 >k  

Proof: The th−q order derivative of the Equation (7.10) is given by 

 ,
][][][

][][][

222222222
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2

1









−+
−+

=
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ZDCRYDBQXDAP

eD
eD

qqq

qqq

q

q

 

and the dynamical error system is obtained as 

 ,
])([)]([)]([

])([)]([)]([

2222222222222

1111111111111

2

1








+−+

+−+
=








UZhCRYgBQXfAP

UZhCRYgBQXfAP
eD
eD

q

q

                                           

which  can be written as 

 ,)( 11111111111 iiiiiiiiiii
q uhcrgbqfapeD +−+=               ni ,,2,1 =  

 ,)( 22222222222 jjjjjjjjjjj
q uhcrgbqfapeD +−+=    .,,2,1 mj =     (7.12) 
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Let us design the Lyapunov candidate as 

 ,
2
1

2
1

2
1

2
1

2
1

2
1

2
1 2

2
2
22

2
21

2
1

2
12

2
11 mn

T eeeeeeeeV +++++++==   

whose th−q derivative using Lemma 1.10 is obtained as 

....... 22222221211112121111 m
q

m
qq

n
q

n
qqq eDeeDeeDeeDeeDeeDeVD +++++++≤  

The above equation with the aid of Equation (7.11) and Equation (7.12) gives rise to 

 )]()([ 2
2

2
22

2
212

2
1

2
12

2
111 mn

q eeekeeekVD +++++++−≤   

  .0<  

Therefore according to Lyapunov stability theory, the error dynamical system (7.12) is 

asymptotically stable i.e., .0lim =
∞→

e
t

Hence the dual combination synchronization is 

achieved.  

7.4 Systems' descriptions 

7.4.1 The fractional order complex Lorenz system 

The fractional order complex Lorenz system (Luo and Wang (2013b)) is given as 

 ,)( 12111 llalD q −=  

 ,3121122 llllalDq −−=                                                                                                               

 ,)(
2
1

31321213 lalllllD q −+=        ,10 << q                                                    (7.13) 
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where  Tllll ],,[ 321=   is the state vector variable,  12111 xixl +=   and   14132 xixl +=    

are complex variables;  153 xl =   is real variable;  ,11a ,12a 13a   are parameters and 

1−=i .  One can obtain the real version of the system (7.13) as 

 ,)( 11131111 xxaxDq −=  

 ,)( 12141112 xxaxD q −=  

 ,151113111213 xxxxaxDq −−=                                                                                                     

 ,151214121214 xxxxaxD q −−=  

 .15131412131115 xaxxxxxD q −+=                                                                       (7.14) 

Figure 7.1 depicts the chaotic behaviour of the system in various three dimensional 

combinations of the state spaces at fractional order 95.0=q  for the values of parameters 

1011 =a  , 18012 =a , 113 =a  and the initial condition .]965,32[)0( Tiil ++=   

 

Figure 7.1 (a) 
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Figure 7.1 (b) 

 

 

Figure 7.1 (c) 
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Figure 7.1 (d) 

 

 

Figure 7.1 (e) 
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Figure 7.1 (f) 

Figure 7.1: Phase portraits of the complex Lorenz system for the order of derivative 

95.0=q  in (a) 131211 xxx −−  space, (b) 141211 xxx −−  space, (c) 151211 xxx −−   space, 

(d) 141312 xxx −−  space, (e) 151312 xxx −−  space, (f) 151413 xxx −−  space. 

7.4.2 The fractional order complex T system 

The fractional order complex T system (Liu et al. (2014)) is given by 

 ,)( 12211 uuauD q −=  

 ,)( 3121121222 uuauaauD q −−=                                                                                                     

 ,)(
2
1

32321213 uauuuuuDq −+=         ,10 << q                                              (7.15) 

where Tuuuu ],,[ 321=  is state vector variable with 22211 xixu +=  and 

24232 xixu +=  are complex variables and 253 xu =  is real variable;  ,21a  ,22a  23a are 

parameters. 



Chapter 7 

~ 172 ~ 
 

System (7.15) can be written as 

 ,)( 21232121 xxaxD q −=  

 ,)( 22242122 xxaxD q −=  

 ,)( 25212121212223 xxaxaaxDq −−=                                                                                            

 ,)( 25222122212224 xxaxaaxD q −−=  

 .25232422232125 xaxxxxxDq −+=                                                                     (7.16) 

For parameters’ values 1.221 =a , 3022 =a , 6.023 =a  and the initial condition  

,]10,65,78[)0( Tiiu ++=  the above system exhibits chaotic behaviour at ,94.0=q  

which is described in Figure 7.2 through various state space plots. 

 

 

Figure 7.2 (a) 
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Figure 7.2 (b) 

 

 

 

Figure 7.2 (c) 
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Figure 7.2 (d) 

 

 

Figure 7.2 (e) 
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Figure 7.2 (f) 

Figure 7.2: Phase portraits of the complex T system for the order of derivative 94.0=q  

in (a) 232221 xxx −− space, (b) 242221 xxx −− space, (c) 252221 xxx −−  space,                 

(d) 242322 xxx −−  space, (e) 252322 xxx −−  space, (f) 252423 xxx −−  space. 

7.5 Illustration of the scheme 

In this section, the effectiveness of the proposed scheme is realised through consideration 

of fractional order complex Lorenz system and fractional order complex T system. Let us 

consider the systems (7.14) and (7.16) as first two master systems. The other two master 

systems are considered as 

 ,)( 11131111 yybyD q −=  

 ,)( 12141112 yybyDq −=  

 ,151113111213 yyyybyD q −−=                                                                                                     
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 ,151214121214 yyyybyDq −−=  

 ,15131412131115 ybyyyyyD q −+=                                                                    (7.17) 

and 

 ,)( 21232121 yybyDq −=  

 ,)( 22242122 yybyDq −=  

 ,)( 25212121212223 yybybbyD q −−=                                                                                            

 ,)( 25222122212224 yybybbyDq −−=  

 .25232422232125 ybyyyyyDq −+=                                                                       (7.18) 

The corresponding two slave systems can be written as 

 ,)( 1111131111 uzzczDq +−=  

 ,)( 1212141112 uzzczDq +−=  

 ,13151113111213 uzzzzczD q +−−=                                                                                              

 ,14151214121214 uzzzzczDq +−−=  

 ,1515131412131115 uzczzzzzD q +−+=                                                              (7.19) 

and 

 ,)( 2121232121 uzzczDq +−=  

 ,)( 2222242122 uzzczDq +−=  

 ,)( 2325212121212223 uzzczcczDq +−−=                                                                                     

 ,)( 2425222122212224 uzzczcczDq +−−=  

 ,2525232422232125 uzczzzzzDq +−+=                                                             (7.20) 
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when ju1  and ju2  )5,4,3,2,1( =j  are control functions. 

Taking IRQPCBA ======  and 121 == kk , it is obtained the control functions as 

 ,)()()( 1111131111131111131111 eyybxxazzcu +−+−+−−=  

 ,)()()( 1212141112141112141112 eyybxxazzcu +−+−+−−=  

 ,1315111311121511131112151113111213 eyyyybxxxxazzzzcu +−−+−−+++−=                                 

 ,1415121412121512141212151214121214 eyyyybxxxxazzzzcu +−−+−−+++−=  

 1412131115131412131115131412131115 yyyyxaxxxxzczzzzu ++−+++−−=  

  ,151513 eyb +−                                                                                                         (7.21) 

and 

 ,)()()( 2121232121232121232121 eyybxxazzcu +−+−+−−=  

 ,)()()( 2222242122242122242122 eyybxxazzcu +−+−+−−=

 21212225212121212225212121212223 )()()( ybbxxaxaazzczccu −+−−++−−=  

  ,23252121 eyyb +−  

 22212225222122212225222122212224 )()()( ybbxxaxaazzczccu −+−−++−−=  

  ,24252221 eyyb +−  

 2422232125232422232125232422232125 yyyyxaxxxxzczzzzu ++−+++−−=  

  .252523 eyb +−                                                                                                         (7.22) 

The above control functions are to be designed in such a manner that the considered 

systems (7.14), (7.16)-(7.20) will be stabilised through the convergence of errors obtained 

using Theorem 7.4 as time approaches to infinity. 
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Figure 7.3 (a) 

 

 

 

Figure 7.3 (b) 
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Figure 7.3 (c) 

 

 

 

 

Figure 7.3 (d) 
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Figure 7.3 (e) 

 

 

 

Figure 7.3 (f) 
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Figure 7.3 (g) 

 

 

 

 

Figure 7.3 (h) 
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Figure 7.3 (i) 

 

Figure 7.3 (j) 

Figure 7.3 Dual combination synchronization of complex chaotic systems (7.14), (7.16)-

(7.20) at 95.0=q  between: (a) )()( 1111 tytx +  and )(11 tz ; (b) )()( 1212 tytx +  and )(12 tz ; 

(c) )()( 1313 tytx +  and )(13 tz ; (d) )()( 1414 tytx +  and )(14 tz ; (e) )()( 1515 tytx +  and 

;)(15 tz   (f) )()( 2121 tytx +  and )(21 tz ; (g) )()( 2222 tytx +  and )(22 tz ; (h) )()( 2323 tytx +  and 

)(23 tz ;  (i) )()( 2424 tytx +  and )(24 tz ; (j) )()( 2525 tytx +  and )(25 tz  
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Figure 7.4 (a) 

 

 

Figure 7.4 (b) 

Figure 7.4 The evaluation of error functions 5,,2,1;2,1),( == jiteij  at .95.0=q  
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Figure 7.5 (a) 

 

 

Figure 7.5 (b) 

Figure 7.5 The evaluation of error functions 5,,2,1;2,1),( == jiteij  at .1=q  
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7.6 Simulation results and discussion  

In this section, to verify and demonstrate the feasibility of dual combination 

synchronization of fractional order complex chaotic systems, it is obtained the simulation 

results of the considered fractional order Lorenz and T systems in complex space at the 

fractional order .95.0=q  During simulation, the values of the parameters remain 

unchanged. The initial conditions are taken as Ttxtxtxtxtx )](,)(,)(,)(,)([ 1514131211 =

T9] ,6 ,5 ,3 ,2[ ; ,)([ 21 tx ,)(22 tx ,)(23 tx ,)(24 tx Ttx )](25 = ;]10 ,6 ,5 ,7 ,8[ T ,)([ 11 ty

,)(12 ty ,)(13 ty ,)(14 ty Tty ])(15 = T6] ,1 ,3 ,2 ,5[ ; Ttytytytyty )](,)(,)(,)(,)([ 2524232221 =

;4] ,2 ,6 ,2 ,3[ T ,)([ 11 tz ,)(12 tz ,)(13 tz ,)(14 tz Ttz )](15 = T2] ,3 ,5 ,14 ,11[ and ,)([ 21 tz

,)(22 tz ,)(23 tz ,)(24 tz Ttz )](25 = ;15] ,7 ,5 ,4 ,9[ T  and hence the initial error is ,)([ 11 te

,)(12 te ,)(13 te ,)(14 te ,)(15 te ,)(21 te ,)(22 te ,)(23 te ,)(24 te Tte )](25  = ,-4[  ,9- ,3  ,4

,13 ,2 ,5 ,6 1, T]1- . Figures 7.3 (a)-(e) display the time response of the states 

)()( 11 tytx jj +  and )(1 tz j  of the master systems (7.14), (7.16), (7.17), (7.18) and the slave 

systems (7.19), (7.20) with controllers (7.21), (7.22) where .5)1(1=j  Similarly Figures  

7.3 (f)-(j) depict the time response of the states )()( 22 tytx jj + and )(2 tz j of master 

systems and slave systems respectively for .5)1(1=j  Figure 7.4 (a) and Figure 7.5 (a) 

show that the error vectors asymptotically converge to zero as time becomes large which 

implies that dual combination synchronizations among the considered six chaotic systems 

are achieved at 95.0=q  and 1=q  respectively. For better illustration and understanding, 

the time differences for two cases are shown through Figures 7.4 (b) and 7.5 (b). The 
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figures clearly exhibit that it takes less time for synchronization when the order of the 

derivative approaches from standard order to the fractional order system. 

7.7 Conclusion 

The primary purpose of the present chapter is to propose a novel scheme for the dual 

combination synchronization of fractional order complex chaotic systems. Another goal 

of this study is the stability analysis using Lyapunov stability theory with the proposed 

scheme used successfully for synchronization of four master and two slave systems. The 

author concludes that the scheme is very much useful for synchronization of a number of 

chaotic systems in fractional order as well as standard order cases. The author believes 

that the proposed scheme will play an important role in practical applications and it will 

attract the attention of the researchers working in the field of dynamical systems in both 

standard order and fractional order. The meaningful outcome of this study is the 

demonstration that less time is required for synchronization of the considered chaotic 

systems as the time derivative approaches towards fractional order from standard order. 

***** 


