Chapter 7

Dual combination synchronization of the

fractional order complex chaotic systems

7.1 Introduction

Due to advent of high speed computational facilities and the development of fractional
order real systems, integer order complex systems, fractional order chaotic systems, many
interesting and important results have been found during synchronization of the chaotic
systems which have important applications in various fields such as physical systems
(Lakshmanan and Murali (1996)), ecological systems (Blasius et al. (1999)), chemical
systems, modelling brain activity, system identification (Cuomo and Oppenheim (1993)),
pattern recognition phenomena and secure communication (Murali and Lakshmanan
(2003)). Recently, finite-time synchronization for high dimensional chaotic systems has
been applied in secure communication by Liu et al. (2015), which shows that the systems
can realise monotonous synchronization and the information signal can be recovered
undistorted. Wu et al. (2016) have used linearized method during chaos synchronization
and have shown the potential role of fractional chaotic maps for secure communication.
Synchronization of two identical and non-identical fractional order chaotic systems using
active control method was studied by Golmankhaneh et al. (2015). The fractional order

complex Lorenz system and its complete synchronization were studied by Luo and Wang
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(2013a). The fractional order complex Lu system was introduced by Jiang et al. (2014)
where the authors realised its anti-synchronization. The fractional order complex T
system was presented, and its functional projective synchronization was achieved by Liu
et al. (2014). The fractional order complex Chen system was studied by Luo and Wang
(2013a) and applied its hybrid synchronization to secure digital communication. Complex
modified hybrid projective synchronization was investigated between the fractional order
complex chaos and real hyperchaos by Liu (2014). The problem of hybrid projective
synchronization of fractional order complex chaotic systems with time delays was

considered by Velmurugan and Rakkiyapan (2016).

Dual synchronization is a special circumstance in synchronization in which two different
pairs of chaotic systems, i.e., two master systems and two slave systems are synchronized.
In the combination synchronization, three chaotic systems, i.e., two master systems and
one slave system are synchronized. The dual synchronization in integer order systems
was first proposed by Liu and Davis (2000), where a pair of master systems was
synchronized with another pair of slave systems. Xiao et al. (2013) have constructed a
theory frame about dual synchronization and the method was successfully used to design
a synchronization controller to achieve synchronization of fractional order chaotic
systems. Jiang et al. (2015) proposed a generalised combination complex synchronization
taking two fractional order complex chaotic systems as master systems and one fractional
order complex system as slave system. The importance of combination synchronization in
secure communication has already been established by Runzi et al. (2011) by splitting the
transmitted signals into several parts, each part loaded in different master systems or by

means of splitting time into intervals so that the signals in different intervals are loaded in
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different master systems in order to ensure that the transmitted signals have stronger anti-
attack and anti-translated capability. For the three different pairs, i.e., four master systems
and two slave systems, the dual combination synchronization was studied by Sun et al.
(2016a) for the integer order real chaotic systems. Motivated by the above discussion, the
authors have investigated the dual combination synchronization for the six fractional
order complex chaotic systems which has not yet been explored. Since in the present
scenario, the numbers of variables are increased in the complex space, it will be more
secure and interesting to transmit and receive signals in the application of
communication. As the fractional order complex systems are in complex variables, it
provides the best instrument to describe a variety of physical phenomena such as
amplitudes of the electromagnetic field, thermal convection of liquid flow, detuned laser

system etc.

To implement this scheme, there are many effective techniques which have been
successfully applied to achieve the chaos synchronization viz., OGY method, active
control method, adaptive control method, sliding mode control method, linear and
nonlinear feedback method, time-delay feedback approach, backstepping approach, etc. It
is noticed that the Lyapunov stability theory is effective and convenient to synchronize or
anti-synchronize since the Lyapunov exponents are not required for these calculations.
Since the method has been well tested to many practical systems, the authors have
successfully applied this approach in the present article. Numerical simulation results,
which are carried out using Adams-Bashforth-Mounton method show the method is easy
to implement and reliable for synchronizing the fractional order complex Lorenz and T

systems.
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The rest of the chapter is organised as follows. The scheme for the dual combination
synchronization is introduced in Section 7.2. The stability of the proposed scheme is
studied in Section 7.3. In Section 7.4, the descriptions of the fractional order systems viz.,
complex Lorenz and T systems and their chaotic nature are given. The illustration of the
scheme and numerical simulation results are carried out in Section 7.5 and Section 7.6

respectively. Finally, the conclusion is drawn in Section 7.7.

7.2 The scheme for dual combination synchronization

In this section, the dual combination synchronization among four master and two slave

fractional order systems is designed. Let first two master systems are given as
DX, = f,(X,), (7.1)
DX, = f,(X,), 0<g<1, (7.2)
where X, =[X;, Xy, X, 1" and X, =[Xy, Xp,++, X, ] are the two state complex
vector spaces of uncoupled master systems (7.1) and (7.2) ; f,:C" —>C" and
f,:C" — C" are the two known complex vector valued functions. The coupled master
system M generates a complex vector signal in the form

T
Ml = [allxll’a12X12"“7a1n Xin 1891 X515 a22X22"“’a2mX2m]

SN

where A =diag[a,,a,,,":-,a,,] and A, =diag[a,,a,,,~--,a,,] are the two known

matrices; a,; and a,; cannot be zero at the same time (i=12,-,n, j=12,--,m).
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Next two master systems are considered as
DY, = g,(Y,), (7.4)
DY, =g,(Y,), (7.5)
where Y, =Y., Yoo Vi T and Y, =[Y,0, Vanoo Yo 1T @re the two state complex
vector spaces of the uncoupled master systems (7.4) and (7.5); g,:C" ->C" and
g,:C" —>C™ are the two known complex vector valued functions. Hence the coupled

master system M, generates a complex vector signal in the form

Mz = [b11y11'blzylz""’blnyln'b21y21’b22y227""b2my2m]T

—Bloyl—BY 7.6
1o BlY,| (7.6)

where B, =diag|b,,b,,--,b,| and B, =diaglb,,b,,,--,b, ] are the two known

matrices; b; and b,; cannot be zero simultaneously (i=1,2,---,n, j=1,2,---,m).

Now the corresponding two slave systems are described as
DZ, =h(Z,)+U,, (7.7)
DYZ, =h,(Z,)+U, , (7.8)
where Z, =[z,,,2,,,--,2,,]' and Z, =[z,,,2,,,---,2,,,]" are the state vectors of two
uncoupled slave systems (7.7) and (7.8) ; h:C" —>C"and h,:C™ - C" are the two
known  complex vector valued functions; U,:C"xC"xC"—>C" and
U,:C"xC"xC™ —»C"™ are controller vector valued functions to be designed. Then

the coupled slave system S, is generated a complex vector signal in the form
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T
Sl = [C11211’C12X12 171G 2y C21221’C22222"”’CZmZZm]

—Clozl—cz 7.9
1o ¢z, T (7:9)

where C, =diag|[c,,,c,,,-~,C,,] and C, =diag[c,,,Cy.--,C,, | are the two known

matrices; ¢; and c,; cannot be zero at the same time (i=1,2,---,n, j=1,2,---,m).

The error vector signal for dual combination synchronization is defined as
e=PM,;+QM, -RS
= PAX +QBY —RCZ,

where P, Qand R are called scaling matrices.

For the convenience of the ensuing discussion, let us assume P, Q and R are diagonal

matrices. Then e is reduced to

{el} {PAIX ,+Q,BY, -RC,Z, (7.10)

e, P,A, X, +Q,B,Y, — RCZ}
Q O R, O
and R= such that
} [o Q, 0 R,|

elz[en'elzl""eln]T' e2:[e21,e22,---,e2m]T ) P1:diag[pn'pu'”"pm]’

where e=[e/,e;]", P= {

Pz :diag[pn’ Py p2m]’ Q1 :diag [q111q12’”"q1n]1 Qz :diag [Q21’q221"'vq2m]1

R, = diag [r111r12""1r1n] and R, = diag [I‘21,I‘22,---,I’2m].
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Definition 7.1 Dual combination synchronization of the master systems (7.1), (7.2), (7.4)

and (7.5), and the slave systems (7.7) and (7.8) is achieved, if !im||e(t)|| =0, where ||

denotes matrix norm.

Remark 7.2 If the matrices A=B=C =1, then it is easy to verify that the proposed

scheme is applicable for
(1) combination synchronization if P, =Q, =R, =0o0or P, =Q, =R, =0.

(2) projective synchronization if (i) Q,=Q,=0; B =R =0, P,=1, R,=D; or
P,=R,=0, P,=1, Ry=D; or (i) b=P,=0; Q=R =0, Q,=1, R,=D; or

Q,=R,=0,Q,=1,R=D.

(3) complete synchronization if (i) P=Q =R =0, P,=0, Q,=R,=1; or
P,=R,=1, Q,=0;o0r (i) P,=Q,=R,=0;, P =0, Q=R =I; 0or P=R, =1,

Q, =0.
(4) chaos control problem if A=B=0or P=Q =0.

Remark 7.3 If P=Q=R=1, the proposed scheme is applicable for the dual
synchronization for A=C=1, B,=B,=0 or A=A =0, B=C=1 and also
applicable for all kinds of synchronization mentioned in Remark 7.2 and many more

cases with appropriate choices of matrices.
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7.3 Stability analysis

In order to achieve the dual combination synchronization, let us design the control vector

functions as

U, = _hli +Cl_ilr1i_l Pridy; fli +C1_ilr1i_1q1ib1i g, t klcl_ilrli_leli 1 i =1,2,--,n

1

1,1 1, 1,.-1 :
Uy; :—h21.+c2 Py f2j+c2jr2jq2jb2j gzj+k2c2jr2je2j , J=1,2,---,m (7.11)

i'2j

where Ulz[ull’ulzl"'!uln]T ) Uz:[U21,U22,"' u ]T ) fl:[fll' flzl""fln]T ]

v Uom
fzz[levfzz""’fzm]T ) 91:[911’912""’g1n]T ) 92=921,922,"',92m]T )

h =[h,, hy,---,h,1", h,=[h,, h,, -, h, 1 and k, and k, are constants.

Theorem 7.4 Dual combination synchronization of the considered systems is achieved if

k, >0 and k, >0.

Proof: The q-thorder derivative of the Equation (7.10) is given by

{D‘*el}_{ PA[D'X,]+Q,B,[D,]-R,C,[DZ,] }

D, - P,A,[D?X,]+Q,B,[D,]-R,C,[DZ,]

and the dynamical error system is obtained as

qul :|: PlAl[fl(xl)]+QlBl[gl(Yl)]_Rlcl[hl(Zl)+U1] :|
D, | |PA [f,(X;)]1+Q,B,[9,(Y,)]1-R,C, [h,(Z,)+U,]1]

which can be written as
D%e; = py a; fy +0q; by gy — 1y ¢ (hy +uy) i=1,2,-,n

D* €, = Pyj Ay f2j +0; sz 9,5 — 1y Czj(hz,' +U2j) v 1=12,-,m. (7.12)
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Let us design the Lyapunov candidate as

1 1 1 1 1 1 1
Vv :—eTe=Eefl+§ef2 +~-~+Eefn +Ee§1+§e§2 +---+§e§m ,

whose g - th derivative using Lemma 1.10 is obtained as
D"V <e, D%, +e, D%, +...+¢e,, D%, +e, D%, +e,, D%,, +...+¢e,, D%, .
The above equation with the aid of Equation (7.11) and Equation (7.12) gives rise to
DV <[k, (2 +e’ +---+e2)+k,(eX +eZ +---+e’ )]
<0.
Therefore according to Lyapunov stability theory, the error dynamical system (7.12) is

asymptotically stable i.e., !im||e||=0. Hence the dual combination synchronization is

achieved.

7.4 Systems' descriptions

7.4.1 The fractional order complex Lorenz system

The fractional order complex Lorenz system (Luo and Wang (2013b)) is given as
Dq|1 = a11(|2 _I1) '

a  _
D Iz _a12|1_|2_|1|3 |

DI, :%(El2 +L 1) —a,l,, 0<qg<l, (7.13)
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where 1 =[l;, 1,, I,]" is the state vector variable, I, =x, +ix, and I, =X, +iX,
are complex variables; |, =x, is real variable; a,, a,, a,; are parameters and
i=+/—1 . One can obtain the real version of the system (7.13) as

DXy = ay; (X3 = X1)

qulz = all(xl4 - Xlz) )

DleS = A Xy — Xy ~ Xy X5

DqX14 =Xy, — Xy — X X5

quls = Xip X3  XppXyy = 843Xy5 - (7.14)
Figure 7.1 depicts the chaotic behaviour of the system in various three dimensional

combinations of the state spaces at fractional order q=0.95 for the values of parameters

a,, =10, a,, =180, a,;; =1 and the initial condition 1(0) =[2+3i, 5+6i 9],

1
P X, (1)

Figure 7.1 (a)
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Figure 7.1: Phase portraits of the complex Lorenz system for the order of derivative
q=0.95 in (a) x,; — X, —X;5 space, (b) X;; —X;, — X, space, (C) X, — X, —X,;5 Space,

(d) Xy, — X5 =Xy, SPACE, (€) X;, —X;; — X5 Space, (f) x,; — X, — X5 space.

7.4.2 The fractional order complex T system

The fractional order complex T system (Liu et al. (2014)) is given by

D, =a,,(u, —-u,),

unz = (ay —ay)U; —a,U;U, ,

D, =%(u_l U,+U, U)—ayu, , 0<qg<1, (7.15)
where u=[u, U,, U] is state vector variable with u, =x, +ix,, and
U, = X,; +1X,, are complex variables and u, = X, is real variable; a,,, a,,, 8, are

parameters.
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System (7.15) can be written as

quzl =8, (X3 = X51)

quzz =8y (Xp4 = X))

quza = (azz - a21)X21 8y X1 Xo5

DqX24 = (azz - a21)X22 — 8y X X5

quzs = X1 X3 F XppXpq — 83 X5 - (7.16)
For parameters’ values a, =21, a, =30, a, =0.6 and the initial condition

u(0) =[8+7i, 5+6i, 10]", the above system exhibits chaotic behaviour at q=0.94 ,

which is described in Figure 7.2 through various state space plots.

10
5k
N
X
0‘
-5 - 10
-5 40 -5
X,,(®) X,, (1)

Figure 7.2 (a)
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Figure 7.2: Phase portraits of the complex T system for the order of derivative q =0.94
in (&) X, —X, —X,, SPace, (b) X, —X,, —X,, space, (C) X, —X,, — X, Space,

(d) X;, — Xp3 = Xy4 SPACE, (B) X — Xp5 — Xp5 SPACE, (F) X,5 — X,y — X, SPACE.

7.5 lllustration of the scheme

In this section, the effectiveness of the proposed scheme is realised through consideration
of fractional order complex Lorenz system and fractional order complex T system. Let us
consider the systems (7.14) and (7.16) as first two master systems. The other two master

systems are considered as
qun = b11(Y13 - Y11) )
DYy, = by (Yay = Vi)

D* Yiz = b12 Y= Yis = YuYis o
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and

D* Yia = b12 Yi2 = Y1 = Y2 Yis

Dq y15 = yll y13 + y12 yl4 - b13 y15 ! (717)

DYy =0, (Vs = Yar)
Do =0, (Yas = ¥22)
DYy = (b, =0y1) Vo1 =Dy Yo Vos
DY, = (b =052 =051 Y2 Vs

qu25 = y21y23 + y22 y24 - b23 y25 ' (718)

The corresponding two slave systems can be written as

and

qun =Cyy (23 = Zyy) + Uy
qulz =Cyy (2 —2;5) + Uy,
quls =CppZyy = 2y3 — 23215 T U3,
Dq214 =Cpplyy =Ly —ZypZis t Uy,

a —
D Z15 - lezlS + 212 Zl4 _C13215 +U15 ! (719)

quzl = Czl(zzs - Z21) Uy
quzz = 021(224 - Z22)"'1'122 J
quzs = (sz _C21)221 —CpZyZy5 T Uy
D92,y = (Cop —C1) 23 = Cp1Z2Zp5 + Uy

a —
D Z25 - Z21223 + Z22224 _C23225 +U25 ! (720)
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when uy; and u,; (j=1,2,3,4,5) are control functions.
Taking A=B=C=P=Q=R=1 and k, =k, =1, it is obtained the control functions as
Uy = _011(213 N Z11) + a11()(13 - X11) + b11(y13 - y11) Ty,
U, = _011(214 - Z12) + a11(X14 - X12) + b11(Y14 - y12) +€5
Ups = —CpZyy + 233 + 213295 + 815 Xyy = X3 — Xy X5 + b12 Yiu =Yz~ YuYis + €3,
Uy = —CraZyp + 254 + 215255 H 835X = Xy = Xpp X5 + b12 Yio = Y = Y12 Y15 T €14
Ujs = —Z13213 = 215214 + CiaZy5 + Xy Xgz + Xp Xy — 813 Xi5 + Y11 Y13 + Y12 Y1
- b13 Yis + €55, (7-21)

and

Uy =—Cy (223 - 221) + a21(X23 - le) + bzl(Y23 - y21) €y,

Uy, = _C21(224 - Z22) + azl(X24 - Xzz) + b21(y24 - yzz) +€y

Uy = _(022 - C21)221 +CplyZss + (azz - a21)X21 ~ 8y Xy Xp5 t+ (bzz - bzl)Y21
o b21 Y21Yo5 + €53 s

Uy = _(sz o Czl)zzz TCuZply + (azz o a21)X22 8y XppXps + (bzz o b21)y22
- b21Y22 Yos + €4

Ups = —Zp1Zp3 = ZypZyy +Cpalps + Xyn Xz + XpoXog =803 Xo5 + Yo Yoz + Y22 You

- b23 y25 + ezs ' (7-22)

The above control functions are to be designed in such a manner that the considered
systems (7.14), (7.16)-(7.20) will be stabilised through the convergence of errors obtained

using Theorem 7.4 as time approaches to infinity.
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Figure 7.3 Dual combination synchronization of complex chaotic systems (7.14), (7.16)-
(7.20) at g =0.95 between: (a) x,(t)+ y,(t) and z,,(t); (b) X, (t)+ Yy, (t) and z,,(t);
(©) X (M) +yua) and z,,(t) 5 (d) X, ()+y,(t) and z,(t) ; (&) X;5(t)+ Yy, (t) and
2i5(1); () Xy (O + Y (1) and 7, (1) 5 (9) X (1) + Y2 (t) @nd z,, () ; (h) x,5(t) + y,4(t) and
2y (1) 5 (1) Xpu (1) + Yo (1) @d 75, (1) 5 (1) X5 (1) + Yo5(t) aNd z,5(t)
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Figure 7.4 The evaluation of error functions e; (t), i=1,2;j=12,---,5 at q=0.95.
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Figure 7.5 The evaluation of error functions e;(t), i=1,2;j=12,---,5at q=1.
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7.6 Simulation results and discussion

In this section, to verify and demonstrate the feasibility of dual combination
synchronization of fractional order complex chaotic systems, it is obtained the simulation
results of the considered fractional order Lorenz and T systems in complex space at the

fractional order q=0.95. During simulation, the values of the parameters remain
unchanged. The initial conditions are taken as [X,(t), Xy, (t), X5 (), X, (1), X (O] =
[2.3,5.6,9]" : [xa(D), Xu(D), Xp5(®), Xau(®), X5 = [8,7.5,6,100"; [yn (1),
Vo)1 Yie®, i ®), Yis®1" =1[5,2,3,1,6]" 5 [ya(t), V2 (0), s 1), Vs (), s O =
[3,2,6,2,4]" ; [2,:(t), z,(t), Zy5(1), z,(t), ZxM®)] = [11,14,5,3,2]" and [z, (1),
Z,, (1), Zps (1), Z, (1), Zs(0] =[9,4,5,7,15]"; and hence the initial error is [e,,(t),

e, (1), e,(t), e,(t), es(t), en(t), ey(t), ex(), e,(), ex®] =[-4, -9, 3,4,
13, 2, 5, 6, 1, -1]". Figures 7.3 (a)-(e) display the time response of the states
Xy; (t) +yy; (t) and z;;(t) of the master systems (7.14), (7.16), (7.17), (7.18) and the slave
systems (7.19), (7.20) with controllers (7.21), (7.22) where j=1(1)5. Similarly Figures
7.3 (f)-(j) depict the time response of the states x,;(t)+Y,;(t) and z,,(t) of master

systems and slave systems respectively for j=1(1)5. Figure 7.4 (a) and Figure 7.5 (a)

show that the error vectors asymptotically converge to zero as time becomes large which
implies that dual combination synchronizations among the considered six chaotic systems

are achieved at g =0.95 and g =1 respectively. For better illustration and understanding,

the time differences for two cases are shown through Figures 7.4 (b) and 7.5 (b). The
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figures clearly exhibit that it takes less time for synchronization when the order of the

derivative approaches from standard order to the fractional order system.

7.7 Conclusion

The primary purpose of the present chapter is to propose a novel scheme for the dual
combination synchronization of fractional order complex chaotic systems. Another goal
of this study is the stability analysis using Lyapunov stability theory with the proposed
scheme used successfully for synchronization of four master and two slave systems. The
author concludes that the scheme is very much useful for synchronization of a number of
chaotic systems in fractional order as well as standard order cases. The author believes
that the proposed scheme will play an important role in practical applications and it will
attract the attention of the researchers working in the field of dynamical systems in both
standard order and fractional order. The meaningful outcome of this study is the
demonstration that less time is required for synchronization of the considered chaotic

systems as the time derivative approaches towards fractional order from standard order.

*kkkk
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