Chapter 2

Synchronization between fractional order complex

chaotic systems

2.1 Introduction

The fractional order dynamical systems are based on real variables, but the fractional
order complex systems are in complex variables. Therefore it provides the best instrument
to describe a variety of physical phenomena such as amplitudes of the electromagnetic
field (Roldan et al. (1993)), thermal convection of liquid flow (Toronov and Derbov
(1997)), detuned laser system (Ning and Haken (1990)). The fractional order complex
dynamical systems are used to increase the content and security of transmitting
information signals. This kind of system has played an important role in the dynamical
systems viz., population inversion, polymer physics, etc. Therefore, it is a meaningful and
interesting topic for scientists and researchers to study of dynamic behaviour, chaos

control, synchronization of fractional order complex dynamical systems.

Lorenz (1963) was the first to study the 3D chaotic attractor in autonomous systems
during the atmospheric study. This study has become a paradigm for the researcher
working in nonlinear science. In 1982, the complex Lorenz system was first introduced

by Flower et al., and its dynamical property was studied by Mahmoud et al. (2007a). Luo
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and Wang (2013b) studied the fractional order complex Lorenz system and its dynamical
properties. The complex Lu system was proposed by Mahmoud et al. (2007c), and
fractional order complex Lu system was studied by Jiang et al. (2014). Tigan and Opris
(2008) proposed a 3D chaotic system called T system and later its dynamical behaviour

was studied in details by Liu et al. (2014).

Many chaotic systems in practical applications have different structures. Thus the
generalised study is always a useful tool for synchronization of the various chaotic
systems. Active control method has widely been accepted as an efficient technique for the
synchronization of non-identical chaotic systems, a feature for which it got an advantage
over other synchronization methods. A generalised design of the active control strategy
was developed by Ho and Hung (2002). It is treated as one of the most interesting control
strategies for its simplicity but considered as an expensive strategy as it takes
comparatively more time to synchronize as compared to few existing methods. The
method is easy to design but cannot be adapted for unknown parameters, since systems’
parameters fluctuate in an experimental situation due to internal and external features.
Despite these facts, it is noticed that the active control method is efficient and convenient
to synchronize or anti-synchronize since the Lyapunov exponents are not required for

these calculations.

In the present chapter, a sincere attempt is taken to study the synchronization of fractional
order complex chaotic systems using active control method. Computer simulation is
carried out using Adams-Boshforth-Moulton method (Diethelm and Ford (2004),

Diethelm et al. (2004)). The salient feature of the chapter is the study of the time of
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synchronization between complex chaotic systems for different particular cases as

systems' pair approaches from integer order to fractional order.

2.2 Problem formulation and synchronization

Two fractional order complex chaotic systems are considered to formulate the problem.
The master system is taken as

D%, =Bx, + f(X,),
where X, =X, + i X,, Is complex state variable. Separating into real and imaginary parts
of above equation, we get

Dx, =Bx, + f(x,),

DYx, =Bx, +f,(x,), (2.1)
The slave system is taken as

Dy, =Cy, +g(y,)+u(t).

where y; =y, +iy, iscomplex state variable,

qu31 =C Yo, T gl(ysl)+u1 ),

qus2 =C Ys, +gz(ysz)+u2(t) ' (2.2)
where u(t) = u, (t) + iu,(t) is control function, u, (t) = [u,, u,,---, U,,]" and
u,(t)=[u,, u,, -, u,]".

Defining the error function between the state variables of the systems as

€ :er1+ier2 =Ys = Xp
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the error system is obtained
D%, =Ce, +(C-B)x, +g(y,)— f(x,)+u(t).
Using e, =y, —x, and e, =y, — X, and separating real and imaginary parts, we get
D%, =Ce, +(C-B)x, +0,(y,)-fi(x,)+u (), k=1,2 (2.3)
To stabilise the Equation (2.3), suppose (Agrawal et al. (2012), Zhou and Cheng (2008))
u (t) = (B-C)xp, =9 (% ) + fi (X, )= I[9 (X, )] €, + Ae, (2.4)
where J[g, (x,, )] is the Jacobian matrix of g, (x,, ) and A is a controller gain matrix to

be designed later.

With the aid of Equation (2.4), the Equation (2.3) becomes
qurk = Berk + 0y (ysk ) — 0y (ka ) -J [gk (ka )] erk + Aerk (25)
Using Taylor series formula,

gk(ysk):gk(xmk)_'_‘][gk(xmk)]erk +O(erk) ' (26)

where J[g, (X, )] ={§gk(x)} and o(e, ) represents the higher order terms of the
k X k

X=X,

o(e,)

e

expression such that lim

ey 0

=0, under the assumption that the error e, is

sufficiently small, one can neglect o(e, ) and then Equation (2.5) reduces to
D%, =(C+Ale,. (2.7)

Definitely e, =y, —x, =0 isone fixed point of the error Equation (2.7). The Jacobian

m

matrix of the above equation at this fixed point is (C + A). As shown by Matignon
(1996) during analysis of the stability criterion for fractional differential equation, the

fixed point becomes asymptotically stable if the argument of the eigenvalues A, of matrix
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(C + A) satisfy |arg(ﬂbi (C+ A))| >0.57q. Therefore e, —0 astime t— oo, indicating

that the systems (2.1) and (2.2) are synchronized.

2.3 Systems’ descriptions

2.3.1 The fractional order complex Lorenz system

The complex Lorenz system was described as
X1, = al(X; - Xl!) '

of ' ’ !
Xy = a,X — X5 — X, X3 ,

X, :%(il’x; +XX5) —asXy (2.8)
where X' =[x, x5, X;]" is the state variable vector, x| =X, +iX, and X, =X, +iXx, are
complex variables while x; = x, is real variable and i =+/-1.

The fractional order complex Lorenz system is given by

DX =a,( - X)),

qv'! _ ! i 1!
Dx; =a,X; =X, =X X5 ,
Dq ,_1 7' v' 1! 4 2.9
Xs—E(X1X2+X1X2)_a3X3’ ()

where a, is the Prandtl number, a, is the Rayleigh number and a, is the size of the
region approximated by the system. When the parameters’ values are a, =10, a, =180,
a, =1 and initial condition x'(0) =[2+3i, 5+6i, 9]" at order q = 0.99, the system (2.9)

possesses the chaotic attractor described by Figure 1.
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Since the Caputo’s fractional order differential operator is linear, the system (2.9) can be

written as
qul = al(x3 - Xl) '
quz = al(X4 - Xz) ,
D%, =a,% — X3 — X, Xs ,
D%, =a,X, — X, — X,Xs ,
DX, = X, X3 +X,X, —85Xs (2.10)
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Figure 2.1: Phase portraits of the complex Lorenz system for the order of derivative
q=099 in (a) x,—x,—X, space; (b) X, —x,—X, space; (C) X, —X,—X; Space;
(d) x, —x; — X, space; (e) x, —x; — X, space; (f) X, —X, —X; space.
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2.3.2 The fractional order complex Lu system

The complex Lu system is given by
yi=bi(y; =1,

Y2 =bY, = Y1z
.o f 1 NAVY 1! '
Y3 :E(ylyZ + ylyz)_bsys ) (2.11)

where y' =[y;, y,, ¥4]" is the state vector variable, y; =y, + iy, and y, =y, + iy, are
complex variables while y; =y, is real variable.
The fractional order complex Lu system is

DUy =by(y; —y1) .

Dy, =b,y; = y1Vs

DY, =2 (% s + Y 2) by (212)
Figure 2.2 shows the chaotic attractor of the system at q=0.96 for the value of
parameters b, =42, b, =22 and b,=5, and initial condition y'(0) =
[-1+9i,8-5i,1].
Separating into real and imaginary parts of the system (2.12) gives rise to

DYy, =b(y; - ¥1)

D%y, =by(y, - V.) .

DUy, =b,Y: = ¥,Ys .

DUy, =byYs = ¥,Ys

quS =Y1Ys tYoYa _bsys . (2-13)

~ 53 ~
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Figure 2.2: Phase portraits of the complex Lu system for the order of derivative q =0.96
in(a) y, -y, -V, space; (b) y, -y, -y, space; (¢) ¥, -y, —Ys space; (d) ¥, -y, -V,

space; (e) y, —Y; — Ysspace; (f) y; —y, — s space.
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2.3.3 The fractional order complex T system

The complex T system is given by
Zi = C1(Z; - Zi) '

2; = (Cz _Cl)ZZI,. -G Zi Zé )

4=Z@nan) -0z, (2.14)
where 7' =[z/, z}, 24]" is the state vector variable, z = z, + iz, and z, = z, + iz, are
complex variables, z; =z, is real variable and c,, c,, c, are parameters withc, # 0. This
system possesses a chaotic attractor as shown in Figure 2.3, when the parameters are
taken as ¢, =2.1, ¢, =30, ¢, =0.6 and initial condition z'(0) =[8+7i, 5+6i, 10]" at
qg=0.94.

The fractional order complex T system is given by

D2{ =¢,(z; -7,

Dz, =(c,-¢c)z—-¢ 2,23,
qu'—l(z’z' 'z ' 2.15
3_5 1 2+2122)_0323' (2.15)

wherez' =[z], z}, z;]" is the vector of state variables. System (2.15) can be written as
D%, =c,(z;,-12,),
Dz, =c,(z,-12,),
qus = (Cz _C1)21 —C 4,25,
D%, =(c,—¢,)z, —C,Z,Z; ,
Dz, =z,2,+ 12,7, —C,Z, . (2.16)
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Figure 2.3: Phase portraits of the complex T system for the order of derivative g =0.94
in (&) z, —z,—1z,space; (b) z, -z, -z, space; (c) z,-z, -z, space; (d) z,-z,-2,

space; (e) z, —z, — z, space; (f) z, —z, —z, space.
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2.4 Synchronization between fractional order complex Lorenz

and Lu systems

In this section, the synchronization between fractional order complex Lorenz and Lu
systems is studied. Let us consider that the Lorenz system (2.10) drives the Lu system

(2.13). The response system is re-written as

Dy, =b,(ys —y,) +u (1)

DTy, =by(y, —y,) +U,(t) ,

Dy, =b,y; =¥, ¥s +Us(t)

DUy, =b,Y, =¥, +U,(t)

DYy, =V,Y; +Y,Y, — by +ug(t) . (2.17)
In order to estimate the control functions u, (t), u,(t), u,(t), u,(t) and u,(t), the error

functions between the Lorenz system (2.10) and the controlled Lu system (2.17) are

defined as

e, =e +ie, =y —X, e, =¢e+ie, =y, —X, and e; =e; = y; — X,
so that

=Y, =X, 6 =Y, =X, 8 =Y, = X3, €, =Y, —X,, €8 =Y — X . (2.18)
Subtracting system (2.10) from system (2.17) and using the notations given in Equation
(2.18), we get

D%, =b,(e; —e)+ (b, —a,)(X, —Xx,) +u,,

D%, =b,(e, —&,)+ (b, —a,)(x, —X,) +U,,

D%, =h,e, —a, X, + (0, +1)X; + X, Xs — Y, Y5 + U,

D%, =h,e, —a,X, + (b, +1)X, + X, Xs = Y,Ys +U,,
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D%, =—be, +(a; —b)Xs — X X3 =X, X, + VY5 + Y, Y, +Ug . (2.19)
Defining the active control functions u, (t) as

u, =V, —(b, —a,)(x; — x,) ,

u, =V, —(b, —a,)(x, — X,),

Uy =V +a,X — (b, +1)X; — X X + Y, Vs

u, =V, +a,x, —(b, +1)X, — X, X5 + Y, Vs,

Ug =V — (a3 —Dbg) X + X, X5 + XX, = V1Y — Yo Vs (2.20)
where the terms V, (t) are linear functions of the error terms e, (t). The error system
(2.19) is reduced to

D%, =b,(e;—¢)+V, ,

D%, =b,(e, —&,)+V, ,

D%, =h,e, +V, ,

D%, =h,e, +V, ,

D%, =-h,e, +V; .

Let us design an appropriate feedback control which stabilizes the system so that e,(t) ,
i=1, 2,3, 4,5 converge to zero as time t becomes large. There are many possible
choices for the control inputs V, (t). Let us choose

V(t)=Ae(t), (2.21)
where V (t) =[V,(t), V,(t), Vo), V,(t), V. ()]" and e(t) =[e,(t), e,(t), e (t), e,(t),

e.(1)]" and A is 5x5 constant matrix. In order to make the closed loop system stable,

the matrix should be selected in such a way that the feedback system has eigenvalues 4,

~ B2 ~
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of A satisfy the condition [arg(4,)| > qr/2, i =1, 2, 3, 4, 5. There is no unigue choice

for matrix A. Let the matrix A is chosen in the form

—1+b 0 b, 0 0
0 -1+b 0 —b, 0
A= 0 0 -1-b, 0 0
0 0 0 -1-b, O
0 0 0 0 —1+b,

In this particular choice, the closed loop system has the eigenvalues -1, -1, -1, -1,
and —1. This choice will lead to the error states e, (t), i =1, 2, 3, 4, 5 converge to

zero as time t tends to infinity and thus the synchronization between Lorenz system and

Lu system is achieved.
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Figure 2.4: Plots of state trajectories of system (2.10) and system (2.17) for standard

order g =1 between (a) x,(t) and y,(t); (b) x,(t) and y,(t); (c) x,(t) and y,(t); (d)

X, (t) and y,(t); (&) xs(t) and y,(t).



Chapter 2

10
‘\;f,, sl e, () —e,(t) —eyt) —e,(t) — e (t) |
=
(]
()
= -5
=
()
£ -10
—
Qo

1% 4 6 8 10

t
Figure 2.5 (a)

10
o s e () —e,(t) —ey(t) —e, () e ()] |
=,
()
) /
S 5
=
()
€ -10
G_)H

12 4 6 8 10

t

Figure 2.5 (b)

~ 66 ~



Synchronization between fractional order complex chaotic systems

| N el(t) _ ez(t) ........... e3(t) e4(t) es(t)

e, (1), &,(1), e5(t), (1), &)

t

Figure 2.5 (c)

Figure 2.5: Plots of error functions between system (2.10) and system (2.17) for the order

of the derivatives (a) q=0.70; (b) g=0.85;(c) q=1.

2.4.1 Numerical simulation and results

In this section, the numerical simulation for synchronization of fractional order complex

Lorenz and Lu systems is done. The initial conditions are taken as before and thus the
initial error is e'(0) =[-3+6i , 3—11i , —8]". Time step size is taken as 0.005. Figure
2.4 depicts the variations of state trajectories during synchronization at g=1. From

Figure 2.5, it is seen that considered complex chaotic systems are synchronized after a

small time duration at fractional orders q=0.70, g =0.85 and also at the integer order
g=1. It is observed from the figures that the time taken for synchronization of systems

decreases as order q approaches from integer order to fractional order system.
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2.5 Synchronization between fractional order complex Lu and

T systems

To study the synchronization of fractional order complex Lu system and complex T
system, it is assumed that the Lu system (2.13) drives the T system (2.16). Let us define

the response system as

DYz, =c¢,(z; - z,) +uy,

D%z, =c,(z, - 2,)+U, ,

D%z, =(c, -¢,)z;, —C, 2,2, + U, ,

D%, =(c, -¢,)z, —C,Z,Z, +U, ,

Dz, =2,2,+2,2, —CyZ, + U , (2.22)
where u; (t) are control functions.

Defining error functions as

e =6 +ie,=2-y,,e,=¢e,+ie, =z, -y, and e; =e, =7; -y,
and proceeding as the previous section, we get
D%, =c,(e; —e))+(c, —b)(y; —-Vy,)+u, ,
D%, =c,(e, —e,)+(c, —=b)(y, - y,)+U, ,
D%, =(c, —c,)e, —¢,2,2, +(C, —C,)y, = b, Y, + Y, Y5 + U, ,
D%, =(c, —¢,)e, —¢,z,z, +(C, —C,)Y, = by, + Y, ¥s + U, ,
D%, =—C,&5 + 2,2, +2,2, —(Cs —D3) Y5 — Y, V5 — Y, ¥, +Us . (2.23)

Now defining the active control functions u, (t) as

u, =V1 - (Cl - bl)(Y3 - yl) )
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U, =V, = (¢, =b)(ys = ¥,) .

u; =V, +¢,2,2. —(c, —¢,)y, +b,y; - y,y: ,

u, =V, +¢z,z. —(c, —c)y, +b,y, - y,y: ,

Us =Ve —2,2, - 2,2, +(C; — D) Y + V. V5 + VoY, (2.24)
where terms V, (t) are linear functions of the error terms e, (t), the error system finally
reduces to

D%, =c,(e;—€)+V,,

D%, =c,(e, —e,)+V, ,

D%, =(c,—c,)e, +V, ,

D%, =(c, —¢,)e, +V, ,

D%, =—C,e, +V; . (2.25)
Considering V (t) = Ae(t), where V (t) and e(t) are given in system (2.21), and choosing

the matrix A as

[ —-1+c, 0 -¢, 0 0]
0 -1+c, 0 —-c O
A=|-(c,—-c,) 0 -1 0 0,
0 -(c,-¢c,) 0O -1 0
0 0 0 0 -1]

so that the feedback system has eigenvalues A of A satisfy the condition

larg(4,)|>qx/2, i=1, 2,3, 4, 5. Thus the synchronization of the systems is achieved.
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Figure 2.6: Plots of state trajectories of system (2.13) and system (2.22) for standard

order q =1 between: (a) y,(t) and z,(t); (b) y,(t) and z,(t); (C) y,(t) and z,(t); (d)

Y,(t) and z,(t) ; (&) ys(t) and z(t).
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Figure 2.7: Plots of error functions between system (2.13) and system (2.22) for:

(@) q=0.70 ; (b) q=0.85; (c) q=1.
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2.5.1 Numerical simulation and results

In this section, the numerical simulation for synchronization of fractional order complex
Lu and T systems are done for earlier choices of parameters and for the time step size as
0.005. For the given initial conditions, the initial error is e'(0) =[9—2i, —3+11i, 9]".
The variations of state trajectories during synchronization at g =1 are described through

Figure 2.6. It is observed from Figure 2.7 that the complex systems are synchronized after

a small time duration at q=0.70, q=0.85 and gq=1. Figures depict that the systems

take higher time for synchronization at standard order as compared to fractional order.

2.6 Synchronization between fractional order complex Lorenz

and T systems

During the study of synchronization between fractional order Lorenz and T systems,
describing the system (2.10) as drive system and system (2.22) as response system and

proceeding as before, we get the error system as
D%, =c,(e;—e)+V, ,
D%, =c,(e, —e,)+V, ,
D%, =(c,—c,)e +V;,
D%, =—e,+V, ,
D%, =-c,e, +V; ,
where
u, =V, —(c, —a,)(X; — ;) ,
u, =V, —(c,—a,)(x, - x,),
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Uy =V3 —(Cp —Cp —@p) X — X3 = X X5 +C 7,7

Uy =V, = (C, =€, —8,)X, =X, =X, X5 +C,Z,Z5

Us =V5 — (85 —C5)Xg + X, X3 + XX, = 2,75 = 2,2, ,
with

€= Y1, 6 =2, 7Y € =23 Y3, € =2, =Yy, € =25~ Y5,
where

e,=e +ie,=2-Yy/, e, =e,+ie,=z,-y,and e; =e, =z, -y, .

Here taking V (t) = A e(t), where

[ 1+ 0 -¢c, 0 O
0 -1+c; 0 —-c O
A=|-(c,-c)) 0 -1 0 0],
0 -(c,-¢c) 0 -1 0
|0 0 0 0 -1

It is seen that the closed loop system has the eigenvalues -1, —1, -1, -1, and -1,

and thus it is concluded that the required synchronization of the considered systems is

achieved.
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Figure 2.8: Plots of state trajectories of system (2.10) and system (2.22) for standard
order q=1 between: (a) x,(t) and z,(t); (b) X,(t) and z,(t); (c) X,(t) and z,(t) ;

(d) x,(t) and z,(t); (e) x5 (t) and z-(t).
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Figure 2.9: Plots of error functions between system (2.10) and system (2.22) for:

(@ q=0.70 ;(b) =0.85;(c) q=1.

2.6.1 Numerical simulation and results

For the considered drive and response systems the initial error is e'(0) =
[6+4i,—2—i,—3]" and the time step size is taken as 0.005. The state trajectories at
g=1 are shown in Figure 2.8. Again Figure 2.9 demonstrates the required time for
synchronization of the considered pair of systems at g =0.70, q=0.85 and g =1, which
shows that it takes maximum time at =1 and minimum time at q=0.70 for

synchronization.

2.7 Conclusion

In this chapter the active control method is successfully used to achieve perfect control of

a pair of fractional order complex chaotic systems along with the desired trajectory,
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which clearly exhibits the reliability and potential of the method even for fractional order
complex systems to be synchronized. The most important part of the study is the
comparison of the time of synchronization in each of three different pairs of complex

systems when a pair of systems approaches from integer order to fractional order.
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