TABLE OF CONTENTS

CONTENTS	Page No.
Title Page	i
Certificates	v
Acknowledgement	xi
Table of Content	xiii
List of Figures	xix
List of Tables	xxiii
List of Abbreviations	xxvii
List of Symbols	xxix
Preface	xxxiii
CHAPTER 1 – PROLOGUE	1
1.1 Introduction	3
1.2 Literature Survey	4
1.2.1 Power System Stabilizer (PSS)	5
1.2.2 Flexible AC Transmission Systems (FACTS)	14
1.2.2.1 Static Synchronous Compensator (STATCOM)	15
1.2.2.2 Static Synchronous Series Compensator (SSSC)	17
1.2.2.3 Unified Power Flow Controller (UPFC)	19
1.2.3 Coordination between PSS and FACTS Devices	23
1.2.4 Summary of Literature Survey	25
1.3 Objective	26

1.4 Thesis Structure	28
1.5 Contributions	31
1.6 Conclusion	32
CHAPTER 2 – CONCEPT OF SMART POWER FLOW CONTROL	33
2.1 Introduction	35
2.2 Information of Dynamic Varying States	36
2.3 Knowledge Domain (KD) Structure Development	38
2.4 Establishing of Information Mapping in the Knowledge Domain	41
2.5 Controller Parameters Up-Gradation based on the Knowledge	43
Domain	
2.6 Inference for Interface Knowledge Domain	44
2.7 Defining Rule Base based on Inference Mechanism	45
2.7.1 Event Detection and Control Injection	45
2.7.2 Dynamic Inference Linked Controller Realization	46
2.7.3 Complete Regulation of the System	46
2.8 Conclusion	46
CHAPTER 3 – NETWORK REPRESENTATION	49
3.1 Introduction	51
3.2 Concept of System Representation	51
3.2.1 Machine Dynamics Representation in State Space Framework	51
3.2.2 Inclusion of Power System Stabilizers (PSS) Model in the	63
System	
3.2.3 Inclusion of Unified Power Flow Controller (UPFC) Model	66
in the System	
3.2.4 Generalized Homogeneous Model of UPFC with Multi-	73

Machine System

3.2.5 Homogeneous Model of UPFC with Two Machine System	79
3.3 Sample Test Systems	84
3.3.1 Two Area Four Machine Test System (2A4M)	85
3.3.2 Six Area Six Machine Test System (6A6M)	85
3.3.3 Ten Area Fifty Machine Test System (10A50M)	86
3.4 State Predominant Concept (LQR Control) for Improved System	87
Stability	
3.4.1 Linear Quadratic Regulator (LQR) Control Concept	88
3.4.1.1 Calculation of Weight Matrices for LQR Control	90
3.4.2 Power Oscillation Damping (POD) Controller	90
3.4.2.1 Procedural Steps to Implement POD Controller	91
3.4.3 Multi-Stage LQR (MSLQR) Controller	92
3.4.3.1 State Predominant Concept	92
3.4.3.2 Procedural Steps for MSLQR Controller	93
3.4.4 Proposed Integrated Multi-Stage LQR (MSLQR)-POD	95
Controller	
3.4.4.1 Procedural Steps for Integrated Multi Stage LQR	97
(MSLQR)-POD Controller	
3.5 Utilization of States for Control Activation	98
3.6 Controller Realization with States Regulation	98
3.6.1 Simulation Results for Two Area Four Machine Test System	99
3.6.2 Simulation Results for Sample Six Area Six Machine Test	102
System	
3.6.2.1 Case I: Integrated MSLQR-POD STATCOM	103

Controller	
3.6.2.2 Case II: Integrated MSLQR-POD SSSC Controller	106
3.6.2.3 Case III: Integrated MSLQR-POD UPFC Controller	109
3.6.3 Proposed Modified-Multi Stage LQR Controller (M-	112
MSLQR)	
3.6.3.1 Design of Modified-Multi Stage LQR Controller	114
3.7 Conclusion	117
CHAPTER 4 – HEURISTIC APPROACH FOR CONTROLLER	119
TUNING	
4.1 Introduction	121
4.2 Concept of Heuristic Optimization Techniques	121
4.3 Particle Swarm Optimization (PSO) Technique	123
4.3.1 Original Concept of Particle Swarm Optimization	124
4.3.2 Binary Particle Swarm Optimization	125
4.3.3 Parameters Selection of Particle Swarm Optimization	126
Technique	
4.3.4 Step Procedure to Develop Knowledge Domain Structure	127
with PSO Technique	
4.4 Firefly Algorithm (FA)	130
4.4.1 Step Procedure to Develop Knowledge Domain Structure	132
with FA Technique	
4.5 Gravitational Search Algorithm (GSA)	134
4.5.1 Step Procedure to Develop Knowledge Domain Structure	135
with GSA Technique	
4.6 Conclusion	137

CHAPTER 5 – SYSTEM STUDIES	139
5.1 Introduction	141
5.2 Knowledge Domain Mapping Based Control Structure	142
5.2.1 Control Parameter Up-gradation Concept	142
5.2.1.1 Variation in Load Demand	144
5.2.1.2 Variation in Transmission Line Length	168
5.2.2 Control Sharing Concept	177
5.2.3 Validation in PSCAD Software	194
5.3 Conclusion	210
CHAPTER 6 –EPILOGUE	213
6.1 Conclusion	215
6.2 Future Scope	219
References	221
Appendix A – Complete Data Set	233
Appendix B - List of Publications	255