## LIST OF ABBREVIATION

| Abbreviation | Description about Abbreviation |
| :--- | :--- |
| ABC | Artificial Bee Colony |
| AFPSS | Adaptive Fuzzy Power System Stabilizer |
| ANC | Adaptive Neuro Controller |
| ANI | Adaptive Neuro Identifier |
| ANN | Artificial Neural Network |
| ATC | Available Transfer Capacity |
| CPSS | Conventional Power System Stabilizer |
| DE | Differential Evolution |
| DG | Distributed Generation |
| EMTDC | Electromagnetic Transients including Direct Current |
| FA | Firefly Algorithm |
| FACTS | Flexible Alternating Current Transmission System |
| FOPTC | Flexible Operating Point Tracking Concept |
| FPOS | First Peak Overshoot |
| FPSS | Fuzzy Power System Stabilizer |
| GA | Genetic Algorithm |
| GSA | Gravitational Search Algorithm |
| GTO | Gate Turn-Off |
| HHO | Hybrid Heuristic Optimization |
| HVDC | High Voltage Direct Current |
| IGBT | Insulated Gate Bipolar Transistor |
| ITAE | Integral Time Multiplied by Absolute Error |
| KD | Knowledge Domain |
| KDIM | Knowledge Domain Inference Mechanism |
| KDSM | Knowledge Domain States Mapping |
| LMI | Linear Matrix Inequality |
| LQR | Linear Quadratic Regulator |
| MMPS | Multi-Machine Power System |
| MSLQR | Multi-Stage Linear Quadratic Regulator |
| Orthogonal Least Square |  |
| ALS |  |


| OT | Optimization Techniques |
| :---: | :---: |
| POD | Power Oscillation Damping |
| PID | Proportional Integrated Derivative |
| PMU | Phasor Measurement Unit |
| PSCAD | Power System Computer Aided Design |
| PSO | Particle Swarm Optimization |
| PSS | Power System Stabilizer |
| PWM | Pulse Width Modulation |
| RBNF | Radial Basis Network Function |
| RCGA | Real Coded Genetic Algorithm |
| RES | Renewable Energy Sources |
| RNN | Recurrent Neural Network |
| ROCOF | Rate of Change of Frequency |
| RTDS | Real Time Digital Simulator |
| SA | Simulated Annealing |
| SMC | Sliding Mode Control |
| SMIB | Single Machine Infinite Bus |
| SPS | Special Protection Systems |
| SSR | Sub-Synchronous Resonance |
| SSSC | Static Synchronous Series Compensator |
| ST | Settling Time |
| STATCOM | Static Synchronous Compensator |
| SVC | Static Var Compensator |
| TCSC | Thyristor Controller Series Capacitor |
| TS | Tabu Search |
| UPFC | Unified Power Flow Controller |
| US | Unstable System |
| VSC | Voltage Source Converter |
| VSI | Voltage Source Inverter |
| WADC | Wide Area Damping Controller |

## LIST OF SYMBOLS

## Symbols used in modeling of Multi-Machine System:

$\mathrm{v}_{\mathrm{tij}} \quad$ Terminal voltage of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\mathrm{v}_{\text {di1 }} \quad$ Direct axis component of terminal voltage of $\mathrm{i}^{\text {th }}$ generator in area 1
$\mathrm{v}_{\mathrm{qi}} \quad$ Quadrature axis component of terminal voltage of $\mathrm{i}^{\text {th }}$ generator in area 1
$\mathrm{v}_{\mathrm{tj}} \quad$ Terminal voltage of $\mathrm{j}^{\text {th }}$ area
$\mathrm{v}_{\mathrm{dj}} \quad$ Direct axis component of terminal voltage of $\mathrm{j}^{\text {th }}$ area
$\mathrm{v}_{\mathrm{qj}} \quad$ Quadrature axis component of terminal voltage of $\mathrm{j}^{\text {th }}$ area
$\mathrm{i}_{1} \quad$ Armature current in generator 1
$\mathrm{i}_{\mathrm{d} 1} \quad$ Direct axis component of armature current in generator 1
$\mathrm{i}_{\mathrm{q} 1} \quad$ Quadrature axis component of armature current in generator 1
$\mathrm{E}_{\mathrm{qij}} \quad$ Internal voltage of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\mathrm{E}_{\text {fdij }} \quad$ Voltage across field winding of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\Delta \omega_{\mathrm{ij}} \quad$ Deviation in angular speed of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\delta_{\mathrm{ij}} \quad$ Rotor angle of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\Delta \delta_{\mathrm{ij}} \quad$ Deviation in rotor angle of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\delta_{0} \quad$ Initial rotor angle
$\mathrm{x}_{\mathrm{tij}} \quad$ Terminal reactance of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\mathrm{x}_{\mathrm{dij}} \quad$ Direct axis synchronous reactance of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\mathrm{x}^{\prime}{ }_{\text {dij }} \quad$ Direct axis transient reactance of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\mathrm{x}^{\mathrm{dij}} \quad$ Direct axis sub-transient reactance of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\mathrm{x}_{\mathrm{qij}} \quad$ Quadrature axis steady state reactance of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\mathrm{T}_{\text {doi }}^{\prime} \quad$ Time constant of field winding circuit of $\mathrm{i}^{\text {th }}$ generator
n Total number of generators connected in one area
$\mathrm{M}, \mathrm{N} \quad$ Area number in which generators are connected
Y1 Load (Admittance) in Area 1
Y2 Load (Admittance) in Area 2
Gi Conductance of load in $\mathrm{i}^{\text {th }}$ area
$\mathrm{Bi} \quad$ Susceptance of load in $\mathrm{i}^{\text {th }}$ area
Z Impedance of transmission line
R Resistance of transmission line
X Reactance of transmission line
$\mathrm{T}_{\text {eij }} \quad$ Output torque of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$P_{\text {ei1 }} \quad$ Real power output of $\mathrm{i}^{\text {th }}$ generator in area 1
Qeil Reactive power output of $i^{\text {th }}$ generator in area 1
$\Delta P \quad$ Deviation in output power
$\Delta f \quad$ Frequency deviation
$f_{0} \quad$ Nominal frequency
$\omega_{0} \quad$ Nominal or rated rotational speed
$M_{i} \quad$ Inertia constant of $\mathrm{i}^{\text {th }}$ generator
T1i, T2i Time constant of PSS for $\mathrm{i}^{\text {th }}$ generator
Kci Gain of PSS for $\mathrm{i}^{\text {th }}$ generator
$\mathrm{T}_{\mathrm{Ai}} \quad$ Time constant of excitation system for $\mathrm{i}^{\text {th }}$ generator
$\mathrm{T}_{\mathrm{Aij}} \quad$ Time constant of excitation system for $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\mathrm{K}_{\mathrm{Ai}} \quad$ Gain of excitation system for $\mathrm{i}^{\text {th }}$ generator
$\mathrm{K}_{\mathrm{Aij}} \quad$ Gain of excitation system for $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area
$\mathrm{T}_{\mathrm{m}} \quad$ Input mechanical torque
UE Supplementary excitation in PSS
X5 Intermediate state variable in PSS
Ac Controlled system matrix
A System matrix
B Control matrix
$\Delta$ Deviation

## Symbols used in modeling of multi-machine with FACTS controller:

$\mathrm{m}_{\mathrm{e}} \quad$ Amplitude modulation ratio of shunt converter of UPFC
$\delta_{e} \quad$ Phase angle of shunt converter of UPFC
$\mathrm{m}_{\mathrm{b}} \quad$ Amplitude modulation ratio of series converter of UPFC
$\delta_{\mathrm{b}} \quad$ Phase angle of series converter of UPFC
$\omega_{i} \quad$ Angular speed of $\mathrm{i}^{\text {th }}$ generator
$\mathrm{C}_{\mathrm{dc}} \quad$ Capacitance of DC link capacitor
$\mathrm{V}_{\mathrm{dc}} \quad$ Voltage across DC link capacitor
$\mathrm{X}_{\mathrm{te}} \quad$ Transmission line reactance to the shunt part of UPFC location
$\mathrm{X}_{\mathrm{bv}} \quad$ Transmission line reactance to the series part of UPFC location
$\mathrm{X}_{\mathrm{ijd}} \quad$ Direct axis synchronous reactance of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area

| $\mathrm{X}^{\text {ijd }}$ | Direct axis transient reactance of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area |
| :---: | :---: |
| $\mathrm{X}_{\mathrm{ij} \text { q }}$ | Quadrature axis synchronous reactance of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area |
| $\mathrm{V}_{1}, \mathrm{~V}_{2}$ | Terminal voltage of generator 1 and generator 2 respectively |
| $\mathrm{V}_{1 \mathrm{~d}}, \mathrm{~V}_{1 \mathrm{q}}$ | Direct and quadrature axis component of voltage $\mathrm{V}_{1}$ respectively |
| $\mathrm{V}_{\mathrm{E}}$ | Voltage generated in shunt side of UPFC |
| $\mathrm{V}_{\text {B }}$ | Voltage generated in series side of UPFC |
| $\mathrm{V}_{\mathrm{Ed}}$ | Direct axis component of voltage connected in shunt side of UPFC |
| $\mathrm{V}_{\mathrm{Eq}}$ | Quadrature axis component of voltage connected in shunt side of UPFC |
| $V_{\text {Bd }}$ | Direct axis component of voltage connected in series side of UPFC |
| $\mathrm{V}_{\mathrm{Bq}}$ | Quadrature axis component of voltage connected in series side of UPFC |
| $\mathrm{V}_{\mathrm{Et}}, \mathrm{V}_{\mathrm{Bt}}$ | Terminal voltages of shunt and series side of UPFC respectively |
| $\mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{o}}$ | Currents in VSC for shunt and series terminal respectively |
| $\mathrm{I}_{1}, \mathrm{I}_{2}$ | Armature currents of generator 1 and generator 2 respectively |
| $\mathrm{I}_{1 \mathrm{~d}}, \mathrm{I}_{1 \mathrm{q}}$ | Direct and quadrature axis component of current $\mathrm{I}_{1}$ respectively |
| $\mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{B}}$ | Currents connected in shunt and series side of UPFC respectively |
| $\mathrm{I}_{\mathrm{Ed}}$ | Direct component of current connected in shunt side of UPFC |
| $\mathrm{I}_{\mathrm{Eq}}$ | Quadrature component of current connected in shunt side of UPFC |
| $\mathrm{I}_{\mathrm{Bd}}$ | Direct component of current connected in series side of UPFC |
| $\mathrm{I}_{\mathrm{Bq}}$ | Quadrature component of current connected in shunt side of UPFC |
| $\mathrm{E}_{\mathrm{q} 1}^{\prime}, \mathrm{E}_{\mathrm{q} 2}^{\prime}$ | Internal voltage of generator 1 and 2 respectively |
| $\mathrm{E}_{\text {qij }}^{\prime}$ | Internal voltage of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area |
| $\mathrm{E}_{\mathrm{fd1}}, \mathrm{E}_{\mathrm{fd} 2}$ | Voltage across filed winding of generator 1 and 2 respectively |
| $\mathrm{Efdij}^{\text {f }}$ | Voltage across filed winding of $\mathrm{i}^{\text {th }}$ generator in $\mathrm{j}^{\text {th }}$ area |
| $\mathrm{I}_{\text {Edi }}$ | Direct axis current in shunt part of UPFC for $\mathrm{i}^{\text {th }}$ generator |
| $\mathrm{I}_{\text {Eqi }}$ | Quadrature axis current in shunt part of UPFC for $\mathrm{i}^{\text {th }}$ generator |
| $\mathrm{I}_{\text {Bdi }}$ | Direct axis current in series part of UPFC for $\mathrm{i}^{\text {th }}$ generator |
| $\mathrm{I}_{\text {Bqi }}$ | Quadrature axis current in series part of UPFC for $\mathrm{i}^{\text {th }}$ generator |
| k | Ratio between AC and DC voltage of the converter |
| L1, L2 | Load in area 1 and area 2 respectively |
| $\mathrm{X}_{1}, \mathrm{X}_{2}$ | Transmission line reactance |
| $\mathrm{X}_{\mathrm{e}}, \mathrm{X}_{\mathrm{b}}$ | Transformer reactance of shunt and series side of UPFC respectively |
| $\mathrm{T}_{\text {ido }}^{\prime}$ | Time constant of field winding circuit of $i^{\text {th }}$ generator |
| $\mathrm{T}_{\mathrm{iA}}, \mathrm{K}_{\mathrm{iA}}$ | Time constant and gain of excitation system for $\mathrm{i}^{\text {th }}$ generator respectively |

$D_{i} \quad$ Damping coefficient of $i^{\text {th }}$ generator
K Feedback gain matrix in LQR Control

## Symbols used in Intelligent Optimization Techniques:

| pbest | Personal best of each particle |
| :---: | :---: |
| gbest | Global best |
| r1, r2 | Random numbers between [0,1] |
| c1, c2 | Acceleration constants |
| $x_{i d}{ }^{t}$ | Position of $i^{\text {th }}$ particle in dimension ' $d$ ' for iteration ' $t$ ' |
| $v_{i d}{ }^{\text {t }}$ | Velocity of $i^{\text {th }}$ particle in dimension ' $d$ ' for iteration ' $t$ ' |
| $S\left(v_{i d}{ }^{\text {t }}\right.$ ) | Sigmoidal Function |
| $\mathrm{I}(\mathrm{r})$ | Light intensity of firefly at distance ' r ' |
| $\mathrm{r}_{\mathrm{ij}}$ | Distance between two fireflies ' i ' and ' j ' |
| $\mathrm{I}_{0}$ | Initial light intensity |
| $\beta$ | Attractiveness of firefly |
| $\alpha$ | Randomization parameters |
| $\mathrm{G}(\mathrm{t})$ | Gravitational constant at iteration ' t ' |
| $\mathrm{M}_{\text {aj }}$ | Active gravitational mass of ' $j^{\text {th }}$, agent |
| $\mathrm{M}_{\mathrm{pi}}$ | Passive gravitational mass of ' i 'th, agent |
| $\mathrm{M}_{\mathrm{i}}(\mathrm{t})$ | Mass of agent ' $i$ ' for iteration ' $t$ ' |
| $\mathrm{F}_{\mathrm{i}}{ }^{\mathrm{d}} \mathrm{t}$ ) | Force on agent ' i ' in dimension d for iteration ' t ' |
| $\left.\mathrm{F}_{\mathrm{ij}}{ }^{\mathrm{d}} \mathrm{t}\right)$ | Force on agent ' i ' due to agent ' j ' in dimension ' d ' for iteration ' t ' |

