LIST OF FIGURES

2.1	Schematic representation showing the formation of spherical	
	cap of solid (s) on a substrate, contact angle and surface tension forces	12
2.2	Showing the variation of $f(\theta)$ with θ where $f(\theta)$ is equal to	
	$(2-3\cos\theta+\cos^3\theta)/4$	13
2.3	Schematics of a) Three essential elements (grains, Al dendrites, DAS,	
	and eutectic Si in a basic hypoeutectic Al-Si microstructure; b) Perfect	
	grain refiner particles (squares) with one to one lattice matching to Al	
	atoms (points); c) Poor lattice matching	15
2.4	Comparison of the silicon morphology in: (a) unmodified; (b) Sr-modified	ied
	(300 ppm Sr); and (c) Sb-modified (2400 ppm Sb), hypoeutectic	
	Aluminum-silicon alloys	15
2.5	Cu-rich phases in as-cast 319 alloy(a) Eutectic Al_2Cu and (b) blocky Al_2Cu	16
2.6	Base Metals Cooling Pattern	18
2.7	Progression of Dendrite Formation During Solidification	21
2.8	Micro porosity as Depicted	21
2.9	Al-Si Equilibrium Diagram	22
2.10	Solidification structure of hypoeutectic Al-Si alloy	25
2.11	The schematic phase diagram of Al-Si	26
2.12	Eutectic solidification in unmodified chill cast Al-Si alloys	29
2.13	The morphology of eutectic Si; (a) Unmodified and	
	(b) Modified structure	30
3.1	Block diagram of Work Plan	51
3.2	Schematic diagram of the Set up	52
3.3	Photograph of Developed Set Up	54
3.4	Experimental Set-Up	57
3.5	Casting sample with sectional test bar	58
3.6	Tensile Test Specimen	58
3.7	Charpy Impact Test Specimen	59

3.8	Micro-Hardness Specimen	60
3.9	Microstructure Specimen	61
4.1	SEM and Corresponding EDS (Energy_Dispersive_Spectroscopy) spectro	a
	(b-e) of Al+NiSi ₂ , Al + Si, Al and Si respectively showing phases preserved	nt
	in the Cast specimen of A356 aluminum alloy	63
4.2	SEM and Corresponding EDS (Energy_Dispersive_Spectroscopy)	
	Spectra (b-e) of Al_2Cu , $Al+FeSi$, $Al + Si$ and Si respectively showing	
	phases present in the cast specimen of A 319 aluminum alloy	64
4.3	XRD Pattern of A356 Aluminum Alloy	66
4.4	XRD Pattern of A319 Aluminum Alloy	66
4.5	Effect of Amplitude on Ultimate Tensile Strength of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	70
4.6	Effect of frequency on Ultimate Tensile Strength of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	71
4.7	Comparison of Percentage Change in Ultimate Tensile Strength	
	(a) A319 and (b) A356 Aluminum Alloys Casting	72
4.8	Effect of Amplitude on Yield Strength of	
	(a) A319 and (b) A356Aluminium Alloys Casting	73
4.9	Effect of frequency on Yield Strength of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	74
4.10	Comparison of Percentage Change in Yield Strength	
	(a) A319 and (b) A356 Aluminum Alloys Casting	75
4.11	Effect of Amplitude on %Elongation of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	76
4.12	Effect of frequency on % Elongation of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	77
4.13	Comparison of Percentage Change in Yield Strength	
	(a) A319 and (b) A356 Aluminum Alloys Casting	78
4.14	Effect of Amplitude on Micro-Hardness of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	79
4.15	Effect of Frequency on Micro-Hardness of	

	(a) A319 and (b) A356 Aluminum Alloys Casting	80
4.16	Comparison of Percentage Change in Micro-Hardness	
	(a) A319 and (b) A356 Aluminum Alloys Casting	81
4.17	Effect of Amplitude on Toughness (Joule) of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	82
4.18	Effect of Frequency on Toughness (Joule) of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	83
4.19	Comparison of Percentage Change in Micro-Hardness	
	(a) A319 and (b) A356 Aluminum Alloys Casting	84
4.20	Optical Micrographs (A319) order place with increase in	
	Frequency of mold oscillation (Constant Amplitude=5µm)	99
4.21	Optical Micrographs (A319) order place with increase in	
	Frequency of mold oscillation (Constant Amplitude=10µm)	100
4.22	Optical Micrographs (A319) order place with increase in	
	Frequency of mold oscillation (Constant Amplitude=15µm)	101
4.23	Optical Micrographs (A356) order place with increase in	
	Frequency of mold oscillation (Constant Amplitude=5µm)	102
4.24	Optical Micrographs (A356) order place with increase in	
	Frequency of mold oscillation (Constant Amplitude=10µm)	103
4.25	Optical Micrographs (A356) order place with increase in	
	Frequency of mold oscillation (Constant Amplitude= $15\mu m$)	104
4.26	Effect of Amplitude on Grain Size of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	111
4.27	Effect of Frequency on Grain Size of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	112
4.28	Comparison of Percentage Change in Grain Size	
	(a) A319 and (b) A356 Aluminum Alloys Casting	113
4.29	Effect of Amplitude on DAS of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	114
4.30	Effect of Frequency on DAS of	
4.31	(a) A319 and (b) A356 Aluminum Alloys Casting Comparison of Percentage Change in DAS	115

	(a) A319 and (b) A356Aluminium Alloys Casting	116
4.32	Effect of Amplitude on Roundness (%) of Silicon Particle of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	117
4.33	Effect of Frequency on Roundness (%) of Silicon Particle of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	118
4.34	Comparison of Percentage Change in Roundness of Silicon Particle	
	(a) A319 and (b) A356Aluminium Alloys Casting	119
4.35	Effect of Amplitude on Area of Silicon Particle(μm^2)of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	120
4.36	Effect of Frequency on Area of Silicon Particle(μm^2) of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	121
4.37	Comparison of Percentage Change in Avg. Area of Silicon Particle	
	(a) A319 and (b) A356Aluminium Alloys Casting	122
4.38	Effect of Amplitude on aspect ratio of Silicon Particle(μm^2)of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	123
4.39	Effect of Frequency on aspect ratio of Silicon Particle(μm^2) of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	124
4.40	Comparison of Percentage Change in aspect ratioof Silicon Particle	
	(a) A319 and (b) A356Aluminium Alloys Casting	125
4.41	Effect of Amplitude on porosity (%) of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	126
4.42	Effect of Frequency on porosity (%) of	
	(a) A319 and (b) A356 Aluminum Alloys Casting	127
4.43	SEM-Photograph of Tensile Fracture Surface of A319	
	order place with increase in Frequency of mold	
	oscillation (Constant Amplitude=5µm)	146
4.44	SEM-Photograph of Tensile Fracture Surface of A319	
	order place with increase in Frequency of mold oscillation	
	(Constant Amplitude=10µm)	147
4.45	SEM-Photograph of Tensile Fracture Surface of A319	
	order place with increase in Frequency of mold	

	oscillation (Constant Amplitude=15µm)	148
4.46	SEM-Photograph of Tensile Fracture Surface of A356	
	order place with increase in Frequency of mold	
	oscillation (Constant Amplitude=5µm)	1149
4.47	SEM-Photograph of Tensile Fracture Surface of A356	
	order place with increase in Frequency of mold	
	oscillation (Constant Amplitude=10µm)	150
4.48	SEM-Photograph of Tensile Fracture Surface of A356	
	order place with increase in Frequency of mold	
	oscillation (Constant Amplitude=15µm)	151
B .1	Dewinter Trinocular Metallurgical Microscope	180
B.2	Scanning Electron Microscope (EVO-18)	180
B.3	X-ray diffraction Machine (XRD) (Model: RIGAKU,	
	ULTIMA-IV H-12-JAPAN)	181
B.4	Density and Porosity Measurement Set-Up	181
B.5	Tinius Olsen Micro Hardness Tester	182
B.6	UTM (Instron)	182
B.7	Set-Up for Charpy Test	183
B.8	Experimental Set-up	183