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Abstract

In this article, we consider a class of singularly perturbed two-parameter parabolic partial
differential equations with time delay on a rectangular domain. The solution bounds are
derived by asymptotic analysis of the problem. We construct a numerical method using
a hybrid monotone finite difference scheme on a rectangular mesh which is a product of
uniform mesh in time and a layer-adapted Shishkin mesh in space. The error analysis is given
for the proposed numerical method using truncation error and barrier function approach, and
it is shown to be almost second- and first-order convergent in space and time variables,
respectively, independent of both the perturbation parameters. At the end, we present some
numerical results in support of the theory.
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1 Introduction

Singularly perturbed delay differential equations often arise in modeling of various physical,
biological and chemical systems such as in population dynamics, variational problems in con-
trol theory, epidemiology, circadian rhythms, respiratory system, chemostat models, tumor
growth and neural networks. The delay terms in these models enable us to include some past
behavior to get more practical models for the phenomena. For example, in population ecol-
ogy, time delay represents the hatching period or duration of gestation; in genetic repression
modeling, time delays play an important role in processes of transcription and translation as
well as spatial diffusion of reactants and in control systems, delay terms account for the time
delay in actuation and in information transmission and processing. Many other examples can
be found in Wu (2012).

In this paper, we consider a singularly perturbed delay initial-boundary value problem
in one space dimension with two small parameters. Defining G = G U 3G, where G =
0,1)x(0,T]and G =T UT, UT; with ', = [0, 1] x [—7,0], I'; = {0} x (0, T'], and
I, = {1} x (0, T'], we consider

Lu=L;u—u =—culx,t—1)+ f(x,t) inG,
ulp, = ep(x, 1),

ulp, = @),

ulp, = e (),

(1.1)

where L ju := guyy +pauy, —bu with parameters ¢ and u suchthat0 < e <1, 0 < pu < 1.
The coefficients are such that

O<a<a(x,t), 0<pB <bx,t), 0<y <c(x,1t), (x,t)eé.

Further, sufficient regularity and compatibility conditions are assumed on the data of problem
(1.1) (cf. Ladyzhenskaya et al 1968). For the sake of simplicity we take T = k7 for some
definite natural number k. Such problems demand uniformly convergent numerical methods,
that is, methods that converge independently of singular perturbation parameters. Our main
interest is in developing such a numerical method for problem (1.1).

The nature of singularly perturbed two-parameter problems changes according to the
values of perturbation parameters ¢ and p; from reaction—diffusion equation for © = 0
to convection—diffusion equation for © = 1. O’Malley studied such problems in ordinary
differential equations asymptotically in O’malley (1967), O’malley (1969) and O’Malley
(1967) and identified that the nature of these problems is quite affected by the choice of ratio
of u? to &. Later some works have been done in the direction of development of uniformly
convergent numerical methods, see Gracia et al. (2006), Shishkin and Titov (1976), Stynes
and Tobiska (1998), Roos and Uzelac (2003), Patidar (2008), Brdar and Zarin (2016) and
O’Riordan and Pickett (2019) for singularly perturbed two-parameter problems in ordinary
differential equations and O’Riordan et al. (2006), Kadalbajoo and Yadaw (2012), Munyakazi
(2015), Chandru et al. (2018) and Gupta et al. (2019) for singularly perturbed two-parameter
problems in partial differential equations.

Singularly perturbed delay differential equations have attracted many researchers in recent
years due to their widespread applications. Some uniformly convergent numerical methods
for singularly perturbed delay differential equations have been developed in Erdogan and
Cen (2018), Cen (2010), Kumar and Kumar (2014), Singh et al. (2018), Ansari et al. (2007),
Bashier and Patidar (2011), Kaushik et al. (2010) and Kumar and Kumar (2017). Recently,
in Govindarao et al. (2019), a first-order uniformly convergent method is given for problem
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(1.1) using an upwind finite difference scheme on Shishkin type meshes. High-order numer-
ical methods are very interesting as they provide good numerical approximations with low
computational cost (for example, see Kumar and Kumar (2014) for time delay singularly
perturbed reaction—diffusion problems, Dehghan (2004) for advection—diffusion equations,
and Dehghan (2006) for two-dimensional time-dependent Schrodinger equation). However,
we do not know of any high-order numerical method for problem (1.1). Thus, the aim of
the paper is threefold: first, to derive a priori bounds on the solution derivatives of problem
(1.1) and further provide a decomposition of the solution into smooth and layer components;
second, to construct a hybrid finite difference scheme for the solution of problem (1.1); and
third, to provide a uniform convergence analysis of the proposed hybrid finite difference
scheme.

The outline of the paper is as follows. In Sect. 2, we derive a priori bounds on the solution
derivatives of problem (1.1) and further provide a decomposition of the solution into smooth
and layer components. In Sect. 3, we describe the construction of a layer adapted Shishkin
mesh and the hybrid finite difference discretization of problem (1.1). Section 4 is concerned
with uniform convergence analysis of the proposed method. In Sect. 5 some numerical results
are presented in support of our theory. Finally, in Sect. 6, we provide conclusion of the paper.

Notation: We shall use C as the generic positive constant throughout the paper, which
is independent of perturbation parameters ¢ and p, and discretization parameters M and
N. The maximum norm is denoted by ||.||p, where D is any bounded and closed subset
of [0, 1] x [0, T]. When the domain has no particular significance, we simply use ||.||.
Similarly, we use ||.|| pv,» to denote the discrete maximum norm. We also define n = ngn 2

and No = {0, 1,2,...).

2 Solution bounds for continuous problem

We start this section with a minimum principle for the differential operator L defined by
Lu = L ju —u;. The proof of this minimum principle can be done in a standard way. Using
the minimum principle for the operator L, we shall derive derivative bounds for the solution
which are required for convergence analysis of the proposed method.

Lemma 1 (Minimum principle) If |, ; > 0 and (Le., — &) ¥|,; < 0. then |~ > 0.
Lemma 2 The solution u of problem (1.1) satisfies

[lul] < C. 2.1

Proof Consider the function r defined by r(x,1) = u(x,1) — ¢p(x,0), 0 < ¢ < T, and
r(x,t) =u(x,t) —ep(x,t), —t <t <0, which satisfies L, ;v — r, = s in G, where

s(x,t) = —culx,t —1)+ f — <L€,u — %) op(x,0)
= f —e(@p)xx(x,0) — pa(pp)x (x, 0) + bep(x,0) — cu(x,t — 1)

with ryrh =0, r’rl =@ (1) — 95(0,0), r|. = @ () — @p(1,0). Choosing C sufficiently
large, set a barrier function g(x,t) = Ct, t € [0, T], and g(x,t) =0, t € [—7, 0] satisfying
the equation

)
(Ls,u — 5) qg=—-C(+bt)
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with q|r,, =0 andq|n = ‘1|r, = Ct, so that we have

0]
Ls,/L — a r

Now using Lemma 1, we have |r(x, )| < g(x,t), (x,t) € G, and hence

ad
> <L£,M — 5) qonG and |r(x,t)] <gq(x,t)onaG.

lu(x, 1) — @p(x,0)| < Ct, (x,1) €G.

As ¢p(x, 0) is a smooth function and ¢ € (0, T'] on G. Hence, we have the desired result. O

Lemma3 Fori, j € Ng satisfying 0 <i +2j <4, bounds of the derivatives of the solution
to problem (1.1) are given by

A+. l i 2
‘ 8"1u' _ CTE)‘,, Zszenoeu < ne,
dx'or! C(E)Y(5)/, whenap® = ne.

Proof To prove the result, we consider two cases: au? < ne and au® > ne. First, consider
the case when auu?> < ne. Consider the stretched variable £ = x/./e corresponding to the
variable x to transform problem (1.1) to

itz + Leaig —bii — i, = —¢i@E,t—1)+ f inG,
ilp, = @p(x. 1),

ulp, = i),

u f‘r = wr(t)v

where G = (0, 1/4/¢) x (0, T] and [is boundary of G corresponding to I'. Now we use the
method of steps and the result in Ladyzhenskaya et al. (1968, Theorem 10.1) to obtain, for
i, j € Ny satisfying 0 < i + 2j < 4, the following bounds:

where N, ¢ is the rectangle (§ — A, & 4+ A1) x (0, T)) N G for any & € (0, 1/4/¢) and § > 0.
Now we return back to the original variable to get the desired result. Next we consider the
case ap’ > ne. In this case, we use stretched variable in time also. We consider ¥ = ux /e
and 7 = 4%t /¢ and obtain the transformed problem

ai+jﬁ
oxiori

< C +llallx),
Nyg ¢

sz + aiz — ﬁl;ﬁ — ;= —Ciu(X, i — %)+ f inG,
ﬁ|l:‘h - @ng’f)v

ﬁ|l:‘l _(ﬁl(l?v

Ulp = ¢, (1),

where G = (0, u/e) x (0, T 12 /e] and I is the boundary of G corresponding to I'. Repeating
the previous argument we get the desired result. O

For error analysis, we also need decomposition of u as
u=v+w+ wg, (2.2)

where v is the smooth component, and wy, and wg are the left and right singular components,
respectively. We shall derive the bounds for all these components separately.
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Theorem 2.1 Fori, j € Ny satisfying 0 < i 4+ 2j < 4, derivative bounds for v are given by

Proof To prove the result, we consider two cases: omz < ne and omz > ne. First, when
au® < ne, we use the domain extension approach. We smoothly extend the solution of
problem (1.1) to a sufficiently large neighborhood of the domain beyond I'; and I';, denoted
by G*. On G the data of the extended problem are same as for problem (1.1). The smooth
component v is the restriction (on G) of the extended problem solution. Thus, using the
argument in Hemker et al. (2001), for i, j € Ny satisfying 0 <i 4+ 2j < 4, we obtain

For the case au? > ne we use asymptotic expansion approach. We express the smooth
component as

ai-‘rjv
axiot)

C, when ap? < ne,
S| ca+ @), when api® = ne.

ditiy
axioti

v = v+ &V +82v2+83v3, 2.3)
where
/wlav“ bvg — M = f —cvolx,t — 1),
vo|1~b b, 2.4)
v0|F to be chosen,
2
;Laaa% — by — 38%‘ = —%szo —cvi(x,t —1),
vi|p, =0, (2.5)
v1|r to be chosen,
2
pasy 8v2 — bvy — aa% = —aax”z‘ —cva(x,t — 1),
uz|F =0, (2.6)
vz|r =0,
K _ 321)2
(LE,/L - at)U3 =" cvz(x,t —1), 2.7
v3}3G =0.

The following result can be established through contradictory argument:

d d
fpua? —by— 22| <o0andy >0theny| >0, (2.8)
0x ot |p Ul D
where D = [0, 1) x [0, T'].
Further, vg is expressed as
v = 00 + poy + 1oy + plos, (2.9)
where
—bog — Bﬂ = f(x,t) —cop(x,t — 1), 2.10)
Go‘rh = ‘Pb,
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doy dog

_bgl:oth: —agt —coi(x,t— 1), (2.11)
(7]|Fb =Y,
—b — Lilor) = do1 - -

oy — G2 =—aFL —coa(x, 1 — 1), (2.12)
O’2|I‘1, =0,
y,a%% — boz — 83% = aaac;z co3(x,t — 1),
‘73|1~b 0. (2.13)
‘73|r 0.

It can be easily observed that the derivatives of og, o1 and o, involved in the expression
of vp are bounded independently of w. Thus, for i, j € Ny satisfying 0 < i 4+ j < 3, and
k=0,1,2, we have

ai+j
‘ Ok (2.14)
ax'ot/
We have vo|. = 0o+ poi + M o7, since 03|F ur, = = 0. Now using (2.8) and method of
steps, it can be easily deduced that for i, j € Ny satlsfymg 0<i+j<3,
ai+j C
"Bl <= (2.15)
daxtatrl !

Thus, combining all the bounds on o9, o1, 03 and o3 for i, j € Ng satisfying 0 <i + j <3,

i
‘Bt/

i, j € Npsatisfying 0 <i+ j <7, we get

we get < C. Furthermore, differentiating Eq. (2.4) and using method of steps, for

8!’—5—]’1}0 1
Wl o1+ — ). (2.16)
axioti ui—3
Now we express v; as
v = vo + uvp + plu, (2.17)
where
_ vy __ _32110 _ _
bvy — K evwo(x, t—7), 2.18)
V0|rb =
—bvy — W — g0 ey(x,t — 1)
dat ax ’ ’ (2.19)
Vi |I‘ =0,
/,Lad"2 bvy — % = —a% —cvp(x,t — 1),
v1|F =0, (2.20)
vy, =0,

We have vy ‘r = vg + uvy. The problems for vy and vy are independent of small parameters.
Thus, for i, j € Ny satisfying 0 <i + j < 2, we get
giti Vo

1
— || <Cl14+ —— ) and
dxioti ui—1
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The bounds for v, are obtained using (2.8) and method of steps. For i, j € Ny satisfying
0<i+j <2, weget

it C
My . (2.22)
Ixiot) Ml+1
Thus, g:g;’} <C|1+ ﬁ for i, j € Ny satisfying O < i + j < 2. Further, higher

derivatives are obtained by differentiating Eq. (2.5) and method of steps. For i, j € Ny

satisfying 0 <i + j <5, we get
1
<Cl(l+—=) (2.23)
I

Now to obtain bounds on vy we use Eq. (2.6), result (2.8), the bounds on the derivatives of
vy, and previous arguments. For i, j € Ny satisfying 0 <i 4 j < 4, we get

1
‘ < C(l + F) (2.24)

Clearly, (2.7) is similar to problem (1.1). Therefore, using arguments in Lemma 3 and bounds
9iti 3

on v, we get
i 2\J 1
Bl E) () = (2.25)
dxiot] e e ) ud

Substituting all these estimates from (2.16), (2.23), (2.24) and (2.25) into Eq. (2.3) and using
omz > ne, we get the required bounds for v. ]

aH—jvl
axiots

ai+jv2
oxioti

When omz > ne, note that
ol < CA+ &3 pte™) < C. (2.26)

Next we obtain bounds on w;, and wg that satisfy

(L — %)wL = —cwr(x,t —1) inG,

wi|p, o, =0, (2.27)
wL‘FI =U—V— WR,

(Ley — %)wR = —cwgr(x,t — 1) in G,

wg |, =0, (2.28)

wR|F, =u—v.

When omz < ne, wR‘F, = 0, otherwise for oz,u2 > ne, wWR r is defined in (2.29)—(2.33).

For the case omz < ne, wr and wg satisfy the bounds in Lemma 3. If a,u2 > ne, we
consider the decomposition

wWR = wy + ew + 82a)2 + 83603, (2.29)
where v = vy + evy, (x,t) € I', is given in (2.3) and

dwg dwg

nat — bwy — Sh= —cwo(x,t — 1),
|, =0, (2.30)

a)o}rr =u-—v,
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: 2
ua"a% — by — ai% = —33% —cwi(x,t — 1),
w1|rb =0, (2.31)
w1|1-r =0,
/L% — bwy — aa% _a;)?;] —cwy(x,t — 1),
o, =0, (2.32)
w2|rr =0,

a2

Loy — w3 = =52 —con(x, 1 — 1),
3|, =0, (2.33)
a)3|r =0

Lemma4 The singular components wy, and wg satisfy

lwp(x, )] < Ce ™, Jwg(x, 1)] < Ce PRI—9),
where
NI 2 ~ o/ o 2< &
9L= ﬁ, aﬂ _778, 9R= zﬁv I;_TI,
S ap? = e, % ap” > ne.

Proof To prove the required bound on w; we consider the barrier function 7+ =

Ce= %% + wy (x,1), and use the minimum principle and the method of steps. The proof
is similar for for wgr, when ozpc2 < ne. When a,u2 > ne, using the arguments similar
to O’Riordan et al. (2006) and decomposition (2.29) in the previous lemma, we obtain

1 . . . .
|lwg (0, 1)| < e 2Bte™u, where B < A = min{0, a(%),}. Now consider the barrier function
— (- . .
mE = Cem2A1e7 2179 Ly r(x, 1), use the minimum principle and the method of steps to
obtain the required bound on wg. O

Lemma5 For the case apu? > ne, the solution of (2.27) satisfies

i 2
‘ sc(ﬁ>,0§i§4, ‘ §C(1+M—>.
& &

Proof The proof follows using the method of steps and the arguments in O’Riordan et al.
(2006, Lemma 3.9). ]

82wL
012

8iwL
oxi

Lemma 6 For the case apu? > ne, the solution of (2.28) satisfies

|

Proof We consider the decomposition (2.29) and obtain bounds separately on wg, w1, and
3 using (2.8) and method of steps. We obtain

asz
012

84wR
x4

52,051’
’ul

ain
ox!

IA

scw4+u*fb,‘

|

i+j i+ i+j
Using Lemma 1 and the bounds on w;, we get
sl < <
sh= 75
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e (22

The required bounds on wg can now be achieved by substituting these bounds in (2.29) and
noting that ap”® > ne. O

Now we use Lemma 3 to obtain

ai+.iw3
oxioti

3 Numerical discretization

3.1 Mesh generation

We shall discretize problem (1.1) on a tensor product mesh G¥M = GV x GM, where
GV is a piecewise uniform Shishkin mesh in space and G is a uniform mesh in time. The
uniform mesh in time is formed by taking m sub-intervals of equal length Az in [0, T'] such
thatt; = jAt, j =0,1,..., m. Further, t = M At for some positive integer M such that
m = kM. To define the mesh in space we consider two parameters p; and p; as

min{i \% InN}, au? < e, min{}, «/’771 ap? < ne,
p1 = P2 =
mm{4, a In N}, au? > ne, min{z, 4T"]n N}, ap? > ne,

and partition the interval [0, 1] into three subintervals [0, p1], [p1, 1 — p2] and [1 — p2, 1].
Now we construct the spatial mesh G by placing N /441, N/2+1 and N /4+1 mesh points
in these three subintervals, respectively. Moreover, defining hy = hy = 1221202 gng

K (N/4)’ TN/
h3y = (N/4), the mesh points in space are given by GV = {x;,i =0, 1,..., N}, where
ih, 0<i=<N/
xi =13 p1+ G —N/4)hy, N/4 <i <3N/4,

(1—p2)+ (i —3N/4h3, 3N/4<i<N.

We also define h; = x; — xj—1, i = 1,..., N and A; h'+h"+' i=1...,N -1
Now the discretized boundary is given as dGV'M = Fd“ U Fd“ U I, where I'fs =
GN x G™M, Fld” =G"nry, Ffis =GV"NTr, and G M denotes the umform time
mesh in [—1, 0] with M + 1 mesh points. Further, we divide the discretized domain into k

sub-domains as GM-V = U’r‘zle/I‘N, where GM'N = GV x GM and GM denotes M + 1
uniform mesh points in [(r — 1)1, r7].

3.2 Problem discretization

On the above generated rectangular mesh, we discretize problem (1.1) by a hybrid scheme
comprising an implicit Euler scheme in time direction and a combination of central difference,
upwind and mid-point operators in spatial direction. We define

(LM UY = e82U] + na! DOUY —blU! — D7 U/,

(Lo UY] = e82U] + na} D} U/ — b/ U} — DU,

(LM UY = 68207 + pal DYUY — blUI — DI U

@ Springer f DMAC
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where
Jo il iy i i1
DjUj:M, D2U7=M, D;U;/=w,
’ hit1 ! 20 i Al
J J J j
s/ = L Ui Ui Ui Ui,
X1 hi hi+l hl‘ ]
— i A

and for any mesh function Z, Z,-j = % Further, define b = b + 1/At. Then the

discretized problem is of the form

{[L_N’MU]{ =F/, (u,tj) e GNM, G
Ul = u(x;, t)), (xi,t;) € IGNM
where
(MUY, if1<i<N/a,
(LNMUY, it NJ4 <i < 3N/4and phollall < 2e,
(LN = (LYMUY, i N/4 <i<3N/4, phallall = 26 and ho1B] < 2pa,

(LMUY, i NJ4 <i < 3N/4, phallall > 2¢ and ha||b]| > 2ua,
(LEMUY, if3N/4 <i < N and phslal < 2e,

Ly UY. 3 3N/4<i < N and phsla] = 2s.

(3.2)
at the left transition point py, that is, if x; = py,
LMY, if py =025,
LNMuY =1 MUY, it pr < 025 and hy|IB]| < 2ua, (3.3)

[LL]X;MU]{, otherwise,
at the right transition point p, that is, if x; = pa,
[LAMUY, if 1= py = 0.75, and phslall < 2,
4 (LNMUY | if 1 — py = 0.75, and phsllal| > 2e,
[LNMyy) = mem o (3.4)
(LN UV, if 1= pa > 0.75, and h3|b] < 2pua,
[L%’MU]{, otherwise,
and

Jyrj—m J T N.M N.M N.M
i —c; U; +f, ifL = Leen or Ly,
F’ =

1

— — (3.5)
—J U™ f, it LM = LM

We next establish discrete equivalent of the minimum principle. Let Ny be the smallest
positive integer such that

No/In No > 8 max {[|al| /e, (||b]l + M)/ (ne)} . (3.6)
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Lemma7 The discretization (3.1) satisfies discrete minimum principle, that is, if for any
mesh function z with z; |3GNM > 0 and [LY: MZ]] |GNM <0, then z; |GNM > 0.

Proof Considering (3.6), it can be easily verified that the entries of the tridiagonal system-
matrix formed by the proposed difference scheme (3.1) formulate a negative M-matrix.
Hence, the difference operator LN-¥ satisfies the discrete minimum principle. O

4 Error analysis

We start with the decomposition of U as

U=V + W+ Wg, “.D
where

(LNMYY = =] VIT" 4 £, it € MM, 2)
‘/i] }BGNVM = ‘U(xl', t_/),
LY =L, Gt € G w
W [ygvm = wrlxi, 1)), |
LMWl = WL, 1) € GO "
(WR)] |ygrm = wr(xis 1)) |

Hence, we can decompose the error as
(U —u)l = [V —vl] +[Wr —wr]] +[Wg —wg]l! forall (x;,1;) e GVM. (45)

Consequently, we can find error bound for each component separately. We shall use the
following lemma frequently.

Lemma8 Forz = v, wr, wr defined on GandZ =V, Wi, Wg defined on GNVM the local
truncation error defined by

. . . 9 .
(LNMZ =) = =12 =2l ™" + [(Legp — 5 )e = LV

on arbitrary mesh with step sizes h; is given by

LYY (Z — 21| < 11Z = 2] 7" | + Clehillzenell + mhillzex | + M7 zeell],
|[L{LM(Z — V| < 11Z — 27"+ Clehillzrax | + thivt | zexll + M iz ll].

ILNM(Z — 1| < 11Z — 207" + Clehillzaxll + 1h?yy (lzens |+ Nzl + M iz 1],

and on uniform mesh with step size h is given by

ILNM(Z — 1| < 11Z — 2] 7" | + Cleh®zawaxl + h [ zaaxll + M~z ],
ILNM(Z = DT < 11Z = 2/ 7"+ Cleh®lzannx | + mhllzax ] + M~ izu ],
ILNM(Z = DT < 1Z = 2] 7"+ Clehllzen | + mh® Lz | + lzex ) + M~z ]
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Lemma9 For every (x;,t;) € 6?”M, the following error bound holds for the smooth com-
ponent of the error

IV —vl/| <CM~ +N72).

Proof When mesh is uniform, we use Lemma 8, Theorem 2.1, and the discrete minimum
principle Lemma 7 to get the following bound:

vV -l <CcmM™ +N72,

When mesh is not uniform, either the mid-point scheme is used at the transition points or if

hit1 ||l;|| > 2uo, the upwind scheme is used. Using Lemma 8 and Theorem 2.1, we get
. -1 -2 :
LMYV — o)) < C(M_]—i—N_l), ~ whenz'yé N/4, 3N /4,
! C(M—™ +N"'(¢e+N7")), otherwise.

Define the barrier function
O =CIN @)+ 1)+ M),
where

L, if0<x <p1,
Xi—p H .
¢ (x;) = 1—m, ifpr <x; <1—p2,

o .
202’, ifl —pp <x; <1.

Noting that 1/p, > 4, we have

0, wheni # N/4, 3N /4,

2 ’*'.j =
£6,0; [ 0(—£N_1), otherwise,

and DS@'{ <0, Dj@'l./ < 0. Now we use Lemma 7 to get the desired result. O

We introduce two barrier functions that are essential to establish the error bounds of
singular components

i r=1 i r=i+1
1, i=0, 1, i=N,

i N
o — [ [Ta+oh)™" ifl<i<N. ;) II (+6gh)~" if0<i <N, 4.6)
where 67 and 6 are as defined in Lemma 4.
Lemma 10 The barrier functions ® and V defined above satisfy
(LN Mol <0, (LYMwy <o.

Proof Here we provide the proof for the mid-point operator. Similar arguments can be used
for the central difference and upwind operators. On applying the mid-point operator to the
barrier function @], we get

NMa1i — os2a) 1 ptad — hi gl .y
[me Q] = &8, P; + pna; DY d; —bjﬂbi — Dy ®;
:gﬁlgh”lq)z{ﬂ+““{(_9Lq>{+1)_ ‘2’ - ’+2l+

[Mf( 2‘;‘ —~ 1) + <2eef — palby, — %1) — 5 (+ GLh,-H)}d){H
(]
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— bl .
< [2892 — pal6, — ’TH]QD{_H <0
since for 6; = ‘27 we have (289% — b’;') = (% — b’T*') < 0 and for ;, = 28 , we

have <2891% — /La;’ 9L> = (%(a — a;.i )) < 0. Now we apply the mid-point operator to

the barrier function \le to get

(Lo W1 = 6830/ + pa! DY W) — biw/ — D w/

62 i — Coplwl b vl
Rp oyl J J +1 7 i+l
_8hih,lIJi_1+/Lai9R\IJi — ’2’ - 2’

< [289%(% — 1) + (2891% + ,uai/QR — b{>:|\llj
i

< [289,% + ,ual.jQR — bl’i|\lllj

. — — . J j
Now for both values of 6g, we obtain [L,[,\:,’,M\Il]{ < (naij — b{)llll/ = [%(ﬂ — b—@) +
J b/ i
o (-2 YJo <0 ;
i+1

Lemma 11 The layer components satisfy

(WL)/| <CN™2 i =N/4,...,N,jAt <,

(WR)/| <CN2,i=0,...,3N/4, jAr <.

Proof Defining O (x;, tj) = C<I>] + (WL)J with C chosen sufficiently large, using Lemmas

10and 7, weget|(WL) | < Cd>] Further, fori = N /4, ..., N,using the fact thatIn(1+4¢) >
t(1 —1t/2), we have

o) <@, =[(1+8N " TmN) VPP <N 2.
The same argument can be used to bound (WR);j, fori =0,...,3N/4, jAt <. O

Lemma 12 Let Wy, be the solution of (4.3) and wi, be the solution of (2.27). Then for every
—N.M
(xi,tj) € Gy, the error bounds are

CM~'+ N2(InN)?), when au? < ne,

—w ]!
(We —we ;] = {C(M_] InN +N"2(nN)3), whenapu? > ne.

Proof We first consider the uniform mesh case, that is, when p; = Loaf ap? < ne,
LXMW —wp)lf | < C[N—2 (en(wum I+ uu(wmmn) + M (i) ||}.
Using ﬁ < CIn N and derivative bounds of wy , we have

LYY Wy —wp)l ] < CIM™ + N=2(n N2,
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If apu? > ne, again using % < Cln N and derivative bounds of wy,, we have
LY MW, —w)l/| < CIM~ ' In N + N~2(In N)?].

The desired result follows using Lemma 7.

For the case when p; < %, the error is analysed first outside the layer region and then
inside layer region. In the outside region, that is, when (x;, ;) € [p1, 1) x (0, 7], wz and
Wr, both are small. So, using Lemmas 4 and 11, and the fact p10; =4In N,

WL —wl]| < (WD |+ [(wp)] | < Cle ™% + N2 < Cle " + NT2] < CN 72

For inside the layer region, that is, when (x;, ¢;) € (0, p1) x (0, t]; if apcz < ne,
LMWy —wp)ll| < C[N—2 (ep%n(wmxmn + up%u(wmmn> +Mm! ||(wL)n||].
Using derivative bounds of wy, and the fact that p; < C+/eIn N, we get

LMWy —wp)l| < C[(N’l 1nN)2<1 + i) + M*l}
NG
< CIM~ '+ N2(InN)?].

On applying Lemma 7 we get the desired result. If e i.> > ne, using derivative bounds of wy,
and the fact that p; < C(i In N), we get

) 2
LM Wy —wp)l]| < c“—[(zv*1 In N)* + M*‘]
&
Now we consider
OF (xi, 1)) = C[(m - xi)g((zv—l InN)>+ M)+ N—z} + (W —wr ]/

Clearly, for (0,¢t;), (p1,¢;),0 < t; < 7 and for (x;,0), 0 < x; < py, we have et > 0.
Also, choosing C large enough such that [LV'¥ ®*]/ < 0. Therefore, using Lemma 7, we
get

W, —wel/| < C[(m - xi)g((N‘l InN)? + M~ + N‘Z}
<CIM~'InN + N 2(n N)3].
O

Lemma 13 Suppose Wp is the solution of (4.4) and wg is the solution of (2.28). Then for
—N.M .
every (x;,t;) € G|, the error bound is

IWg —wgl/| < CIM~" + N=2(n N)?.

Proof We shall use similar ideas as in the case of left singular component. When (x;, t;) €
0,1 = p2] x (0, ], we have

[Wr — wrl!| < [(Wr)!| + |(wg)!| < Cle™ % + N2] < CN 2.

@ Springer f bMA



A robust numerical method for a two-parameter singularly. . . Page 150f25 209

Now we consider the case when (x;, ¢;) € (1 —p2, 1) x (0, 7]. If pp = % and ap? < ne, we
use Lemma 8, bounds on the derivatives of wg, and the inequality ﬁ < CIn N to bound
the truncation for the central difference operator. We get

LN M (Wr — wr)l]| < C[ﬁ%(eu(wmmn + un(wR)mn) +M! ||<wR>nll]

]
<C|l—+M
&

<CM~'+ N2(nN)?).

When ;sz3 llall > 2e, mid-point is used. So, we use the same argument to get

LY MW — wr)l!| < C|ehsll(wr) x|l + uﬁ§(||<wR)m|| + ||(wR)xx||)

+M~! ||(wR>n||]

<C uN*(n(wR)mn + ||<wR)xx||) + M*n(wR)nn]

£3/2

< CIM~ '+ N2(n N)?].

<c|n 2 +M’1]

Now, consider the case when py = }T and ap? > ne. Using the arguments as above and the
inequality i < CIn N, the truncation error for the central difference operator is given as

LY M (W —wr)l/| < C[N—z(en(wmxm I+ 2l (WR)xxx ||) +M! ||<wR>n||]

< C[N*Z/pv2 + M’l]
< C[M~' + N2(In N2,
and the truncation error for mid-point is given as
LM (Wg — wr)l] | < C[MN—2<||(wR>m|| + ||<wR)“||> + M (wR)u ||}
< C[N‘z/u2+M_1]
< CIM~ '+ N2 N)?].

Next we consider the case when py < %. If apu? < ne, then the mid-point operator is not
used. So, we consider only the central difference operator. Using the derivative bounds of
wpg and the fact that po < C/eIn N, the truncation error is given as

LY M (We — w)l/| < C[Nfzan N>2<1 + i) + M*l}

NG

<CIM~'+ N 2(nN)?].
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If a®> > ne, then using derivative bounds of wg and the fact that p» < Culn N, the
truncation error for central difference operator is given as
i e
LN MWr —wr)l]| < C[N*(ln N)2(1 + —2) + M*l}
7
< C[M~'+ N2 (InN)?,
and the truncation error for mid-point operator is given by
2
_o Mp —1
|2
W
< CIM~ '+ N2(InN)*.
Combining the results, for all cases, we have
LYY (Wr —w)l]| < CIM™' + N2 (In N)?).
Now we use the discrete minimum principle to get the desired result. O

Next we obtain the error on E;V’M. For (x;,tj) € Gév‘M, we note that
. . . 8 .
N.M J_ j—m N.M 1/
(LMW =) == [V —ul! " +[(Lep — a)v — LY M)
The first term on the left hand side is bounded using Lemma 9. To bound the second term
we use arguments in Lemma 9 and then use the discrete minimum principle to get
IV =/ | <CcM +N2), (n, 1) € Gy .

Similarly, we can bound |[W; — wL]l.jI and |[Wgr — wR]ljl for (x;,t;) € EZZV’M. Finally,
applying an induction argument, we can obtain, for (x;,?;) € élpv’M, p=1,...k, the
following bounds:

v —vl/| <c™ + N2,
C(M~'+N~2(nN)?), whenau? <ne
CM'InN +N2(InN)3), whenau?> ns,
[Wr — wgl!| < CIM™! + N=2(In N)?1.

WL —wrl| 5{

Hence, combining the bounds for smooth and singular components, we have the following
main result.

Theorem 4.1 Suppose U is the solution of problem (3.1) and u is the exact solution of (1.1).
Then

C(M™' + N~2(InN)?), when ap* < ne
C(M~'InN +N"2(InN)3), whenap?> ne.

1 —u||5N,M < {

5 Numerical examples

To demonstrate the effectiveness of the proposed finite difference scheme (3.1) for problem
(1.1), we consider three test examples. For these test examples, we generate the rectangular
meshes and compute the discrete solutions. Then the tables for errors and rates of convergence
are presented in support of the theoretical results presented in the previous section.
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Table 1 Maximum errors FQ’AM and FV-M | and rates of convergence pé\,,,'LM and pN*M using scheme (3.1)
for Example 1

wu=103  N=32 N =64 N =128 N =256 N =512 N = 1024

€ M=3 M =16 M =32 M = 64 M =128 M =256

109 =1 73399e—3  5.7663e—3  3.6422e—3  2.1295e—3  1.1629e—3  6.0952e—4
0.3481 0.6628 0.7743 0.8726 0.9320

1072 3.5162e—2  1.3240e—2  5.9994e—3  3.1032e—3  1.5788e—3  7.9633e—4
1.4091 1.1420 0.9511 0.9749 0.9874

1074 43705e—2  1.6704e—2  7.3802e—3  3.7406e—3  1.8967e—3  9.551le-4
1.3876 1.1785 0.9803 0.9797 0.9898

1076 43471e—2  1.6596e—2  7.3290e—3  3.7218¢—3  1.8873e—3  9.4388¢c—4
1.3892 1.1792 0.9776 0.9796 0.9997

1078 43429e—2  1.6573¢e—2  7.3303e—3  3.7211e—3  1.8870e—3  9.5031le—4
1.3898 1.1769 0.9781 0.9795 0.9896

10-10 44343e—2  1.6572e—2  7.3303¢—3  3.721le—=3  1.8870e—3  9.503le—4
1.3898 1.1768 0.9781 0.9795 0.9896

10-12 44343e—2  1.6572¢—2  7.3303e—3  3.7211e—3  1.8870e—3  9.5031le—4
1.3898 1.1768 0.9781 0.9795 0.9896

FN.M 43705e—2  1.6704e—2  7.3802e—3  3.7406e—3  1.8967e—3  9.551le—4

pN-M 1.3876 1.1785 0.9803 0.9797 0.9898

Example 5.1 Our first test example is the following time-delay problem:

ey (x, 1) + (1 +x)ur(x,t) —u(x,t)

—u(x, 1) = —u(x,r — 1)+ 16x2(1 — x)%, (x,1) € (0,1) x (0,2],
ux,t) =0, (x,1)€[0,1] x[—7,0],

u©,)=0, u(l,1) =0, ¢e]l0,2].

The exact solution of this problem is not known, so the numerical errors and rates of
convergence will be calculated with the help of double mesh principle. In this technique, the
spatial mesh is bisected into 2N subintervals and time mesh into 2M subintervals. Then the
maximum pointwise error and rate of convergence are calculated by

. . . FN.M
N.M N.M\J 2N .,2M~\2j N.M __ &1
Fplpw =max|(UTT); — (U )il and pp " = logy —55irs
ij Ny

respectively, where U™-M is the numerical solution on the mesh GV and U*N-2M is the

numerical solution on the mesh obtained after introductions of mid-points in GV, Now
uniform error and uniform rate of convergence are calculated by

FN M
NM — Jogy ———

=08 ponam

In Tables 1 and 2, the maximum pointwise errors and the corresponding rates of conver-
gence for the numerical solution computed using scheme (3.1) are presented for i = 1073
and 107, respectively, with different values of & and discretization parameters N and M
varying with the same ratio (N and M both multiplied by 2). Here, we see that the conver-
gence rates of the scheme is near one, confirming the first order in time. In Tables 3 and
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Table 2 Maximum errors FQ’AM and FV-M | and rates of convergence pé\,,,'LM and pN*M using scheme (3.1)
for Example 1

wu=10"0  N=32 N =64 N =128 N =256 N =512 N = 1024

€ M=3 M =16 M =32 M = 64 M =128 M =256

109 =1 73402e—3  5.7663e—3  3.6422e—3  2.1294e—3  1.1629e—3  6.0952e—4
0.3481 0.6628 0.7743 0.8726 0.9320

1072 3.5175e—2  1.3245¢—2  6.0008e—3  3.1039e—3  1.579le—3  7.9649¢—4
1.4090 1.1422 0.9510 0.9749 0.9874

1074 43708¢—2  1.6705e—2  7.3807e—3  3.7407¢—3  1.8967e—3  9.5512e—4
1.3875 1.1784 0.9804 0.9798 0.9897

1076 43816e—2  1.674%e—2  7.4017e—3  3.7489%¢—3  1.9008e—3  9.5717e—4
1.3873 1.1781 0.9813 0.9799 0.9898

1078 43817e—2  1.6750e—2  7.4019e—3  3.7490e—3  1.9008e—3  9.5719e—4
1.3873 1.1781 0.9813 0.9799 0.9898

10-10 43817e—2  1.6750e—2  7.4019e—3  3.7490e—3  1.9008¢—3  9.5719¢—4
1.3873 1.1781 0.9813 0.9799 0.9898

10-12 43817e—2  1.6750e—2  7.4019e—3  3.7490e—3 1.9008¢—3  9.5719e—4
1.3873 1.1781 0.9813 0.9799 0.9898

FN.M 43817e—2  1.6750e—2  7.4019e—3  3.7490e—3  1.9008e—3  9.5719e—4

pN-M 1.3873 1.1781 0.9813 0.9799 0.9898

4, the maximum pointwise errors and the corresponding rates of convergence are presented
for = 1073 and 1072, respectively, with different values of ¢ taking the discretization
parameters N and M varying with the ratios of 2 in earlier 4 in later. Now the results in
these tables clearly show that the maximum pointwise error is uniform with second order of
convergence, confirming the spatial order of convergence.

Example 5.2 Our second test example is the following time-delay problem:
ey (x,t) + (1 +x(1 —x)+ tz)ux(x, t) — (1 4+ 5xt)u(x, 1)
—us(x, 1) = —u(x,t — 1) +x(1 —x)(" — 1), (x,1) €(0,1) x (0,2],
ulx,t) =0, (x,1) e [0,1] x [—7,0],
u,1) =0, u(l, 1) =0, t € (0,2].

(5.1)

The exact solution of this problem also is not known. So, the maximum pointwise error
and rate of convergence are computed as for the previous example. Then uniform error
and uniform rate of convergence are calculated in a similar way. The maximum pointwise
error and the rate of convergence are presented in Tables 5 and 6 for & = 1073 and 1072,
respectively. In these tables, N and M are increased in the same ratio. In Tables 7 and 8, the
maximum pointwise error and the rate of convergence are presented for i = 1073 and 1072,
respectively, with different values of ¢ with the discretization parameters N and M varying
with the ratios of 2 and 4 respectively. From these tables we can confirm the spatial order of
convergence as proved theoretically.

In Figure 1, log—log plots for maximum pointwise error vs discretization parameter are
given for Examples 5.1 and 5.2, respectively, for N = 32, 64, 128, 256, 512 and M =
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Table 3 Maximum errors FQAM and FV-M | and rates of convergence péY,‘LM and pN*M using scheme (3.1)

for Example 1

w=1073 N=32 N =64 N =128 N =256 N =512 N = 1024

€ M =3 M =32 M =128 M =512 M =2048 M =4096

109 =1 7.3340e—4  3.638le—3  1.1619e—3  3.1204e—4  7.9516e—5  1.9976e—5
1.0126 1.6467 1.8967 1.9724 1.9930

1072 3.5163e—2  6.0222¢—3  1.586le—3  4.0183e —4  1.0079¢—4  2.0239%e—5
2.5457 1.9247 1.9809 1.9952 1.9988

1074 43706e—2  7.3807e—3  1.8967e—3  4.7927¢ —4  1.2015e—4  2.5220e—5
2.5660 1.9602 1.9846 1.9961 1.9988

1076 4347le—2  7.259le—3  1.8455¢—3  4.5342¢ —4  1.0720e—4  2.632le—5
2.5821 1.9757 2.0251 2.0806 1.9987

1078 43429e—2  7.2480e—3  1.8450e—3  4.5277e —4  1.0686e—4  2.6425¢—5
2.5830 1.9739 2.0268 2.0831 1.9987

10-10 4.4342¢—2  7.2479e—3  1.8450e—3  4.5277¢ —4  1.0685¢—4  2.6425¢—5
2.5830 1.9739 2.0268 2.0831 1.9987

10-12 43429¢e—2  7.2479e—3  1.8450e—3  4.5277¢ —4  1.0685e—4  2.6425e—5
2.5830 1.9739 2.0268 2.0831 1.9987

FN.M 43706e—2  7.3807e—3  1.8967e—3  4.7927e—4 1.2015e—4  2.5220e—5

pN-M 2.5660 1.9602 1.9846 1.9961 1.9988

Table 4 Maximum errors FQ’ ,;M and FN-M | and rates of convergence pé\f ;LM and pN-M using scheme (3.1)

for Example 1

w=10"2 N=32 N =64 N =128 N =256 N =512 N =1024

e M =38 M =32 M =128 M =512 M = 2048 M = 4096

100 =1 7.3402e—2  3.638le—3  1.1619e—3  3.1203e—4 7.9515e—5  1.9975¢—5
1.0126 1.6467 1.8967 1.9724 1.9930

1072 3.5174e—2  6.0235e—3  1.5865e—3  4.0191e —4  1.008le—4  2.5224e—5
2.5459 1.9247 1.9809 1.9951 1.9987

1074 43708¢—2  7.3811e—3  1.8968e—3  4.7929¢ —4  1.2014e—4  3.0057e—5
2.5660 1.9603 1.9846 1.9961 1.9990

1076 43816e—2  7.4018e—3  1.9008e—3  4.8029¢ —4  1.203%—4  3.0119e—5
2.5655 1.9612 1.9846 1.9961 1.9990

10-8 43817e—2  7.4019e—3  1.9009e—3  4.8030e —4  1.203%—4  3.0120e—5
2.5655 1.9612 1.9846 1.9961 1.9990

10-10 43817e—2  7.4019e—3  1.9009e—3  4.8030e —4  1.203%—4  3.0120e—5
2.5655 1.9612 1.9846 1.9961 1.9990

10712 43817e—2  7.4019e—3  1.9009e—3  4.8030e —4  1.203%—4  3.0120e—5
2.5655 1.9612 1.9846 1.9961 1.9990

FN.M 43817e—2  7.4019e—3 1.9009e—3  4.8030e—4 1.2039e—4  3.0120e—5

pN-M 2.5655 1.9612 1.9846 1.9961 1.9990
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Table 5 Maximum errors FQAM and FV-M | and rates of convergence péY,‘LM and pN*M using scheme (3.1)
for Example 2

w=1073 N=32 N =64 N =128 N =256 N =512 N = 1024

€ M =3 M =16 M =32 M =64 M =128 M =256

109 =1 7.6576e—4  3.619le—4  1.7499e—4  8.5923e—5 42625¢—5  2.1245e—5
1.0812 1.0483 1.0262 1.0113 1.0045

1072 8.8707e—3  4.1142e—3  2.0098e—3  9.9812e —4  4.9790c—4  2.4871le—4
1.1084 1.0335 1.0098 1.0033 1.0013

1074 1.116le—2  5.1087e—3  24749e—3  1.2214e —3  6.0706e—4  3.0264e—4
1.1274 1.0455 1.0188 1.0086 1.0042

1076 1.1008e—2  5.0450e—3  2.4437e—3  12073¢ =3  6.0036e—4  2.994le—4
1.1257 1.0457 1.0172 1.0079 1.0036

1078 1.094le—2  5.0426e—3  2.4442¢—3  1207le =3  6.0016e—4  2.9929¢—4
1.1175 1.0447 1.0178 1.0080 1.0037

10-10 1.0940e—2  5.0428¢—3  2.4442¢—3  1207le =3  6.00l16e—4  2.9929¢—4
1.1173 1.0448 1.0178 1.0080 1.0037

10-12 1.0940e—2  5.0428e—3  2.4442¢—3  1.2071e =3  6.0016e—4  2.9929e—4
1.1173 1.0448 1.0178 1.0080 1.0037

FN.M 1.116le—2  5.1087e—3  24749e—3  1.2214e—3 6.0706e—4  3.0264e—4

pN-M 1.1274 1.0455 1.0188 1.0086 1.0042

Table 6 Maximum errors FEIY/,_M and FV-M  and rates of convergence pé\_’l’lM and pNV-M using scheme (3.1)

for Example 2

u=10"0 N=32 N =64 N =128 N =256 N =512 N = 1024

e M =38 M =16 M =32 M =64 M =128 M =256

100 =1 7.6573e—4 3.6189%e—4 1.7498e—4 8.5918e—5 4.2622e—5 2.1244e—-5
1.0812 1.0483 1.0261 1.0113 1.0045

1072 8.8197¢—3 4.0953e—3 1.9997e—3 9.5642e—3 4.9551e—4 2.4752e—4
1.1067 1.0341 1.0096 1.0031 1.0013

1074 1.1053e—2 5.0755e—3 2.4578e—3 1.2132e—3 6.0309¢e—4 3.0069¢—4
1.1228 1.0461 1.0184 1.0084 1.0040

1070 1.1046e—2 5.0765e—3 2.4625e—3 1.2161e—3 6.0456e—4 3.0141e—4
1.1216 1.0437 1.0178 1.0083 1.0041

10-8 1.1100e—2 5.0838e—3 2.4627e—3 1.2161e—3 6.0457e—4 3.0141e—4
1.1265 1.0456 1.0179 1.0082 1.0041

10-10 1.1093e—2 5.0782e—-3 2.4639e—3 1.2162e-3 6.0457e—4 3.0141e—4
1.1272 1.0433 1.0185 1.0084 1.0041

10712 1.1092e—2 5.0775e—3 2.4640e—3 1.2162e—3 6.0457e—4 3.0142e—4
1.1272 1.0433 1.0185 1.0084 1.0041

FN.-M 1.1100e—2 5.0838e—3 2.4640e—3 1.2162e—3 6.0457e—4 3.0142e—4

oM 1.1265 1.0449 1.0185 1.0084 1.0041
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Table 7 Maximum errors FQ’AM and FV-M | and rates of convergence péY,‘LM and pN*M using scheme (3.1)
for Example 2

w=1073 N=32 N =64 N =128 N =256 N =512 N = 1024

€ M =3 M =32 M =128 M =512 M =2048 M =4096

109 =1 7.6577e—4  1.8173e—4  44719e—5  1.1158¢ —5  2.7887e—6  6.9712e—7
2.0751 2.0228 2.0028 2.0005 2.0001

1072 8.8707¢—3  2.0119e—3  4.9889e—4  1.2455¢ —4  3.1129¢e—5  7.7817e—6
2.1404 2.0118 2.0019 2.0004 2.0001

1074 1.116le—2  24750e—3  6.0733e—4  1.5120e —4  3.7759¢—5  9.4372e—6
2.1729 2.0269 2.0060 2.0015 2.0003

1076 1.1008e—2  2.4058¢—3  6.4802e—4  27303¢ —4  8.7917e—5  2.4212e—5
2.1941 1.8924 1.2469 1.6348 1.8604

1078 1.0942e—2  2.4109e—3  8.9349e—4  3.300le —4  9.5237e—5  2.3572e—5
2.1821 1.4320 1.4369 1.7929 2.0144

10-10 1.094le—2  2.4109e—3  8.7733e—4  3.2286c —4  9.2375¢—5  2.1949¢—5
2.1820 1.4585 1.4422 1.8054 2.0733

10-12 1.0941e—2  2.4109e—3  8.7716e—4  3.2278¢ —4  9.2344e—5  2.1932e—5
2.1820 1.4586 1.4422 1.8055 2.0739

FN.M 1.116le—2  24750e—3  8.9349e—4  3.300le—4  9.5237e—5  2.3572e—5

pN-M 2.1729 1.4699 1.4369 1.7929 2.0144

Table 8 Maximum errors FEIY/,_M and FV-M  and rates of convergence pé\_’l’lM and pNV-M using scheme (3.1)

for Example 2

u=10"0  N=32 N =64 N =128 N =256 N =512 N = 1024

€ M =3 M =32 M =128 M =512 M =2048 M =4096

100 =1 7.6573e—4  1.8172e—4  44716e—5  1.1157e =5  2.7884e—6  6.9707e—7
2.0751 2.0228 2.0028 2.0005 2.0001

1072 8.8197e—3  2.0026e—3  4.9636e—4  1.2393e —4  3.0976e—5  7.7434e—6
2.1388 2.0124 2.0018 2.0004 2.0001

1074 1.1053e—2  24577e—3  6.0306e—4  1.5012¢ —4  3.7490e—5  9.3702e—6
2.1691 2.0269 2.0062 2.0015 2.0004

1070 1.1046e—2  2.4546e—3  6.0440e—4  1.5048¢ —4  3.758le—5  9.3928e—6
2.1700 2.0219 2.0059 2.0016 2.0004

1078 1.1100e—2  2.4588e—3  6.0443e—4  1.5046e —4  3.7582e—5  9.3932¢—6
2.1745 2.0243 2.0062 2.0013 2.0004

10-10 1.1093e—2  2.4555e—3  6.0458e—4  1.5049¢—4 3.7583e—5  9.3931e—6
2.1756 2.0220 2.0062 2.0016 2.0004

10712 1.1092e—2  2.455le—3  6.0458e—4  1.5049¢—4 3.7583¢—5  9.3931e—6
2.1757 2.0218 2.0062 2.0016 2.0004

FN.-M 1.1100e—2  2.4588e—3  6.0458e—4  1.5049¢—4 3.7583e—5  9.3931e—6

oN-M 2.1745 2.0239 2.0062 2.0016 2.0004
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(a) For Example 5.1 (b) For Example 5.2

Fig.1 Log-log plots for maximum error vs N

8, 32, 128, 512, 2048 withe =274, u=2"%and u =27*, ¢ =278, The slope of these
plots also confirm the second-order uniform convergence of the proposed numerical method.

For both the above examples, we observe that the main contribution to the global error
comes from the time discretization. So, to compare the accuracy of our proposed method
with the existing method (Govindarao et al. 2019), we consider a third test example in which
the main contribution to the global error comes from the spatial discretization.

Example 5.3 Our third test example is the following time-delay problem:

gy (X, 1) + puyx(x,t) —u(x,t) —ur(x,t) = —ulx,t — 1)+ f(x,1), (x,t) € (0,1)x(0,2],
u(x,t) =gp(x, 1), (x,1) € [0,1] x [-7,0], 5.2)
u(0,1) = @i (1), u(l, 1) = @r(t), 1€(0,2],

where f, ¢p, @1, and @, are such that

o — l—m)/2e

1 — e—m/2¢ e—m/e _ 1

o~ (utm)x/2e el (utm)/2e le(u m)/(l—x)/Ze]
—n—1
m

A S {_eﬂ—w s
)

with m = /u? + 4e.

Since the exact solution of this problem is known, the maximum pointwise error is calcu-
lated by

. N.MyJj
&1 U );

= max |( —u(x;, tj)].
1]

We then calculate uniform error and uniform rate of convergence by

N.M N.M N.M FNM
F™7 = nsl’abx F, " and p™" =log, PN
Corresponding to i = 10~2 and & = 10~8 we consider e € S, = {107%, 107>, ..., 10715},

Table 9 shows the comparison of the proposed method and the method of Govindarao et al.
(2019) in terms of uniform errors and uniform rates of convergence for Example 5.3. These
results verify that the proposed method gives more accurate results with high rate of conver-
gence than the method given in Govindarao et al. (2019).

@ Springer f bMA



Page 23 0f 25 209

A robust numerical method for a two-parameter singularly. . .

T00L'T Tl 6729'1 TEILT 8T8l
£0—9L956' £0—96L5€9 20—92920'C 70—990vT°9 10—9€9%0°C 10—2061L°S poyiow pasodoid
86360 66L6°0 ¥186°0 LT €L8€'T g-01 =1
T0—9TS6T'S T0—9T65€°6 10—3LL19'T 10—9LSL9°T 10—978LTF 10—3LS0T'9 (6107) T2 19 OBIRPUIAOD PO
6569'1 00L9'T L1291 611L'T 62811
£0—99Z56'1 £0—909Z€9 20—20£10'C 0—99Y61°9 10—92620°C 10—902L9'S poyiow pasodoid
61280 668L°0 TLTLO T6L9°0 9160 or=1
20—9TTYT’S 70—98997°6 10—9€209'[ 10—95259°C 10—21LVTY 10—9€5£0°9 (6107) Te 30 OVIEPUIAOD POYISIN
9ST=W ST =W v9 =W w=w 91 =W 8= POYIPIN EE
¥201 = N TIS=N 95T =N 8T =N 9= N =N
€

o[dwexg 10§ <\, 0 OOUITIOAUOD JO ST WLIOJIUN PUE 4, ¢ ] SIOLID WLIOJIUN JO SULIA) UI (6](T) “[E 30 OBIEPUIAOL UT poYjat oy} yim poypaw pasodoxd oy jo uostiedwo) 6 3|qeL

JBINAC

pringer

&Hs



209 Page 24 of 25 Sumit et al.

6 Conclusion

We proposed a finite difference numerical method for singularly perturbed delay partial
differential Eq. (1.1) with two perturbation parameters ¢ and p. On a rectangular mesh
consisting of a layer adapted piecewise uniform Shishkin mesh in spatial direction and a
uniform mesh in temporal direction, we discretized the problem with the difference operator
comprising of an implicit Euler method for time and a hybrid scheme for space consisting
of central difference, upwind and midpoint operators. It is shown through the truncation
error and barrier function approach that the proposed numerical method is convergent with
first order in time and almost second-order in space independent of both the perturbation
parameters. Numerical results confirm the theoretical convergence results and demonstrate
the efficiency of the proposed method
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