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Abstract
In this article, we consider a class of singularly perturbed two-parameter parabolic partial
differential equations with time delay on a rectangular domain. The solution bounds are
derived by asymptotic analysis of the problem. We construct a numerical method using
a hybrid monotone finite difference scheme on a rectangular mesh which is a product of
uniformmesh in time and a layer-adapted Shishkin mesh in space. The error analysis is given
for the proposed numerical method using truncation error and barrier function approach, and
it is shown to be almost second- and first-order convergent in space and time variables,
respectively, independent of both the perturbation parameters. At the end, we present some
numerical results in support of the theory.
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1 Introduction

Singularly perturbed delay differential equations often arise in modeling of various physical,
biological and chemical systems such as in population dynamics, variational problems in con-
trol theory, epidemiology, circadian rhythms, respiratory system, chemostat models, tumor
growth and neural networks. The delay terms in these models enable us to include some past
behavior to get more practical models for the phenomena. For example, in population ecol-
ogy, time delay represents the hatching period or duration of gestation; in genetic repression
modeling, time delays play an important role in processes of transcription and translation as
well as spatial diffusion of reactants and in control systems, delay terms account for the time
delay in actuation and in information transmission and processing. Many other examples can
be found in Wu (2012).

In this paper, we consider a singularly perturbed delay initial-boundary value problem
in one space dimension with two small parameters. Defining Ḡ = G ∪ ∂G, where G =
(0, 1) × (0, T ] and ∂G = �b ∪ �r ∪ �l with �b = [0, 1] × [−τ, 0], �l = {0} × (0, T ], and
�r = {1} × (0, T ], we consider

⎧
⎪⎪⎨

⎪⎪⎩

Lu ≡ Lε,μu − ut = −cu(x, t − τ) + f (x, t) in G,

u
∣
∣
�b

= ϕb(x, t),
u
∣
∣
�l

= ϕl(t),
u
∣
∣
�r

= ϕr (t),

(1.1)

where Lε,μu := εuxx +μaux −bu with parameters ε andμ such that 0 < ε ≤ 1, 0 ≤ μ ≤ 1.
The coefficients are such that

0 < α ≤ a(x, t), 0 < β ≤ b(x, t), 0 < γ ≤ c(x, t), (x, t) ∈ Ḡ.

Further, sufficient regularity and compatibility conditions are assumed on the data of problem
(1.1) (cf. Ladyzhenskaya et al 1968). For the sake of simplicity we take T = kτ for some
definite natural number k. Such problems demand uniformly convergent numerical methods,
that is, methods that converge independently of singular perturbation parameters. Our main
interest is in developing such a numerical method for problem (1.1).

The nature of singularly perturbed two-parameter problems changes according to the
values of perturbation parameters ε and μ; from reaction–diffusion equation for μ = 0
to convection–diffusion equation for μ = 1. O’Malley studied such problems in ordinary
differential equations asymptotically in O’malley (1967), O’malley (1969) and O’Malley
(1967) and identified that the nature of these problems is quite affected by the choice of ratio
of μ2 to ε. Later some works have been done in the direction of development of uniformly
convergent numerical methods, see Gracia et al. (2006), Shishkin and Titov (1976), Stynes
and Tobiska (1998), Roos and Uzelac (2003), Patidar (2008), Brdar and Zarin (2016) and
O’Riordan and Pickett (2019) for singularly perturbed two-parameter problems in ordinary
differential equations andO’Riordan et al. (2006), Kadalbajoo andYadaw (2012),Munyakazi
(2015), Chandru et al. (2018) and Gupta et al. (2019) for singularly perturbed two-parameter
problems in partial differential equations.

Singularly perturbed delay differential equations have attractedmany researchers in recent
years due to their widespread applications. Some uniformly convergent numerical methods
for singularly perturbed delay differential equations have been developed in Erdogan and
Cen (2018), Cen (2010), Kumar and Kumar (2014), Singh et al. (2018), Ansari et al. (2007),
Bashier and Patidar (2011), Kaushik et al. (2010) and Kumar and Kumar (2017). Recently,
in Govindarao et al. (2019), a first-order uniformly convergent method is given for problem
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(1.1) using an upwind finite difference scheme on Shishkin type meshes. High-order numer-
ical methods are very interesting as they provide good numerical approximations with low
computational cost (for example, see Kumar and Kumar (2014) for time delay singularly
perturbed reaction–diffusion problems, Dehghan (2004) for advection–diffusion equations,
and Dehghan (2006) for two-dimensional time-dependent Schrodinger equation). However,
we do not know of any high-order numerical method for problem (1.1). Thus, the aim of
the paper is threefold: first, to derive a priori bounds on the solution derivatives of problem
(1.1) and further provide a decomposition of the solution into smooth and layer components;
second, to construct a hybrid finite difference scheme for the solution of problem (1.1); and
third, to provide a uniform convergence analysis of the proposed hybrid finite difference
scheme.

The outline of the paper is as follows. In Sect. 2, we derive a priori bounds on the solution
derivatives of problem (1.1) and further provide a decomposition of the solution into smooth
and layer components. In Sect. 3, we describe the construction of a layer adapted Shishkin
mesh and the hybrid finite difference discretization of problem (1.1). Section 4 is concerned
with uniform convergence analysis of the proposedmethod. In Sect. 5 some numerical results
are presented in support of our theory. Finally, in Sect. 6, we provide conclusion of the paper.

Notation: We shall use C as the generic positive constant throughout the paper, which
is independent of perturbation parameters ε and μ, and discretization parameters M and
N . The maximum norm is denoted by ||.||D, where D is any bounded and closed subset
of [0, 1] × [0, T ]. When the domain has no particular significance, we simply use ||.||.
Similarly, we use ||.||DN ,M to denote the discrete maximum norm. We also define η = min

G

b
a

and N0 = {0, 1, 2, . . .}.

2 Solution bounds for continuous problem

We start this section with a minimum principle for the differential operator L defined by
Lu = Lε,μu−ut . The proof of this minimum principle can be done in a standard way. Using
the minimum principle for the operator L , we shall derive derivative bounds for the solution
which are required for convergence analysis of the proposed method.

Lemma 1 (Minimum principle) If ψ
∣
∣
∂G ≥ 0 and

(
Lε,μ − ∂

∂t

)
ψ

∣
∣
G ≤ 0, then ψ

∣
∣
Ḡ ≥ 0.

Lemma 2 The solution u of problem (1.1) satisfies

||u|| ≤ C . (2.1)

Proof Consider the function r defined by r(x, t) = u(x, t) − ϕb(x, 0), 0 ≤ t ≤ T , and
r(x, t) = u(x, t) − ϕb(x, t), −τ ≤ t ≤ 0, which satisfies Lε,μr − rt = s in G, where

s(x, t) = −cu(x, t − τ) + f −
(

Lε,μ − ∂

∂t

)

ϕb(x, 0)

= f − ε(ϕb)xx (x, 0) − μa(ϕb)x (x, 0) + bϕb(x, 0) − cu(x, t − τ)

with r
∣
∣
�b

= 0, r
∣
∣
�l

= ϕl(t) − ϕb(0, 0), r
∣
∣
�r

= ϕr (t) − ϕb(1, 0). Choosing C sufficiently
large, set a barrier function q(x, t) = Ct, t ∈ [0, T ], and q(x, t) = 0, t ∈ [−τ, 0] satisfying
the equation

(

Lε,μ − ∂

∂t

)

q = −C(1 + bt)
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with q
∣
∣
�b

= 0 and q
∣
∣
�l

= q
∣
∣
�r

= Ct , so that we have
∣
∣
∣
∣

(

Lε,μ − ∂

∂t

)

r

∣
∣
∣
∣ ≥

(

Lε,μ − ∂

∂t

)

q on G and |r(x, t)| ≤ q(x, t) on ∂G.

Now using Lemma 1, we have |r(x, t)| ≤ q(x, t), (x, t) ∈ Ḡ, and hence

|u(x, t) − ϕb(x, 0)| ≤ Ct, (x, t) ∈ Ḡ.

As ϕb(x, 0) is a smooth function and t ∈ (0, T ] on Ḡ. Hence, we have the desired result. ��
Lemma 3 For i, j ∈ N0 satisfying 0 ≤ i + 2 j ≤ 4, bounds of the derivatives of the solution
to problem (1.1) are given by

∥
∥
∥
∥

∂ i+ j u

∂xi∂t j

∥
∥
∥
∥ ≤

{
C 1

(
√

ε)i
, when αμ2 ≤ ηε,

C(
μ
ε
)i (

μ2

ε
) j , when αμ2 ≥ ηε.

Proof To prove the result, we consider two cases: αμ2 ≤ ηε and αμ2 ≥ ηε. First, consider
the case when αμ2 ≤ ηε. Consider the stretched variable x̂ = x/

√
ε corresponding to the

variable x to transform problem (1.1) to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

û x̂ x̂ + μ√
ε
âû x̂ − b̂û − ût = −ĉû(x̂, t − τ) + f̂ in Ĝ,

û
∣
∣
�̂b

= ϕ̂b(x̂, t),
û
∣
∣
�̂l

= ϕ̂l(t),
û
∣
∣
�̂r

= ϕ̂r (t),

where Ĝ = (0, 1/
√

ε)× (0, T ] and �̂ is boundary of Ĝ corresponding to �. Now we use the
method of steps and the result in Ladyzhenskaya et al. (1968, Theorem 10.1) to obtain, for
i, j ∈ N0 satisfying 0 ≤ i + 2 j ≤ 4, the following bounds:

∥
∥
∥
∥

∂ i+ j û

∂ x̂ i∂t j

∥
∥
∥
∥
Nλ,ξ

≤ C(1 + ||û||
Ĝ
),

where Nλ,ξ is the rectangle (ξ − λ, ξ + λ) × (0, T ]) ∩ Ĝ for any ξ ∈ (0, 1/
√

ε) and δ > 0.
Now we return back to the original variable to get the desired result. Next we consider the
case αμ2 ≥ ηε. In this case, we use stretched variable in time also. We consider x̃ = μx/ε
and t̃ = μ2t/ε and obtain the transformed problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũ x̃ x̃ + ãũ x̃ − ε
μ2 b̃ũ − ũ t̃ = −c̃ũ(x̃, t̃ − τ̃ ) + f̃ in G̃,

ũ
∣
∣
�̃b

= ϕ̃b(x̃, t̃),
ũ
∣
∣
�̃l

= ϕ̃l(t̃),
ũ
∣
∣
�̃r

= ϕ̃r (t̃),

where G̃ = (0, μ/ε)×(0, Tμ2/ε] and �̃ is the boundary of G̃ corresponding to�.Repeating
the previous argument we get the desired result. ��

For error analysis, we also need decomposition of u as

u = v + wL + wR, (2.2)

where v is the smooth component, andwL andwR are the left and right singular components,
respectively. We shall derive the bounds for all these components separately.
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Theorem 2.1 For i, j ∈ N0 satisfying 0 ≤ i + 2 j ≤ 4, derivative bounds for v are given by

∥
∥
∥
∥

∂ i+ jv

∂xi∂t j

∥
∥
∥
∥ ≤

{
C, when αμ2 ≤ ηε,

C(1 + ( ε
μ
)3−i (

μ2

ε
) j ), when αμ2 ≥ ηε.

Proof To prove the result, we consider two cases: αμ2 ≤ ηε and αμ2 ≥ ηε. First, when
αμ2 ≤ ηε, we use the domain extension approach. We smoothly extend the solution of
problem (1.1) to a sufficiently large neighborhood of the domain beyond �l and �r , denoted
by Ḡ�. On Ḡ the data of the extended problem are same as for problem (1.1). The smooth
component v is the restriction (on Ḡ) of the extended problem solution. Thus, using the
argument in Hemker et al. (2001), for i, j ∈ N0 satisfying 0 ≤ i + 2 j ≤ 4, we obtain

∥
∥
∥
∥

∂ i+ jv

∂xi∂t j

∥
∥
∥
∥ ≤ C .

For the case αμ2 ≥ ηε we use asymptotic expansion approach. We express the smooth
component as

v = v0 + εv1 + ε2v2 + ε3v3, (2.3)

where
⎧
⎪⎨

⎪⎩

μa ∂v0
∂x − bv0 − ∂v0

∂t = f − cv0(x, t − τ),

v0
∣
∣
�b

= ϕb,

v0
∣
∣
�r

to be chosen,
(2.4)

⎧
⎪⎨

⎪⎩

μa ∂v1
∂x − bv1 − ∂v1

∂t = − ∂2v0
∂x2

− cv1(x, t − τ),

v1
∣
∣
�b

= 0,
v1

∣
∣
�r

to be chosen,
(2.5)

⎧
⎪⎨

⎪⎩

μa ∂v2
∂x − bv2 − ∂v2

∂t = − ∂2v1
∂x2

− cv2(x, t − τ),

v2
∣
∣
�b

= 0,
v2

∣
∣
�r

= 0,
(2.6)

{

(Lε,μ − ∂
∂t )v3 = − ∂2v2

∂x2
− cv3(x, t − τ),

v3
∣
∣
∂G = 0.

(2.7)

The following result can be established through contradictory argument:

If μa
∂ y

∂x
− by − ∂ y

∂t

∣
∣
∣
∣
D

≤ 0 and y

∣
∣
∣
∣
�b∪�r

≥ 0 then y

∣
∣
∣
∣
D̄

≥ 0, (2.8)

where D = [0, 1) × [0, T ].
Further, v0 is expressed as

v0 = σ0 + μσ1 + μ2σ2 + μ3σ3, (2.9)

where
{

−bσ0 − ∂σ0
∂t = f (x, t) − cσ0(x, t − τ),

σ0
∣
∣
�b

= ϕb,
(2.10)
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{
−bσ1 − ∂σ1

∂t = −a ∂σ0
∂x − cσ1(x, t − τ),

σ1
∣
∣
�b

= 0,
(2.11)

{
−bσ2 − ∂σ2

∂t = −a ∂σ1
∂x − cσ2(x, t − τ),

σ2
∣
∣
�b

= 0,
(2.12)

⎧
⎪⎨

⎪⎩

μa ∂σ3
∂x − bσ3 − ∂σ3

∂t = −a ∂σ2
∂x − cσ3(x, t − τ),

σ3
∣
∣
�b

= 0,
σ3

∣
∣
�r

= 0.
(2.13)

It can be easily observed that the derivatives of σ0, σ1 and σ2 involved in the expression
of v0 are bounded independently of μ. Thus, for i, j ∈ N0 satisfying 0 ≤ i + j ≤ 3, and
k = 0, 1, 2, we have

∥
∥
∥
∥
∂ i+ jσk

∂xi∂t j

∥
∥
∥
∥ ≤ C . (2.14)

We have v0
∣
∣
�r

= σ0 + μσ1 + μ2σ2, since σ3
∣
∣
�r∪�b

= 0. Now using (2.8) and method of
steps, it can be easily deduced that for i, j ∈ N0 satisfying 0 ≤ i + j ≤ 3,

∥
∥
∥
∥
∂ i+ jσ3

∂xi∂t j

∥
∥
∥
∥ ≤ C

μi
. (2.15)

Thus, combining all the bounds on σ0, σ1, σ2 and σ3 for i, j ∈ N0 satisfying 0 ≤ i + j ≤ 3,

we get

∥
∥
∥
∥

∂ i+ j v0
∂xi ∂t j

∥
∥
∥
∥ ≤ C . Furthermore, differentiating Eq. (2.4) and using method of steps, for

i, j ∈ N0 satisfying 0 ≤ i + j ≤ 7, we get
∥
∥
∥
∥
∂ i+ jv0

∂xi∂t j

∥
∥
∥
∥ ≤ C

(

1 + 1

μi−3

)

. (2.16)

Now we express v1 as

v1 = ν0 + μν1 + μ2ν2, (2.17)

where
{

−bν0 − ∂ν0
∂t = − ∂2v0

∂x2
− cν0(x, t − τ),

ν0
∣
∣
�b

= 0,
(2.18)

{
−bν1 − ∂ν1

∂t = −a ∂ν0
∂x − cν1(x, t − τ),

ν1
∣
∣
�b

= 0,
(2.19)

⎧
⎪⎨

⎪⎩

μa ∂ν2
∂x − bν2 − ∂ν2

∂t = −a ∂ν1
∂x − cν2(x, t − τ),

ν1
∣
∣
�b

= 0,
νr

∣
∣
�r

= 0.
(2.20)

We have v1
∣
∣
�r

= ν0 +μν1. The problems for ν0 and ν1 are independent of small parameters.
Thus, for i, j ∈ N0 satisfying 0 ≤ i + j ≤ 2, we get

∥
∥
∥
∥

∂ i+ jν0

∂xi∂t j

∥
∥
∥
∥ ≤ C

(

1 + 1

μi−1

)

and

∥
∥
∥
∥

∂ i+ jν1

∂xi∂t j

∥
∥
∥
∥ ≤ C

μi
. (2.21)
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The bounds for ν2 are obtained using (2.8) and method of steps. For i, j ∈ N0 satisfying
0 ≤ i + j ≤ 2, we get

∥
∥
∥
∥

∂ i+ jν2

∂xi∂t j

∥
∥
∥
∥ ≤ C

μi+1 . (2.22)

Thus,

∥
∥
∥
∥

∂ i+ j v1
∂xi ∂t j

∥
∥
∥
∥ ≤ C

(

1 + 1
μi−1

)

for i, j ∈ N0 satisfying 0 ≤ i + j ≤ 2. Further, higher

derivatives are obtained by differentiating Eq. (2.5) and method of steps. For i, j ∈ N0

satisfying 0 ≤ i + j ≤ 5, we get
∥
∥
∥
∥
∂ i+ jv1

∂xi∂t j

∥
∥
∥
∥ ≤ C

(

1 + 1

μi−1

)

. (2.23)

Now to obtain bounds on v2 we use Eq. (2.6), result (2.8), the bounds on the derivatives of
v1, and previous arguments. For i, j ∈ N0 satisfying 0 ≤ i + j ≤ 4, we get

∥
∥
∥
∥
∂ i+ jv2

∂xi∂t j

∥
∥
∥
∥ ≤ C

(

1 + 1

μi+1

)

. (2.24)

Clearly, (2.7) is similar to problem (1.1). Therefore, using arguments in Lemma 3 and bounds
on v2, we get

∥
∥
∥
∥
∂ i+ jv3

∂xi∂t j

∥
∥
∥
∥ ≤ C

(
μ

ε

)i(
μ2

ε

) j 1

μ3 . (2.25)

Substituting all these estimates from (2.16), (2.23), (2.24) and (2.25) into Eq. (2.3) and using
αμ2 ≥ ηε, we get the required bounds for v. ��

When αμ2 ≥ ηε, note that

||vt t || ≤ C(1 + ε3μ−3μ4ε−2) ≤ C . (2.26)

Next we obtain bounds on wL and wR that satisfy
⎧
⎪⎨

⎪⎩

(Lε,μ − ∂
∂t )wL = −cwL(x, t − τ) in G,

wL
∣
∣
�b∪�r

= 0,
wL

∣
∣
�l

= u − v − wR,

(2.27)

⎧
⎪⎨

⎪⎩

(Lε,μ − ∂
∂t )wR = −cwR(x, t − τ) in G,

wR
∣
∣
�b

= 0,
wR

∣
∣
�r

= u − v.

(2.28)

When αμ2 ≤ ηε, wR
∣
∣
�l

= 0, otherwise for αμ2 ≥ ηε, wR
∣
∣
�l

is defined in (2.29)–(2.33).

For the case αμ2 ≤ ηε, wL and wR satisfy the bounds in Lemma 3. If αμ2 ≥ ηε, we
consider the decomposition

wR = ω0 + εω1 + ε2ω2 + ε3ω3, (2.29)

where v = v0 + εv1, (x, t) ∈ �r is given in (2.3) and
⎧
⎪⎨

⎪⎩

μa ∂ω0
∂x − bω0 − ∂ω0

∂t = −cω0(x, t − τ),

ω0
∣
∣
�b

= 0,
ω0

∣
∣
�r

= u − v,

(2.30)
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⎧
⎪⎨

⎪⎩

μa ∂ω1
∂x − bω1 − ∂ω1

∂t = − ∂2ω0
∂x2

− cω1(x, t − τ),

ω1
∣
∣
�b

= 0,
ω1

∣
∣
�r

= 0,
(2.31)

⎧
⎪⎨

⎪⎩

μ∂ω2
∂x − bω2 − ∂ω2

∂t = − ∂2ω1
∂x2

− cω2(x, t − τ),

ω2
∣
∣
�b

= 0,
ω2

∣
∣
�r

= 0,
(2.32)

⎧
⎪⎨

⎪⎩

(Lε,μ − ∂
∂t )ω3 = − ∂2ω2

∂x2
− cω3(x, t − τ),

ω3
∣
∣
�b

= 0,
ω3

∣
∣
�r

= 0.
(2.33)

Lemma 4 The singular components wL and wR satisfy

|wL(x, t)| ≤ Ce−θL x , |wR(x, t)| ≤ Ce−θR(1−x),

where

θL =
{ √

ηα√
ε

, αμ2 ≤ ηε,

αμ
ε

, αμ2 ≥ ηε,
θR =

⎧
⎨

⎩

√
ηα

2
√

ε
, αμ2 ≤ ηε,

η
2μ, αμ2 ≥ ηε.

Proof To prove the required bound on wL we consider the barrier function π± =
Ce−θL x ± wL(x, t), and use the minimum principle and the method of steps. The proof
is similar for for wR, when αμ2 ≤ ηε. When αμ2 ≥ ηε, using the arguments similar
to O’Riordan et al. (2006) and decomposition (2.29) in the previous lemma, we obtain

|wR(0, t)| ≤ e−2Bt e− η
μ , where B < A = min{0, a( 1a )t }. Now consider the barrier function

π± = Ce−2At e− η
2μ (1−x) ± wR(x, t), use the minimum principle and the method of steps to

obtain the required bound on wR . ��
Lemma 5 For the case αμ2 ≥ ηε, the solution of (2.27) satisfies

∥
∥
∥
∥
∂ iwL

∂xi

∥
∥
∥
∥ ≤ C

(
μ

ε

)i

, 0 ≤ i ≤ 4,

∥
∥
∥
∥
∂2wL

∂t2

∥
∥
∥
∥ ≤ C

(

1 + μ2

ε

)

.

Proof The proof follows using the method of steps and the arguments in O’Riordan et al.
(2006, Lemma 3.9). ��
Lemma 6 For the case αμ2 ≥ ηε, the solution of (2.28) satisfies

∥
∥
∥
∥
∂ iwR

∂xi

∥
∥
∥
∥ ≤ C

μi
, 0 ≤ i ≤ 3,

∥
∥
∥
∥
∂4wR

∂x4

∥
∥
∥
∥ ≤ C(μ−4 + μ−2ε−1),

∥
∥
∥
∥
∂2wR

∂t2

∥
∥
∥
∥ ≤ C .

Proof We consider the decomposition (2.29) and obtain bounds separately on ω0, ω1, and
ω2 using (2.8) and method of steps. We obtain
∥
∥
∥
∥

∂ i+ jω0

∂xi∂t j

∥
∥
∥
∥ ≤ C

μi
, 0 ≤ i + j ≤ 6,

∥
∥
∥
∥

∂ i+ jω1

∂xi∂t j

∥
∥
∥
∥ ≤ C

μi+2 , 0 ≤ i + j ≤ 5,

∥
∥
∥
∥

∂ i+ jω2

∂xi∂t j

∥
∥
∥
∥ ≤ C

μi+4 , 0 ≤ i + j ≤ 4.

Using Lemma 1 and the bounds on ω2, we get

‖ω3‖ ≤ C

μ6 .
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Now we use Lemma 3 to obtain
∥
∥
∥
∥
∂ i+ jω3

∂xi∂t j

∥
∥
∥
∥ ≤ Cμ−6

(
μ

ε

)i(
μ2

ε

) j

.

The required bounds on wR can now be achieved by substituting these bounds in (2.29) and
noting that αμ2 ≥ ηε. ��

3 Numerical discretization

3.1 Mesh generation

We shall discretize problem (1.1) on a tensor product mesh ḠN ,M = ḠN × ḠM , where
ḠN is a piecewise uniform Shishkin mesh in space and ḠM is a uniform mesh in time. The
uniform mesh in time is formed by taking m sub-intervals of equal length �t in [0, T ] such
that t j = j�t, j = 0, 1, . . . ,m. Further, τ = M�t for some positive integer M such that
m = kM . To define the mesh in space we consider two parameters ρ1 and ρ2 as

ρ1 =
⎧
⎨

⎩

min{ 14 , 4
√

ε√
ηα

ln N }, αμ2 ≤ ηε,

min{ 14 , 4ε
μα

ln N }, αμ2 ≥ ηε,
ρ2 =

⎧
⎨

⎩

min{ 14 , 4
√

ε√
ηα

ln N }, αμ2 ≤ ηε,

min{ 14 , 4μ
η
ln N }, αμ2 ≥ ηε,

and partition the interval [0, 1] into three subintervals [0, ρ1], [ρ1, 1 − ρ2] and [1 − ρ2, 1].
Nowwe construct the spatial mesh ḠN by placing N/4+1, N/2+1 and N/4+1mesh points
in these three subintervals, respectively. Moreover, defining ĥ1 = ρ1

(N/4) , ĥ2 = 1−ρ1−ρ2
(N/2) , and

ĥ3 = ρ2
(N/4) , the mesh points in space are given by ḠN = {xi , i = 0, 1, . . . , N }, where

xi =
⎧
⎨

⎩

i ĥ1, 0 ≤ i ≤ N/4,
ρ1 + (i − N/4)ĥ2, N/4 < i ≤ 3N/4,
(1 − ρ2) + (i − 3N/4)ĥ3, 3N/4 < i ≤ N .

We also define hi = xi − xi−1, i = 1, . . . , N and �i = hi+hi+1
2 , i = 1, . . . , N − 1.

Now the discretized boundary is given as ∂GN ,M = �dis
b ∪ �dis

l ∪ �dis
r , where �dis

b =
ḠN × Ḡ−M , �dis

l = ḠN ∩ �l , �dis
r = ḠN ∩ �r and Ḡ−M denotes the uniform time

mesh in [−τ, 0] with M + 1 mesh points. Further, we divide the discretized domain into k
sub-domains as ḠM,N = ∪k

r=1Ḡ
M,N
r , where ḠM,N

r = ḠN × ḠM
r and ḠM

r denotes M + 1
uniform mesh points in [(r − 1)τ, rτ ].

3.2 Problem discretization

On the above generated rectangular mesh, we discretize problem (1.1) by a hybrid scheme
comprising an implicit Euler scheme in time direction and a combination of central difference,
upwind and mid-point operators in spatial direction. We define

⎧
⎪⎪⎨

⎪⎪⎩

[LN ,M
cen U ] ji = εδ2xU

j
i + μa j

i D
0
xU

j
i − b j

i U
j
i − D−

t U
j
i ,

[LN ,M
up U ] ji = εδ2xU

j
i + μa j

i D
+
x U

j
i − b j

i U
j
i − D−

t U
j
i ,

[LN ,M
mp U ] ji = εδ2xU

j
i + μa j

i D
+
x U

j
i − b j

i U
j
i − D−

t U
j
i ,
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where

D+
x U

j
i = U j

i+1 −U j
i

hi+1
, D0

xU
j
i = U j

i+1 −U j
i−1

2�i
, D−

t U
j
i = U j

i −U j−1
i

�t
,

δ2xU
j
i = 1

�i

(
U j
i+1 −U j

i

hi+1
− U j

i −U j
i−1

hi

)

,

and for any mesh function Z , Z j
i = Z j

i +Z j
i+1

2 . Further, define b̂ = b + 1/�t . Then the
discretized problem is of the form

{
[LN ,MU ] ji = F j

i , (xi , t j ) ∈ GN ,M ,

U j
i = u(xi , t j ), (xi , t j ) ∈ ∂GN ,M ,

(3.1)

where

[LN ,MU ] ji =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[LN ,M
cen U ] ji , if 1 ≤ i < N/4,

[LN ,M
cen U ] ji , if N/4 < i < 3N/4 and μĥ2‖a‖ < 2ε,

[LN ,M
mp U ] ji , if N/4 < i < 3N/4, μĥ2‖a‖ ≥ 2ε and ĥ2‖b̂‖ < 2μα,

[LN ,M
up U ] ji , if N/4 < i < 3N/4, μĥ2‖a‖ ≥ 2ε and ĥ2‖b̂‖ ≥ 2μα,

[LN ,M
cen U ] ji , if 3N/4 < i < N and μĥ3‖a‖ < 2ε,

[LN ,M
mp U ] ji , if 3N/4 < i < N and μĥ3‖a‖ ≥ 2ε,

(3.2)

at the left transition point ρ1, that is, if xi = ρ1,

[LN ,MU ] ji =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[LN ,M
cen U ] ji , if ρ1 = 0.25,

[LN ,M
mp U ] ji , if ρ1 < 0.25 and ĥ2‖b̂‖ < 2μα,

[LN ,M
up U ] ji , otherwise,

(3.3)

at the right transition point ρ2, that is, if xi = ρ2,

[LN ,MU ] ji =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[LN ,M
cen U ] ji , if 1 − ρ2 = 0.75, and μĥ3‖a‖ < 2ε,

[LN ,M
mp U ] ji , if 1 − ρ2 = 0.75, and μĥ3‖a‖ ≥ 2ε,

[LN ,M
mp U ] ji , if 1 − ρ2 > 0.75, and ĥ3‖b̂‖ < 2μα,

[LN ,M
up U ] ji , otherwise,

(3.4)

and

F j
i =

⎧
⎨

⎩

−c ji U
j−m
i + f j

i , if LN ,M = LN ,M
cen or LN ,M

up ,

−c ji U
j−m
i + f j

i , if LN ,M = LN ,M
mp .

(3.5)

We next establish discrete equivalent of the minimum principle. Let N0 be the smallest
positive integer such that

N0/ln N0 > 8max {‖a‖/α, (‖b‖ + M)/(ηα)} . (3.6)
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Lemma 7 The discretization (3.1) satisfies discrete minimum principle, that is, if for any
mesh function z with z ji

∣
∣
∂GN ,M ≥ 0 and [LN ,Mz] ji

∣
∣
GN ,M ≤ 0, then z ji

∣
∣
ḠN ,M ≥ 0.

Proof Considering (3.6), it can be easily verified that the entries of the tridiagonal system-
matrix formed by the proposed difference scheme (3.1) formulate a negative M-matrix.
Hence, the difference operator LN ,M satisfies the discrete minimum principle. ��

4 Error analysis

We start with the decomposition of U as

U = V + WL + WR, (4.1)

where
{

[LN ,MV ] ji = −c ji V
j−m
i + f j

i , (xi , t j ) ∈ GN ,M ,

V j
i

∣
∣
∂GN ,M = v(xi , t j ),

(4.2)

{
[LN ,MWL ] ji = −c ji (WL )

j−m
i , (xi , t j ) ∈ GN ,M ,

(WL )
j
i

∣
∣
∂GN ,M = wL(xi , t j ),

(4.3)

{
[LN ,MWR] ji = −c ji (WL)

j−m
i , (xi , t j ) ∈ GN ,M ,

(WR)
j
i

∣
∣
∂GN ,M = wR(xi , t j ).

(4.4)

Hence, we can decompose the error as

[U − u] ji = [V − v] ji + [WL − wL ] ji + [WR − wR] ji for all (xi , t j ) ∈ ḠN ,M . (4.5)

Consequently, we can find error bound for each component separately. We shall use the
following lemma frequently.

Lemma 8 For z = v,wL , wR defined on Ḡ and Z = V ,WL ,WR defined on ḠN ,M , the local
truncation error defined by

[LN ,M (Z − z)] ji = −c ji [Z − z] j−m
i + [(

Lε,μ − ∂

∂t

)
z − LN ,Mz

] j
i ,

on arbitrary mesh with step sizes hi is given by

|[LN ,M
cen (Z − z)] ji | ≤ |[Z − z] j−m

i

∣
∣ + C

[
ε�i‖zxxx‖ + μ�i‖zxx‖ + M−1‖ztt‖

]
,

|[LN ,M
up (Z − z)] ji | ≤ |[Z − z] j−m

i | + C
[
ε�i‖zxxx‖ + μhi+1‖zxx‖ + M−1‖ztt‖

]
,

|LN ,M
mp (Z − z)] ji | ≤ |[Z − z] j−m

i

∣
∣ + C

[
ε�i‖zxxx‖ + μh2i+1(‖zxxx‖ + ‖zxx‖) + M−1‖ztt‖

]
,

and on uniform mesh with step size h is given by

|LN ,M
cen (Z − z)] ji | ≤ |[Z − z] j−m

i

∣
∣ + C

[
εh2‖zxxxx‖ + μh2‖zxxx‖ + M−1‖ztt‖

]
,

|[LN ,M
up (Z − z)] ji | ≤ |[Z − z] j−m

i | + C
[
εh2‖zxxxx‖ + μh‖zxx‖ + M−1‖ztt‖

]
,

|[LN ,M
mp (Z − z)] ji | ≤ |[Z − z] j−m

i | + C
[
εh‖zxxx‖ + μh2(‖zxxx‖ + ‖zxx‖) + M−1‖ztt‖

]
.
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Lemma 9 For every (xi , t j ) ∈ G
N ,M
1 , the following error bound holds for the smooth com-

ponent of the error

|[V − v] ji | ≤ C(M−1 + N−2).

Proof When mesh is uniform, we use Lemma 8, Theorem 2.1, and the discrete minimum
principle Lemma 7 to get the following bound:

|[(V − v)] ji | ≤ C[M−1 + N−2].
When mesh is not uniform, either the mid-point scheme is used at the transition points or if
hi+1‖b̂‖ ≥ 2μα, the upwind scheme is used. Using Lemma 8 and Theorem 2.1, we get

|[LM,N (V − v)] ji | ≤
{
C(M−1 + N−2), when i �= N/4, 3N/4,
C(M−1 + N−1(ε + N−1)), otherwise.

Define the barrier function

�
j
i = C(N−2(φ(xi ) + 1) + M−1),

where

φ(xi ) =

⎧
⎪⎨

⎪⎩

1, if 0 ≤ xi ≤ ρ1,

1 − xi−ρ1
2(1−ρ1−ρ2)

, if ρ1 ≤ xi ≤ 1 − ρ2,
1−xi
2ρ2

, if 1 − ρ2 ≤ xi ≤ 1.

Noting that 1/ρ2 ≥ 4, we have

εδ2x�
j
i =

{
0, when i �= N/4, 3N/4,
O(−εN−1), otherwise,

and D0
x�

j
i ≤ 0, D+

x �
j
i ≤ 0. Now we use Lemma 7 to get the desired result. ��

We introduce two barrier functions that are essential to establish the error bounds of
singular components

�
j
i =

⎧
⎨

⎩

i∏

r=1
(1 + θLhr )

−1, if 1 ≤ i ≤ N ,

1, i = 0,
�

j
i =

⎧
⎪⎨

⎪⎩

N∏

r=i+1
(1 + θRhr )

−1, if 0 ≤ i < N ,

1, i = N ,

(4.6)

where θL and θR are as defined in Lemma 4.

Lemma 10 The barrier functions � and � defined above satisfy

[LN ,M�] ji ≤ 0, [LN ,M�] ji ≤ 0.

Proof Here we provide the proof for the mid-point operator. Similar arguments can be used
for the central difference and upwind operators. On applying the mid-point operator to the
barrier function �

j
i , we get

[LN ,M
mp �] ji = εδ2x�

j
i + μa j

i D
+
x �

j
i − bij�

j
i − D−

t �
j
i

= ε
θ2L

�i
hi+1�

j
i+1 + μa j

i (−θL�
j
i+1) − b j

i �
j
i

2
− b j

i+1�
j
i+1

2

=
[

2εθ2L

(
hi+1

2�i
− 1

)

+
(

2εθ2L − μa j
i θL − b j

i+1

2

)

− b j
i

2

(
1 + θLhi+1

)
]

�
j
i+1
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≤
[

2εθ2L − μa j
i θL − b j

i+1

2

]

�
j
i+1 ≤ 0

since for θL =
√

ηα

2
√

ε
, we have

(
2εθ2L − bi+1

2

)
=

(
ηα
2 − bi+1

2

)
≤ 0 and for θL = μα

2ε , we

have

(

2εθ2L − μa j
i θL

)

=
(

μ2α
2ε (α − a j

i )

)

≤ 0. Now we apply the mid-point operator to

the barrier function �
j
i to get

[LN ,M
mp �] ji = εδ2x�

j
i + μa j

i D
+
x �

j
i − bij�

j
i − D−

t �
j
i

= ε
θ2R

�i
hi�

j
i−1 + μa j

i θR�
j
i − b j

i �
j
i

2
− b j

i+1�
j
i+1

2

≤
[

2εθ2R

(
hi
2�i

− 1

)

+
(

2εθ2R + μa j
i θR − b j

i

)]

�
j
i

≤
[

2εθ2R + μa j
i θR − b j

i

]

�
j
i .

Now for both values of θR , we obtain [LN ,M
mp �] ji ≤

(

ηa j
i − b j

i

)

�
j
i =

[
a j
i
2

(

η − b j
i

a j
i

)

+
a j
i+1
2

(

η − b j
i+1

a j
i+1

)]

�
j
i ≤ 0. ��

Lemma 11 The layer components satisfy

|(WL)
j
i | ≤ CN−2, i = N/4, . . . , N , j�t ≤ τ,

|(WR)
j
i | ≤ CN−2, i = 0, . . . , 3N/4, j�t ≤ τ.

Proof Defining�±(xi , t j ) = C�
j
i ±(WL )

j
i , withC chosen sufficiently large, using Lemmas

10 and 7, we get |(WL)
j
i | ≤ C�

j
i .Further, for i = N/4, . . . , N , using the fact that ln(1+t) >

t(1 − t/2), we have

�
j
i ≤ �

j
N/4 = [(

1 + 8N−1 ln N
)−N/8]2 ≤ CN−2.

The same argument can be used to bound (WR)
j
i , for i = 0, . . . , 3N/4, j�t ≤ τ. ��

Lemma 12 Let WL be the solution of (4.3) and wL be the solution of (2.27). Then for every

(xi , t j ) ∈ G
N ,M
1 , the error bounds are

|[WL − wL ] ji | ≤
{
C(M−1 + N−2(ln N )2), when αμ2 ≤ ηε,

C(M−1 ln N + N−2(ln N )3), when αμ2 ≥ ηε.

Proof We first consider the uniform mesh case, that is, when ρ1 = 1
4 . If αμ2 ≤ ηε,

|[LN ,M (WL − wL)] ji | ≤ C

[

N−2
(

ε‖(wL)xxxx‖ + μ‖(wL)xxx‖
)

+ M−1‖(wL)t t‖
]

.

Using 1√
ε

≤ C ln N and derivative bounds of wL , we have

|[LN ,M (WL − wL)] ji | ≤ C[M−1 + N−2(ln N )2].
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If αμ2 ≥ ηε, again using μ
ε

≤ C ln N and derivative bounds of wL , we have

|[LN ,M (WL − wL)] ji | ≤ C[M−1 ln N + N−2(ln N )3].
The desired result follows using Lemma 7.

For the case when ρ1 < 1
4 , the error is analysed first outside the layer region and then

inside layer region. In the outside region, that is, when (xi , t j ) ∈ [ρ1, 1) × (0, τ ], wL and
WL both are small. So, using Lemmas 4 and 11, and the fact ρ1θL = 4 ln N ,

|[WL − wL ] ji | ≤ |(WL)
j
i | + |(wL)

j
i | ≤ C[e−θL xi + N−2] ≤ C[e−θLρ1 + N−2] ≤ CN−2.

For inside the layer region, that is, when (xi , t j ) ∈ (0, ρ1) × (0, τ ]; if αμ2 ≤ ηε,

|[LN ,M (WL − wL)] ji | ≤ C

[

N−2
(

ερ2
1‖(wL)xxxx‖ + μρ2

1‖(wL)xxx‖
)

+ M−1‖(wL)t t‖
]

.

Using derivative bounds of wL and the fact that ρ1 ≤ C
√

ε ln N , we get

|[LN ,M (WL − wL)] ji | ≤ C

[

(N−1 ln N )2
(

1 + μ√
ε

)

+ M−1
]

≤ C[M−1 + N−2(ln N )2].
On applying Lemma 7 we get the desired result. If αμ2 ≥ ηε, using derivative bounds of wL

and the fact that ρ1 ≤ C( ε
μ
ln N ), we get

|[LN ,M (WL − wL)] ji | ≤ C
μ2

ε

[

(N−1 ln N )2 + M−1
]

.

Now we consider

�±(xi , t j ) = C

[

(ρ1 − xi )
μ

ε
((N−1 ln N )2 + M−1) + N−2

]

± [WL − wL ] ji

Clearly, for (0, t j ), (ρ1, t j ), 0 < t j ≤ τ and for (xi , 0), 0 ≤ xi ≤ ρ1, we have �± ≥ 0.

Also, choosing C large enough such that [LN ,M�±] ji ≤ 0. Therefore, using Lemma 7, we
get

|[WL − wL ] ji | ≤ C

[

(ρ1 − xi )
μ

ε
((N−1 ln N )2 + M−1) + N−2

]

≤ C[M−1 ln N + N−2(ln N )3].
��

Lemma 13 Suppose WR is the solution of (4.4) and wR is the solution of (2.28). Then for

every (xi , t j ) ∈ G
N ,M
1 , the error bound is

|[WR − wR] ji | ≤ C[M−1 + N−2(ln N )2].

Proof We shall use similar ideas as in the case of left singular component. When (xi , t j ) ∈
(0, 1 − ρ2] × (0, τ ], we have

[WR − wR] ji | ≤ |(WR)
j
i | + |(wR)

j
i | ≤ C[e−θRρ2 + N−2] ≤ CN−2.
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Now we consider the case when (xi , t j ) ∈ (1−ρ2, 1)× (0, τ ]. If ρ2 = 1
4 and αμ2 ≤ ηε, we

use Lemma 8, bounds on the derivatives of wR, and the inequality 1√
ε

≤ C ln N to bound
the truncation for the central difference operator. We get

|[LN ,M (WR − wR)] ji | ≤ C

[

ĥ23

(

ε‖(wR)xxxx‖ + μ‖(wR)xxx‖
)

+ M−1‖(wR)t t‖
]

≤ C

[
N−2

ε
+ M−1

]

≤ C[M−1 + N−2(ln N )2].
When μĥ3‖a‖ ≥ 2ε, mid-point is used. So, we use the same argument to get

|[LN ,M (WR − wR)] ji | ≤ C

[

εĥ3‖(wR)xxx‖ + μĥ23

(

‖(wR)xxx‖ + ‖(wR)xx‖
)

+M−1‖(wR)t t‖
]

≤ C

[

μN−2
(

‖(wR)xxx‖ + ‖(wR)xx‖
)

+ M−1‖(wR)t t‖
]

≤ C

[

N−2 μ

ε3/2
+ M−1

]

≤ C[M−1 + N−2(ln N )2].
Now, consider the case when ρ2 = 1

4 and αμ2 ≥ ηε. Using the arguments as above and the
inequality 1

μ
≤ C ln N , the truncation error for the central difference operator is given as

|[LN ,M (WR − wR)] ji | ≤ C

[

N−2
(

ε‖(wR)xxxx‖ + μ‖(wR)xxx‖
)

+ M−1‖(wR)t t‖
]

≤ C

[

N−2/μ2 + M−1
]

≤ C[M−1 + N−2(ln N )2],
and the truncation error for mid-point is given as

|[LN ,M (WR − wR)] ji | ≤ C

[

μN−2
(

‖(wR)xxx‖ + ‖(wR)xx‖
)

+ M−1‖(wR)t t‖
]

≤ C

[

N−2/μ2 + M−1
]

≤ C[M−1 + N−2(ln N )2].
Next we consider the case when ρ2 < 1

4 . If αμ2 ≤ ηε, then the mid-point operator is not
used. So, we consider only the central difference operator. Using the derivative bounds of
wR and the fact that ρ2 ≤ C

√
ε ln N , the truncation error is given as

|[LN ,M (WR − wR)] ji | ≤ C

[

N−2(ln N )2
(

1 + μ√
ε

)

+ M−1
]

≤ C[M−1 + N−2(ln N )2].
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If αμ2 ≥ ηε, then using derivative bounds of wR and the fact that ρ2 ≤ Cμ ln N , the
truncation error for central difference operator is given as

∣
∣[LN ,M (WR − wR)] ji

∣
∣ ≤ C

[

N−2(ln N )2
(

1 + ε

μ2

)

+ M−1
]

≤ C[M−1 + N−2(ln N )2],
and the truncation error for mid-point operator is given by

∣
∣[LN ,M (WR − wR)] ji

∣
∣ ≤ C

[

N−2 μρ2

μ3 + M−1
]

≤ C[M−1 + N−2(ln N )2].
Combining the results, for all cases, we have

∣
∣[LN ,M (WR − wR)] ji

∣
∣ ≤ C[M−1 + N−2(ln N )2].

Now we use the discrete minimum principle to get the desired result. ��
Next we obtain the error on G

N ,M
2 . For (xi , t j ) ∈ GN ,M

2 , we note that

[LN ,M (V − v)] ji = −c ji [V − v] j−m
i + [(

Lε,μ − ∂

∂t

)
v − LN ,Mv

] j
i .

The first term on the left hand side is bounded using Lemma 9. To bound the second term
we use arguments in Lemma 9 and then use the discrete minimum principle to get

|[V − v] ji | ≤ C(M−1 + N−2), (xi , t j ) ∈ G
N ,M
2 .

Similarly, we can bound |[WL − wL ] ji | and |[WR − wR] ji | for (xi , t j ) ∈ G
N ,M
2 . Finally,

applying an induction argument, we can obtain, for (xi , t j ) ∈ G
N ,M
p , p = 1, . . . , k, the

following bounds:

|[V − v] ji | ≤ C(M−1 + N−2),

|[WL − wL ] ji | ≤
{
C(M−1 + N−2(ln N )2), when αμ2 ≤ ηε

C(M−1 ln N + N−2(ln N )3), when αμ2 ≥ ηε,

|[WR − wR] ji | ≤ C[M−1 + N−2(ln N )2].
Hence, combining the bounds for smooth and singular components, we have the following

main result.

Theorem 4.1 Suppose U is the solution of problem (3.1) and u is the exact solution of (1.1).
Then

‖U − u‖
G

N ,M ≤
{
C(M−1 + N−2(ln N )2), when αμ2 ≤ ηε

C(M−1 ln N + N−2(ln N )3), when αμ2 ≥ ηε.

5 Numerical examples

To demonstrate the effectiveness of the proposed finite difference scheme (3.1) for problem
(1.1), we consider three test examples. For these test examples, we generate the rectangular
meshes and compute the discrete solutions. Then the tables for errors and rates of convergence
are presented in support of the theoretical results presented in the previous section.
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Table 1 Maximum errors FN ,M
ε,μ and FN ,M , and rates of convergence ρ

N ,M
ε,μ and ρN ,M using scheme (3.1)

for Example 1

μ = 10−3 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

100 = 1 7.3399e−3 5.7663e−3 3.6422e−3 2.1295e−3 1.1629e−3 6.0952e−4

0.3481 0.6628 0.7743 0.8726 0.9320

10−2 3.5162e−2 1.3240e−2 5.9994e−3 3.1032e−3 1.5788e−3 7.9633e−4

1.4091 1.1420 0.9511 0.9749 0.9874

10−4 4.3705e−2 1.6704e−2 7.3802e−3 3.7406e−3 1.8967e−3 9.5511e-4

1.3876 1.1785 0.9803 0.9797 0.9898

10−6 4.3471e−2 1.6596e−2 7.3290e−3 3.7218e−3 1.8873e−3 9.4388e−4

1.3892 1.1792 0.9776 0.9796 0.9997

10−8 4.3429e−2 1.6573e−2 7.3303e−3 3.7211e−3 1.8870e−3 9.5031e−4

1.3898 1.1769 0.9781 0.9795 0.9896

10−10 4.4343e−2 1.6572e−2 7.3303e−3 3.7211e−3 1.8870e−3 9.5031e−4

1.3898 1.1768 0.9781 0.9795 0.9896

10−12 4.4343e−2 1.6572e−2 7.3303e−3 3.7211e−3 1.8870e−3 9.5031e−4

1.3898 1.1768 0.9781 0.9795 0.9896

FN ,M 4.3705e−2 1.6704e−2 7.3802e−3 3.7406e−3 1.8967e−3 9.5511e−4

ρN ,M 1.3876 1.1785 0.9803 0.9797 0.9898

Example 5.1 Our first test example is the following time-delay problem:
⎧
⎪⎪⎨

⎪⎪⎩

εuxx (x, t) + μ(1 + x)ux (x, t) − u(x, t)
−ut (x, t) = −u(x, t − τ) + 16x2(1 − x)2, (x, t) ∈ (0, 1) × (0, 2],
u(x, t) = 0, (x, t) ∈ [0, 1] × [−τ, 0],
u(0, t) = 0, u(1, t) = 0, t ∈ [0, 2].

The exact solution of this problem is not known, so the numerical errors and rates of
convergence will be calculated with the help of double mesh principle. In this technique, the
spatial mesh is bisected into 2N subintervals and time mesh into 2M subintervals. Then the
maximum pointwise error and rate of convergence are calculated by

FN ,M
ε,μ = max

i, j
|(UN ,M )

j
i − (Ũ 2N ,2M )

2 j
2i | and ρN ,M

ε,μ = log2
FN ,M

ε,μ

F2N ,2M
ε,μ

,

respectively, where UN ,M is the numerical solution on the mesh ḠN ,M and Ũ 2N ,2M is the
numerical solution on the mesh obtained after introductions of mid-points in ḠN ,M . Now
uniform error and uniform rate of convergence are calculated by

FN ,M = max
ε,μ

FN ,M
ε,μ and ρN ,M = log2

FN ,M

F2N ,2M .

In Tables 1 and 2, the maximum pointwise errors and the corresponding rates of conver-
gence for the numerical solution computed using scheme (3.1) are presented for μ = 10−3

and 10−9, respectively, with different values of ε and discretization parameters N and M
varying with the same ratio (N and M both multiplied by 2). Here, we see that the conver-
gence rates of the scheme is near one, confirming the first order in time. In Tables 3 and
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Table 2 Maximum errors FN ,M
ε,μ and FN ,M , and rates of convergence ρ

N ,M
ε,μ and ρN ,M using scheme (3.1)

for Example 1

μ = 10−9 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

100 = 1 7.3402e−3 5.7663e−3 3.6422e−3 2.1294e−3 1.1629e−3 6.0952e−4

0.3481 0.6628 0.7743 0.8726 0.9320

10−2 3.5175e−2 1.3245e−2 6.0008e−3 3.1039e−3 1.5791e−3 7.9649e−4

1.4090 1.1422 0.9510 0.9749 0.9874

10−4 4.3708e−2 1.6705e−2 7.3807e−3 3.7407e−3 1.8967e−3 9.5512e−4

1.3875 1.1784 0.9804 0.9798 0.9897

10−6 4.3816e−2 1.6749e−2 7.4017e−3 3.7489e−3 1.9008e−3 9.5717e−4

1.3873 1.1781 0.9813 0.9799 0.9898

10−8 4.3817e−2 1.6750e−2 7.4019e−3 3.7490e−3 1.9008e−3 9.5719e−4

1.3873 1.1781 0.9813 0.9799 0.9898

10−10 4.3817e−2 1.6750e−2 7.4019e−3 3.7490e−3 1.9008e−3 9.5719e−4

1.3873 1.1781 0.9813 0.9799 0.9898

10−12 4.3817e−2 1.6750e−2 7.4019e−3 3.7490e−3 1.9008e−3 9.5719e−4

1.3873 1.1781 0.9813 0.9799 0.9898

FN ,M 4.3817e−2 1.6750e−2 7.4019e−3 3.7490e−3 1.9008e−3 9.5719e−4

ρN ,M 1.3873 1.1781 0.9813 0.9799 0.9898

4, the maximum pointwise errors and the corresponding rates of convergence are presented
for μ = 10−3 and 10−9, respectively, with different values of ε taking the discretization
parameters N and M varying with the ratios of 2 in earlier 4 in later. Now the results in
these tables clearly show that the maximum pointwise error is uniform with second order of
convergence, confirming the spatial order of convergence.

Example 5.2 Our second test example is the following time-delay problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εuxx (x, t) + μ(1 + x(1 − x) + t2)ux (x, t) − (1 + 5xt)u(x, t)

−ut (x, t) = −u(x, t − τ) + x(1 − x)(et − 1), (x, t) ∈ (0, 1) × (0, 2],
u(x, t) = 0, (x, t) ∈ [0, 1] × [−τ, 0],
u(0, t) = 0, u(1, t) = 0, t ∈ (0, 2].

(5.1)

The exact solution of this problem also is not known. So, the maximum pointwise error
and rate of convergence are computed as for the previous example. Then uniform error
and uniform rate of convergence are calculated in a similar way. The maximum pointwise
error and the rate of convergence are presented in Tables 5 and 6 for μ = 10−3 and 10−9,
respectively. In these tables, N and M are increased in the same ratio. In Tables 7 and 8, the
maximum pointwise error and the rate of convergence are presented forμ = 10−3 and 10−9,
respectively, with different values of ε with the discretization parameters N and M varying
with the ratios of 2 and 4 respectively. From these tables we can confirm the spatial order of
convergence as proved theoretically.

In Figure 1, log–log plots for maximum pointwise error vs discretization parameter are
given for Examples 5.1 and 5.2, respectively, for N = 32, 64, 128, 256, 512 and M =
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Table 3 Maximum errors FN ,M
ε,μ and FN ,M , and rates of convergence ρ

N ,M
ε,μ and ρN ,M using scheme (3.1)

for Example 1

μ = 10−3 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε M = 8 M = 32 M = 128 M = 512 M = 2048 M = 4096

100 = 1 7.3340e−4 3.6381e−3 1.1619e−3 3.1204e−4 7.9516e−5 1.9976e−5

1.0126 1.6467 1.8967 1.9724 1.9930

10−2 3.5163e−2 6.0222e−3 1.5861e−3 4.0183e −4 1.0079e−4 2.0239e−5

2.5457 1.9247 1.9809 1.9952 1.9988

10−4 4.3706e−2 7.3807e−3 1.8967e−3 4.7927e −4 1.2015e−4 2.5220e−5

2.5660 1.9602 1.9846 1.9961 1.9988

10−6 4.3471e−2 7.2591e−3 1.8455e−3 4.5342e −4 1.0720e−4 2.6321e−5

2.5821 1.9757 2.0251 2.0806 1.9987

10−8 4.3429e−2 7.2480e−3 1.8450e−3 4.5277e −4 1.0686e−4 2.6425e−5

2.5830 1.9739 2.0268 2.0831 1.9987

10−10 4.4342e−2 7.2479e−3 1.8450e−3 4.5277e −4 1.0685e−4 2.6425e−5

2.5830 1.9739 2.0268 2.0831 1.9987

10−12 4.3429e−2 7.2479e−3 1.8450e−3 4.5277e −4 1.0685e−4 2.6425e−5

2.5830 1.9739 2.0268 2.0831 1.9987

FN ,M 4.3706e−2 7.3807e−3 1.8967e−3 4.7927e−4 1.2015e−4 2.5220e−5

ρN ,M 2.5660 1.9602 1.9846 1.9961 1.9988

Table 4 Maximum errors FN ,M
ε,μ and FN ,M , and rates of convergence ρ

N ,M
ε,μ and ρN ,M using scheme (3.1)

for Example 1

μ = 10−9 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε M = 8 M = 32 M = 128 M = 512 M = 2048 M = 4096

100 = 1 7.3402e−2 3.6381e−3 1.1619e−3 3.1203e−4 7.9515e−5 1.9975e−5

1.0126 1.6467 1.8967 1.9724 1.9930

10−2 3.5174e−2 6.0235e−3 1.5865e−3 4.0191e −4 1.0081e−4 2.5224e−5

2.5459 1.9247 1.9809 1.9951 1.9987

10−4 4.3708e−2 7.3811e−3 1.8968e−3 4.7929e −4 1.2014e−4 3.0057e−5

2.5660 1.9603 1.9846 1.9961 1.9990

10−6 4.3816e−2 7.4018e−3 1.9008e−3 4.8029e −4 1.2039e−4 3.0119e−5

2.5655 1.9612 1.9846 1.9961 1.9990

10−8 4.3817e−2 7.4019e−3 1.9009e−3 4.8030e −4 1.2039e−4 3.0120e−5

2.5655 1.9612 1.9846 1.9961 1.9990

10−10 4.3817e−2 7.4019e−3 1.9009e−3 4.8030e −4 1.2039e−4 3.0120e−5

2.5655 1.9612 1.9846 1.9961 1.9990

10−12 4.3817e−2 7.4019e−3 1.9009e−3 4.8030e −4 1.2039e−4 3.0120e−5

2.5655 1.9612 1.9846 1.9961 1.9990

FN ,M 4.3817e−2 7.4019e−3 1.9009e−3 4.8030e−4 1.2039e−4 3.0120e−5

ρN ,M 2.5655 1.9612 1.9846 1.9961 1.9990
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Table 5 Maximum errors FN ,M
ε,μ and FN ,M , and rates of convergence ρ

N ,M
ε,μ and ρN ,M using scheme (3.1)

for Example 2

μ = 10−3 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

100 = 1 7.6576e−4 3.6191e−4 1.7499e−4 8.5923e−5 4.2625e−5 2.1245e−5

1.0812 1.0483 1.0262 1.0113 1.0045

10−2 8.8707e−3 4.1142e−3 2.0098e−3 9.9812e −4 4.9790e−4 2.4871e−4

1.1084 1.0335 1.0098 1.0033 1.0013

10−4 1.1161e−2 5.1087e−3 2.4749e−3 1.2214e −3 6.0706e−4 3.0264e−4

1.1274 1.0455 1.0188 1.0086 1.0042

10−6 1.1008e−2 5.0450e−3 2.4437e−3 1.2073e −3 6.0036e−4 2.9941e−4

1.1257 1.0457 1.0172 1.0079 1.0036

10−8 1.0941e−2 5.0426e−3 2.4442e−3 1.2071e −3 6.0016e−4 2.9929e−4

1.1175 1.0447 1.0178 1.0080 1.0037

10−10 1.0940e−2 5.0428e−3 2.4442e−3 1.2071e −3 6.0016e−4 2.9929e−4

1.1173 1.0448 1.0178 1.0080 1.0037

10−12 1.0940e−2 5.0428e−3 2.4442e−3 1.2071e −3 6.0016e−4 2.9929e−4

1.1173 1.0448 1.0178 1.0080 1.0037

FN ,M 1.1161e−2 5.1087e−3 2.4749e−3 1.2214e−3 6.0706e−4 3.0264e−4

ρN ,M 1.1274 1.0455 1.0188 1.0086 1.0042

Table 6 Maximum errors FN ,M
ε,μ and FN ,M , and rates of convergence ρ

N ,M
ε,μ and ρN ,M using scheme (3.1)

for Example 2

μ = 10−9 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

100 = 1 7.6573e−4 3.6189e−4 1.7498e−4 8.5918e−5 4.2622e−5 2.1244e−5

1.0812 1.0483 1.0261 1.0113 1.0045

10−2 8.8197e−3 4.0953e−3 1.9997e−3 9.5642e−3 4.9551e−4 2.4752e−4

1.1067 1.0341 1.0096 1.0031 1.0013

10−4 1.1053e−2 5.0755e−3 2.4578e−3 1.2132e−3 6.0309e−4 3.0069e−4

1.1228 1.0461 1.0184 1.0084 1.0040

10−6 1.1046e−2 5.0765e−3 2.4625e−3 1.2161e−3 6.0456e−4 3.0141e−4

1.1216 1.0437 1.0178 1.0083 1.0041

10−8 1.1100e−2 5.0838e−3 2.4627e−3 1.2161e−3 6.0457e−4 3.0141e−4

1.1265 1.0456 1.0179 1.0082 1.0041

10−10 1.1093e−2 5.0782e−3 2.4639e−3 1.2162e−3 6.0457e−4 3.0141e−4

1.1272 1.0433 1.0185 1.0084 1.0041

10−12 1.1092e−2 5.0775e−3 2.4640e−3 1.2162e−3 6.0457e−4 3.0142e−4

1.1272 1.0433 1.0185 1.0084 1.0041

FN ,M 1.1100e−2 5.0838e−3 2.4640e−3 1.2162e−3 6.0457e−4 3.0142e−4

ρN ,M 1.1265 1.0449 1.0185 1.0084 1.0041
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Table 7 Maximum errors FN ,M
ε,μ and FN ,M , and rates of convergence ρ

N ,M
ε,μ and ρN ,M using scheme (3.1)

for Example 2

μ = 10−3 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε M = 8 M = 32 M = 128 M = 512 M = 2048 M = 4096

100 = 1 7.6577e−4 1.8173e−4 4.4719e−5 1.1158e −5 2.7887e−6 6.9712e−7

2.0751 2.0228 2.0028 2.0005 2.0001

10−2 8.8707e−3 2.0119e−3 4.9889e−4 1.2455e −4 3.1129e−5 7.7817e−6

2.1404 2.0118 2.0019 2.0004 2.0001

10−4 1.1161e−2 2.4750e−3 6.0733e−4 1.5120e −4 3.7759e−5 9.4372e−6

2.1729 2.0269 2.0060 2.0015 2.0003

10−6 1.1008e−2 2.4058e−3 6.4802e−4 2.7303e −4 8.7917e−5 2.4212e−5

2.1941 1.8924 1.2469 1.6348 1.8604

10−8 1.0942e−2 2.4109e−3 8.9349e−4 3.3001e −4 9.5237e−5 2.3572e−5

2.1821 1.4320 1.4369 1.7929 2.0144

10−10 1.0941e−2 2.4109e−3 8.7733e−4 3.2286e −4 9.2375e−5 2.1949e−5

2.1820 1.4585 1.4422 1.8054 2.0733

10−12 1.0941e−2 2.4109e−3 8.7716e−4 3.2278e −4 9.2344e−5 2.1932e−5

2.1820 1.4586 1.4422 1.8055 2.0739

FN ,M 1.1161e−2 2.4750e−3 8.9349e−4 3.3001e−4 9.5237e−5 2.3572e−5

ρN ,M 2.1729 1.4699 1.4369 1.7929 2.0144

Table 8 Maximum errors FN ,M
ε,μ and FN ,M , and rates of convergence ρ

N ,M
ε,μ and ρN ,M using scheme (3.1)

for Example 2

μ = 10−9 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε M = 8 M = 32 M = 128 M = 512 M = 2048 M = 4096

100 = 1 7.6573e−4 1.8172e−4 4.4716e−5 1.1157e −5 2.7884e−6 6.9707e−7

2.0751 2.0228 2.0028 2.0005 2.0001

10−2 8.8197e−3 2.0026e−3 4.9636e−4 1.2393e −4 3.0976e−5 7.7434e−6

2.1388 2.0124 2.0018 2.0004 2.0001

10−4 1.1053e−2 2.4577e−3 6.0306e−4 1.5012e −4 3.7490e−5 9.3702e−6

2.1691 2.0269 2.0062 2.0015 2.0004

10−6 1.1046e−2 2.4546e−3 6.0440e−4 1.5048e −4 3.7581e−5 9.3928e−6

2.1700 2.0219 2.0059 2.0016 2.0004

10−8 1.1100e−2 2.4588e−3 6.0443e−4 1.5046e −4 3.7582e−5 9.3932e−6

2.1745 2.0243 2.0062 2.0013 2.0004

10−10 1.1093e−2 2.4555e−3 6.0458e−4 1.5049e−4 3.7583e−5 9.3931e−6

2.1756 2.0220 2.0062 2.0016 2.0004

10−12 1.1092e−2 2.4551e−3 6.0458e−4 1.5049e−4 3.7583e−5 9.3931e−6

2.1757 2.0218 2.0062 2.0016 2.0004

FN ,M 1.1100e−2 2.4588e−3 6.0458e−4 1.5049e−4 3.7583e−5 9.3931e−6

ρN ,M 2.1745 2.0239 2.0062 2.0016 2.0004
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(b)(a)

Fig. 1 Log–log plots for maximum error vs N

8, 32, 128, 512, 2048 with ε = 2−4, μ = 2−8 and μ = 2−4, ε = 2−8. The slope of these
plots also confirm the second-order uniform convergence of the proposed numerical method.

For both the above examples, we observe that the main contribution to the global error
comes from the time discretization. So, to compare the accuracy of our proposed method
with the existing method (Govindarao et al. 2019), we consider a third test example in which
the main contribution to the global error comes from the spatial discretization.

Example 5.3 Our third test example is the following time-delay problem:

⎧
⎨

⎩

εuxx (x, t) + μux (x, t) − u(x, t) − ut (x, t) = −u(x, t − τ) + f (x, t), (x, t) ∈ (0, 1) × (0, 2],
u(x, t) = ϕb(x, t), (x, t) ∈ [0, 1] × [−τ, 0],
u(0, t) = ϕl (t), u(1, t) = ϕr (t), t ∈ (0, 2],

(5.2)

where f , ϕb, ϕl , and ϕr are such that

u(x, t) = t

ε − μ − 1

[

−e(1−x) + e − e(μ−m)/2ε

1 − e−m/2ε e−(μ+m)x/2ε + e1−(μ+m)/2ε − 1

e−m/ε − 1
e(μ−m)/(1−x)/2ε

]

with m = √
μ2 + 4ε.

Since the exact solution of this problem is known, the maximum pointwise error is calcu-
lated by

FN ,M
ε,μ = max

i, j
|(UN ,M )

j
i − u(xi , t j )|.

We then calculate uniform error and uniform rate of convergence by

FN ,M = max
ε,μ

FN ,M
ε,μ and ρN ,M = log2

FN ,M

F2N ,2M .

Corresponding to μ = 10−2 andμ = 10−8 we consider ε ∈ Sε = {10−4, 10−5, . . . , 10−15}.
Table 9 shows the comparison of the proposed method and the method of Govindarao et al.
(2019) in terms of uniform errors and uniform rates of convergence for Example 5.3. These
results verify that the proposed method gives more accurate results with high rate of conver-
gence than the method given in Govindarao et al. (2019).
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6 Conclusion

We proposed a finite difference numerical method for singularly perturbed delay partial
differential Eq. (1.1) with two perturbation parameters ε and μ. On a rectangular mesh
consisting of a layer adapted piecewise uniform Shishkin mesh in spatial direction and a
uniform mesh in temporal direction, we discretized the problem with the difference operator
comprising of an implicit Euler method for time and a hybrid scheme for space consisting
of central difference, upwind and midpoint operators. It is shown through the truncation
error and barrier function approach that the proposed numerical method is convergent with
first order in time and almost second-order in space independent of both the perturbation
parameters. Numerical results confirm the theoretical convergence results and demonstrate
the efficiency of the proposed method
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