
Chapter 5 : A PDE-BASED GENERAL FRAMEWORK 
ADAPTED TO RAYLEIGH’S, RICIAN’S AND GAUSSIAN’S 
DISTRIBUTED NOISE FOR RESTORATION AND 
ENHANCEMENT OF MAGNETIC RESONANCE IMAGES 

 

In this chapter, a partial differential equation-based general framework adapted to 

Rayleigh’s, Rician’s and   Gaussian’s distributed noise for restoration and enhancement 

of magnetic resonance image is presented. The proposed framework is obtained by 

casting the noise removal problem in to a variational framework. This framework 

automatically identifies various type of noise present into the MRI and filters them by 

choosing an appropriate filter. This filter consists of two terms wherein the first term is 

a data likelihood term and the second term is a prior function. The first term is obtained 

by minimizing the negative log likelihood of the corresponding pdfs: Gaussian or 

Rayleigh or Rician. Further, due to the ill-posedness of the likelihood term, a prior 

function is needed. This chapter examines three pde based priors which include total 

variation (TV) based prior, anisotropic diffusion (AD) based prior and a complex 

diffusion (CD) based prior. A regularization parameter is used to balance the trade off 

between data fidelity term and prior. The finite difference scheme is used for 

discretization of the proposed method. The performance analysis and comparative study 

of the proposed method with other standard methods is presented for Brain Web dataset 

at varying noise levels in terms of PSNR, MSE, SSIM, and CP. From the simulation 

results, it is observed that the proposed framework with CD based prior is performing 

better in comparison to other method and priors in consideration.  

5.1. Introduction 

Objective of this chapter is to present the design and development of a general 

framework for restoration and enhancement of MR Image. In MR image Rician noise is 
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one of the prominent noise, however Gaussian and Rayleigh noise are also present. 

These type of noises in the MRI can be identified by measuring SNR value of image 

data.  In the literature, variety of methods have been developed for MRI de-noising, but 

first time Henkelman [32] presented a method to estimate the noiseless magnitude MR 

image from its noisy version. The key importance is the estimation of noise variance 

from magnetic resonance images (MRI) often as an input parameter for image post 

processing tasks. The quality measurement of the MR data is done by estimated noise 

variance. Like noise reduction, segmentation and parameter estimation or clustering 

[113], the noise variance is a crucial parameter in image processing algorithms. 

        In the literature, for estimation of the noise level from MRI several methods have 

been proposed like filtering approach, Transform domain approach and Statistical 

approach. Examples of filtering approach linear filtering such as spatial filter [88] and 

temporal filter [88]. Non-linear filtering such as anisotropic diffusion filter (ADF) [37], 

adaptive ADF filter [89], noise driven ADF filter [90], noise adaptive ADF filter, fourth 

order PDE filter [91], adaptive 4th order PDE filter [38], 4th order complex PDE filters 

[92],  non local means filter (NLM) [39], fast NLM filter [93], Block wise optimized 

NLM filter [52], Unbiased NLM filter [19], dynamic NLM filter [94], enhanced NLM 

filter [54], adaptive NLM filter [40]. Combination of domain and range filters [41], 

bilateral domain and range filters [42], trilateral domain and range filters [42]. 

 Examples of Transform domain [66] approaches are curvelet [95], contourlet 

[69] and wavelet [96], adaptive multiscale product thresholding [97], multiwavelet [98], 

undecimated wavelet [99]. Examples of Statistical approach are Maximum likelihood 

estimation [74, 18], Linear minimum mean square error estimation [18], Phase error 

estimation [72], Nonparametric estimation [80], Singularity function analysis [53, 54] 

were presented. Some other Rician noise removal of MRI approaches were proposed in 
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literature such as machine learning-based approaches [100,101,102,103,104,105], DCT-

based filter [106], PCA-based technique [107], and conventional approaches [71]. 

5.2. Related work 

From the background area of the magnitude MR image many methods named Rayleigh 

distributed [80,76] have been proposed earlier for the estimation of noise level. 

Unfortunately, these methods proved to be useless for images because of unavailability 

of background information. Other than the brain for MR images background data may 

not be available in Cardiac or lung images. Noise assumption based on Rayleigh 

distribution is failed in the case which is small like the field of view (FAV) [76] Most of 

the noisy background is also eliminated by new scanning techniques and software. 

These techniques may also affects the methods based on Rayleigh model which require 

certain amount of background pixels for proper estimation of noise level [21]. Zero 

mean Gaussian probability density function (PDF) illustrates the raw complex MR data 

acquired in the Fourier domain. The linearity and the orthogonality of the Fourier 

transform may cause Gaussian for the noise distribution in the real and imaginary 

components, after the inverse Fourier transforms. However, due to the subsequent 

transform to a magnitude image, the noise distribution will be no longer Gaussian but 

Rician distributed. If I  is the original signal amplitude, then the PDF of the 

reconstructed magnitude image M will be: 

                        

2 2

02 2 2( ) exp ( )
2

M M I IMp I M J M
σ σ σ

   +
= − ∈   

     (5.1)                                      

where I  denotes amplitude of a noise-free image, 2σ  denotes the Gaussian noise 

variance, 0(.)J  show that modified zero order Bessel function. (.)∈  is the unit step 

Heaviside function, and M is the magnitude MR image. The Rician PDF is only valid 
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for nonnegative values of M [18]. In the image background, where the SNR is low 

(SNR ≈ 0), the Rician PDF reduces to a Rayleigh distribution [21] with PDF: 

                 

2

2 2( / ) exp( ) ( )
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M Ip I M M
σ σ

= − ∈
                                                              

(5.2) 

When SNR is high (greater than 3dB), then the Rician distribution becomes Gaussian 

distribution [21] with mean 2 2I σ+  and variance 2σ   given as follows: 

         
2 2 2

22

1( / ) exp( ) ( )
22

M I
p I M M

σ
σπσ

− +
= − ∈                                           (5.3) 

For the estimation of noise variance a method based on the local computation of the 

skewness of the magnitude data distribution is proposed by Rajan et al., [76]. It is to be 

concluded that Rician distribution are always in between the moments of Rayleigh and 

Gaussian distributions. The relationship between 2σ  and the variance of a Rician 

distribution 2
Rσ  at low and high SNR can be written as 

                          
1

2 2 2
2R
πσ σ

−
 = − 
 

                                                                              (5.4) 

and                           2 2
Rσ σ= ,                                                                                      (5.5) 

respectively. In general, 2σ  in terms of 2
Rσ  can be written as                                                  

                                      2 2
Rσ σ ψ= × , (5.6)                                                                               

where ψ  is a correction factor in the range [1; ( ) 1
2 2

π −
− ], i.e. when the Rician 

distribution approaches a Rayleigh distribution (at low SNR), the correction factor tends 

to ( ) 1
2 2

π −
−  and when the Rician distribution approaches a Gaussian (at high SNR), 

the correction factor tends to 1.  

      In view of above discussion and limitations of the existing method such as non 

capability of removal of this type of noise and lower restoration accuracy, in this paper 
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we propose a PDE based general framework for restoration and enhancement of MR 

data.The propose method is capable of removing all possible type of noise that may be 

present in MR data.  

5.3. Method and Models 

The Rician, Rayleigh, and Gaussian noise removal and regularization of MR image data 

is obtained by minimizing the following nonlinear energy functional of the image I  

within a continuous domain Ω , using the variational framework [112]: 

                 
{ }

min
( ) arg ( ( / )) . ( )E I L p I M I dλ φ

Ω
= ∫ + ∇ Ω  

                                            
(5.7)

 

Where ( ( / )L p I M  shows the negative likelihood term of Rician or Rayleigh or 

Gaussian distributed noise in MRI, given by equation (5.1-5.2-5.3). During the filtering 

process log likelihood term measures the dissimilarities at a pixel between M  and its 

estimated value I . ( ( / )L p I M  acts as the data attachment term or the likelihood term 

in equation (5.7).  

      Maximization of log likelihood or minimization of the negative log likelihood leads 

to de-noising of image data, but is an ill-posed problem and hence regularization is 

needed. That’s why the second term  ( )Iφ ∇  in equation (5.7) is needed and it acts as a 

regularization or penalty function or prior term. In the equation (5.7), λ is a 

regularization parameter, which has a constant value and makes a balance between the 

data attachment term and regularization function. The value of λ has been determined 

experimentally and is set to a value for which peak signal to noise ratio is maximum 

during the iteration process of filtration. The nonlinear complex diffusion based, 

anisotropic diffusion based and total variation based prior is suitable choice for the 

energy term ( )Iφ ∇   based on the concept of energy function. 

                                     ( ) ( )I f Iφ ∇ =                                                                        (5.8)  

83 
 



( )f I  is the diffusion  PDE based prior obtained by minimization of  ( )E I , From 

equation (8) substituting the value of  ( )Iφ ∇  in equation (5.7) reads:  

                       
[ ]{ }

min
( ) arg ( ( / )) . ( )E I L p I M f I dλ

Ω
= ∫ + Ω

                                            
(5.9) 

       In case of only Rician noise, after solving modified zero order Bessel function 

[109], when we taking log and differentiating equation (5.1) w.r.t. I  we get the 

loglikelihood term of Rician’s pdf as: 

                                   

' 1
2

2{ ( / )} I kL p I M
Iσ

= − +
            

(5.10)
                                                             

where  1k  represents positive integer.  

In case of only Gaussian noise,we put value of unit step Heaviside function is one in 

equation (5.3), after taking logarithmic of equation (5.3) becomes:                                

             
2 2 2

22

1log{ ( / )} log{ exp( )}
22

M I
p I M

σ
σπσ

− +
= −

           

(5.11)                          

Differentiating equation (5.11) w.r.t I we get the loglikelihood term of Gaussian’s pdf 

as: 

 
12 2 2 2

2 2

1 ( ){log ( / )} { 2log( ) log 2 }
2 2 2

M Ip I M
I I

σσ π
σ σ

∂ ∂ +
= − − − −

∂ ∂
                        (5.12)    

    or          '{ ( / )}L p I M 12 2 2 22 ( )

I

Iσ σ
= −

+
                                                            (5.13) 

In case of only Rayleigh noise, the loglikelihood term of Rayleigh’s pdf proposed by 

Srivastava et al., [117] as follows: 

           

'
2{ ( / )} IL p I M

σ
= −                                                                                       (5.14)                                                    

Hence when we combine equation (5.10), (5.13) and (5.14) then we get combined 

loglikelihood term given as follows: 
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2{ ( / )}
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I Iσ σ σ

  = − − + 
+  

                                             (5.15) 

Where '{ ( / )}L p I M  shows that the negative likelihood term of combined Rayleigh’s, 

Rician’s and Gaussian’s distributed noise in MRI. When we put the value of likelihood 

term from equation (5.15) in to the equation (5.9) then we get the proposed general 

framework using Euler-Lagrange minimization technique combined with gradient 

descent approach.  

Therefore, the proposed general framework based model adapted to Rayleigh’s, 

Rician’s and Gaussian’s distributed noise reads: 

1
1 2 3 12 2 2 2 2

2 . ( )
2 ( )

I I k I f I
t I I

λ λ λ λ
σ σ σ

     ∂   = − − + +     ∂     +  
                                 (5.16a) 

with initial condition 

                            0 0tI I= =                                                                                        (5.16b) 

where 1λ , 2λ  and 3λ  are the constants to be set according to noise pattern, andλ  is the 

regularization parameter, 0I is the noisy image data. 

Restoration of MRI for different noise distribution 

 Case-1: Gaussian noise distribution ( MSNR
σ

= > 3 dB) 

When  1λ = 2λ = 0 and 3λ =1 then equation (5.16) become adapted to Gaussian 

distribution. 

12 2 2 2
. ( )

2 ( )

I I f I
t I

λ
σ σ

 ∂
 = − +
 ∂ + 

                                                                        (5.17a) 

with initial condition   

0 0tI I= =                                                                                                                  (5.17b) 
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Case-2: Rician noise distribution (0 < MSNR
σ

=  < 3 dB) 

When  1λ = 2λ = 1 and 3λ =0 then equation (5.16) become adapted to Rician distribution. 

1
2

2 . ( )I I k f I
t I

λ
σ
 ∂

= − − + ∂  
                                                                                 (5.18a) 

with initial condition   

0 0tI I= =                                                                                                                (5.18b) 

Case-3: Rayleigh noise distribution ( MSNR
σ

=  ≈ 0 dB) 

When  2λ = 3λ = 0 and 1λ =1 then equation (5.16) become adapted to Rayleigh 

distribution. 

2 . ( )I I f I
t

λ
σ
 ∂

= − + ∂  
                                                                                             (5.19a)  

with initial condition   

0 0tI I= =                                                                                                                   (5.19b) 

 

 

 

 

 

                                                                                                    

                                                                       

                                                                              

 

Fig. 5.1: Restoration of MRI data for different noise distribution with different priors 
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Fig. 5.1 illustrates the operation of the proposed general framework for restoration and 

enhancement of MRI data. 

Selection of prior terms 

The following three types of diffusion based prior terms are used and examined for their 

efficacy in the proposed methods. 

1. Total variation (TV) based method 

2. Anisotropic diffusion (AD) based method  

3. The complex diffusion (CD) based method 

 

 

 

 

 

 

 

                                

                                           Fig. 5.2: Selection of prior terms 

1. Total variation (TV) based method 

The TV regularization approach was first proposed by Rudin et al., [118] presented in to 

de- noise an image corrupted with additive white Gaussian noise. In Total variation 

(TV) based framework for Rayleigh’s, Rician’s and Gaussion’s noise the regularization 

function is defined as [118]. 

2 2( ) | | x yf I I I I= ∇ = +                                                                                             (5.20) 

In discrete case, TV is defined as: 

Priors 

 

1. Total variation (TV) based method    

           

 

2.  Anisotropic diffusion (AD) based method                      

                        

3. The complex diffusion (CD) based method 
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=
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Where  

, 1, ,( )x
j k j k j kI I I+∇ = −  for 0nj < =  for j n=                                                              (5.22) 

and 

 , , 1 ,( ) y
j k j k j kI I I+∇ = −  for 0k n< =  for k n=                                                            (5.23) 

( )
| |

If I div
I

 ∇
=  ∇ 

                                                                                                    (5.24) 

For numerical implementations, the derivatives can be discretized using standard 

centered difference approximations and the quantity | I∇ | is replaced with 

2| |I epsy∇ +  for some small positive value of eps such as 0.00000000001. The value 

of eps can be assigned to lowest machine number to avoid divide by zero conditions 

during implementations. 

2
( )

| |
If I div

I epsy

 ∇
=   ∇ + 

                                                                                     (5.25) 

2. Anisotropic diffusion based method  

In Anisotropic diffusion based framework for Rayleigh’s,  Rician’s and Gaussion’s 

noise the regularization function  is defined as [37]: 

( ) .( ( ) )f I c I I= ∇ ∇ ∇                                                                                                (5.26) 

where the diffusion coefficient ( )c I∇  is defined as [37], 

2

1( )
1 ( )

c I I
γ

∇ =
∇

+
                                                             (5.27)                                        

Where  γ  is the threshold parameter.  
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3. The complex diffusion based method 

In nonlinear complex diffusion based framework for Rayleigh’s, Rician’s and 

Gaussion’s noise the regularization function is defined as [119]: 

( ) ( (Im( )) )f I div c I I= ∇                                                                                             (5.28) 

The diffusion coefficient (Im( ))c I  is defined as follows [119]: 

2(Im( ))
Im( )1

iec I
I

k

θ

θ

=
 +  
 

                                                                                           (5.29) 

Here, k is known as threshold parameter and for digital images [119] the value of k is 

ranges from 1 to 1.5. Eqs.( 5.28)  describe the nonlinear complex diffusion process , 

where linear forward diffusion control the evolution of real part of the images, and both 

the real and imaginary equations control the evolution of imaginary part of the image.  

A qualitative property of edge detection i.e. second smoothed derivative is described by 

the imaginary part of the image for small value of θ, where as real values depict the 

properties of ordinary Gaussian scale -space. For large values of θ, the imaginary part 

feeds back into the real part creating the wave like ringing effect which is an 

undesirable property. Here, for experimentation purposes the value of θ is chosen to be 

30
π .The adaptive value of edge threshold parameter is used in Eq.( 5.29). It is defined as 

negative exponential distribution:  

0 exp( )kt k tα≈ −                        (5.30)                                                                                     

where α  and 0k are constants, usually 1. 

Discretization of the proposed model:  

For digital implementations, the Eqs. (5.16a), (5.16b) can be discretized using finite 

differences schemes [109]. For example, the discretized form of TV based proposed 

model reads:  
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                                                                                                                                    (5.31) 

Similarly, for anisotropic diffusion based model can be discretized using finite 

difference scheme reads: 

1 1
1 2 3 12 2 2 2 2

2. .( ( ) )
2 ( )

n n
n n n n

n n

kI II I t c I I
I I

λ λ λ λ
σ σ σ

+
         = + ∆ − − + + ∇ ∇ ∇          +    

                           

                                                                                                                                (5.32) 

Similarly, for nonlinear complex diffusion model can be discretized using finite 

difference scheme reads: 

1 1
1 2 3 12 2 2 2 2

2. ( (Im( )) ))
2 ( )

n n
n n n n

n n

I k II I t div c I I
I I

λ λ λ λ
σ σ σ

+
         = + ∆ − − + + ∇          +    

    

                                                                                                                                  (5.33) 

0 0tI I= =                                                                                                                       (5.34) 

The von-Neumann analysis [109], shows that condition require  2
1

4( )
t

x
∆

<
∆  ,

 for the 

numerical scheme, given by equation (5.31-5.34) to become stable. If the size of the 

grid is set to be Δx=1, after that Δt < ¼ i.e.  Δt < 0.25. Hence, for the stability of 

equation (5.31-5.34), the value of Δt is set to be 0.24. 

5.4. Results and discussions 

Brain Web database [1] is used for simulated (synthetic) and real (clinical) data sets of 

normal brain MR images, to compare the effectiveness of the proposed technique. There 

are three modalities (pulse sequences) dataset present in the Brain Web databases [1] 

which are T1, T2 and PD weighted. The proposed method and other standard methods 

used for comparison purposes were implemented using MATLAB R2014. 
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The performance of restoration results are analyzed for images artificially degraded by 

mainly Rician’s noise and partially Gaussian’s noise and Rayleigh’s noise if image 

background is present. LMMSE [78], RLMMSE [49], and RSNLMMSE [50], are 

familiar existing techniques used for comparing the proposed method in the case of 

Rician noise. For Rician noise the best setups as proposed by the authors and the free 

parameters of these methods are used during experimentation. To obtain the best results 

the relevant values of the parameters are given below: 

• LMMSE [78]: window of size 5×5, Linear Minimum Mean Square Error Estimator. 

• RLMMSE [49]: Recursive version of Linear Minimum Mean Square Error 

Estimator, window of size 5×5.  

• RSNLMMSE [50]: window using a 5×5, recursive version of SNR-based Nonlocal 

LMMSE. 

The parameters are adjusted empirically for de-noising MR images and the setup of all 

the parameters using the proposed scheme is shown in the Table 5.1. The ground truth 

MR data are artificially contaminated with a noise variance having the range 5–30 % to 

evaluate the quantitative metrics. Based on SSIM and MSE average restoration results 

for Rician noise and based on PSNR, MSE, SSIM and CP average restoration results for 

Gaussian and Rayleigh  noise over 4-50 iterations or till the convergence of all these de-

noising methods are computed. 

The performance analysis and comparative study of the proposed method with 

other standard methods are represented on the basis of quantitative results SSIM (MSE) 

for different levels of Rician noise in Table 5.2. The value of PSNR, MSE, SSIM and 

CP represented for different levels of Gaussian and Rayleigh noise in Table 5.3 and 

Table 5.4 respectively. In the case of Rician noise SSIM and MSE values show that at 
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low as well as at high rates of Rician noise, the proposed method has much better 

restoration results than existing methods. 

           Fig. 5.3 and Fig. 5.4 illustrate detailed results, obtained with the close up view of 

the restored images for better inspection, in order to compare the visual performance, 

existing and proposed approaches, incorporates real image, noisy image and the restored 

image. The visual results for simulated MR slice is corrupted with 10 % level of Rician 

noise is presented in Fig. 5.3, Gaussian and Rayleigh noise in Fig. 5.4. On the basis of 

quantitative and visual results it is apparent that the proposed approach has produced 

more accurate results such as more noise removing ability, and preservation of edges 

and structural information, at all levels of Rician noise. 

Retaining the important structural information, such as texture and edges, is 

considered as an important task in image restoration during noise smoothing process. 

The detailed information, present in the image do not quantify MSE. A well-known 

quantitative measure SSIM is used for measure the detail preservation performance of 

the proposed filter shown in the Table 5.2. The proposed technique is superior in terms 

of retaining structural information at all noise levels clearly shown in Fig. 5.5(a), 5.5(b), 

5.5(c). 

        The solution can be computed in one single step (or a few steps for the RLMMSE 

filter), making it computationally efficient for large data sets; this is the main advantage 

of the LMMSE [78] filter (and to some extent for the RLMMSE filter).The proposed 

technique is an deterioration in terms of MSE comparison with the best performing 

RSNLMMSE [50] and RLMMSE [49], at a low noise rate (5 %), 5.08 for T1, 4.58 for 

T2, and 5.18 for PD. Result, shows that the efficiency of proposed filter also increases 

as the noise rate increases.  
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         At high noise rates, the proposed technique accurately differentiates the low and 

high noise regions, hence the better result obtained. Similarly, in the case of SSIM 

Table 5.2 shows that the proposed scheme outperforms the existing techniques. 

Comparison of the proposed filter using MSE values are shown in Fig. 5.5(d), 5.5(e), 

5.5(f) respectively using simulated data sets. The above figure clearly indicates that the 

proposed technique is superior at all noise levels.  

          

 

              

                    (a)                               (b)                              (c)                            (d) 

             

                     (e)                              (f)                             (g)                              (h) 

Fig. 5.3: Simulated T1 weighted MR image with Rician noise (a) Original image (b) 

10% noisy image (c) RLMMSE (d) RSNLMMSE (e) LMMSE (f) Proposed with TV (g) 

Proposed with AD (h) Proposed with CD. 
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       (a)                              (b)                              (c)                              (d)   

Fig. 5.4: Simulated T1 weighted MR image with Gaussian and Rayleigh noise (a) 

Gaussian noise corrupted MR image (b) Restored image with proposed method from 

Gaussian noise corrupted MR image (c) Rayleigh noise corrupted MR image (d) 

Restored image with proposed method from Rayleigh noise corrupted MR image. 

             

                 

                                                                      (a)                                 
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                         (b) 

            

                                                              (c) 
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                                                                       (d) 

                  

                                                                       (e) 
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                                                                   (f) 

Figure 5.5: SSIM based comparison of various methods: (a) T1-weighted modality   (b) 

T2-weighted modality (c) PD-weighted modality and MSE based comparison of various 

methods: (d) T1-weighted modality   (e) T2-weighted modality (f) PD-weighted 

modality.   

  Table 5.1: Parameters setup of the proposed method for de-noising MR images 

Parameter                            Description Value 

Num_Iter 

 

Number of iterations used as a parameter to getting 

desired output at four in the proposed method. 

4.0 

t∆  

 

Integration constant which is used as a parameter to 

calculate the desired output at zero point one in the 

proposed method. 

0.10 

k  

 

Edge threshold parameter used to controls the diffusion, 

getting desired output at one point four in the proposed 

method. 

1.4 
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θ  Used as a parameter in the diffusion coefficient, getting 

desired output at 30
π in the proposed method. 

30
π  

λ  Regularization parameter used for making balance 

between likelihood term and regularization function, 

getting desired output at zero point nine in the proposed 

method. 

0.9 

1k  Positive number used to calculate the Rician noise, 

getting desired output at one in the proposed method. 

1 

epsy The value of eps can be assigned to lowest machine 

number to avoid divide by zero conditions during 

implementations 

0.0000000001 

γ  Gradient modulus threshold used as a parameter that 

controls the conduction, getting desired output at four in 

the proposed method.  

4.0 

 

Table 5.2: Quantitative comparison on Simulated MR data (Brain Web) for Rician 

noise using SSIM (MSE) 

Modality 
(slice) 

Noise 
ratio 

LMMSE        
     [78] 

RLMMSE    
       [49] 

RSNLMMS
E         [50] 

Proposed 
with TV 

Proposed 
with AD 

Proposed 
with CD 

 

T1-
weighted 
(slice 70) 

0.05 0.96(17.79) 0.97(17.40) 0.97(17.45) 0.97(17.11) 0.98(16.38) 0.98(12.37) 
0.10 0.91(53.97) 0.92(51.81) 0.92(51.84) 0.93(49.55) 0.95(33.62) 0.96(23.88) 
0.15 0.87(92.25) 0.89(87.19) 0.89(90.68) 0.90(87.80) 0.94(55.80) 0.95(44.22) 
0.20 0.83(130.53) 0.85(122.5) 0.85(129.51) 0.87(120.94) 0.92(92.71) 0.93(78.37) 
0.25 0.79(168.81) 0.82(157.9) 0.81(168.34) 0.82(160.26) 0.91(107.37) 0.92(98.43) 
0.30 0.75(207.09) 0.79(193.3) 0.77(207.17) 0.78(200.83) 0.90(139.85) 0.91(103.03) 
Mean 0.85(111.74) 0.87(105.0) 0.87(110.83) 0.88(104.08) 0.93(74.29) 0.94(60.05) 

 

T2-
weighted 
(slice 70) 

0.05 0.95(18.79) 0.96(18.40) 0.97(17.95) 0.96(17.01) 0.98(17.38) 0.98(13.37) 
0.10 0.90(55.97) 0.91(52.81) 0.91(51.84) 0.92(47.55) 0.96(35.62) 0.96(25.88) 
0.15 0.86(94.25) 0.90(86.19) 0.88(91.68) 0.89(88.80) 0.93(60.80) 0.94(49.22) 
0.20 0.82(134.53) 0.85(124.5) 0.85(130.51) 0.86(125.94) 0.92(94.71) 0.93(80.37) 
0.25 0.78(170.81) 0.81(160.9) 0.81(169.34) 0.84(160.26) 0.91(108.37) 0.92(97.43) 
0.30 0.74(210.09) 0.79(195.3) 0.77(208.17) 0.78(201.83) 0.90(140.85) 0.91(104.03) 
Mean 0.84(111.92) 0.87(104.9) 0.86(111.58) 0.87(106.91) 0.93(76.29) 0.94(61.72) 
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PD-
weighted 
(slice 50) 

0.05 0.96(17.89) 0.97(17.50) 0.97(17.25) 0.97(17.14) 0.98(16.30) 0.98(12.07) 
0.10 0.92(52.97) 0.91(51.88) 0.92(50.84) 0.93(49.55) 0.96(33.62) 0.96(23.38) 
0.15 0.87(92.25) 0.88(90.19) 0.88(90.68) 0.89(90.90) 0.94(54.80) 0.94(48.22) 
0.20 0.83(130.53) 0.85(122.5) 0.85(130.81) 0.86(126.94) 0.92(91.71) 0.93(77.37) 
0.25 0.78(171.81) 0.82(156.9) 0.81(168.34) 0.82(162.26) 0.91(107.37) 0.92(98.33) 
0.30 0.75(206.09) 0.79(190.3) 0.78(204.17) 0.79(202.83) 0.90(139.95) 0.91(104.13) 

 Mean 0.85(111.92) 0.87(104.9) 0.87(110.35) 0.88(108.08) 0.94(73.96) 0.94(60.58) 
Overall Mean 0.84(111.86) 0.87(104.9) 0.86(110.92) 0.85(106.35) 0.93(74.84) 0.94(60.78) 

 

Table 5.3: Quantitative comparison of proposed method on Simulated MR data (Brain 

Web) for Gaussian noise using PSNR, MSE, SSIM and CP 

Modality 
(slice) 

Noise 
ratio 

PSNR-TV PSNR-
AD 

PSNR-
CD 

MSE-TV MSE-AD MSE-CD 

 

 

 

T1-
weighted 
(slice 70) 

0.05 30.6981 35.9323 48.0611 49.0349 16.5701 12.0162 
0.10 29.1353 34.1822 45.9927 64.7059 20.9823 18.6103 
0.15 26.7679 33.9802 43.6477 81.3862 31.0412 23.9809 
0.20 22.5606 33.0856 40.1873 100.9685 43.9964 30.0242 
0.25 20.2709 32.9734 39.5916 121.5862 64.0451 41.8231 
0.30 19.0696 32.0946 38.8859 144.5862 85.1161 53.0327 
Mean 24.7504 33.7080 42.7277 93.7113 

 
43.6252 
 

29.9145 
 

Noise 
ratio 

SSIM-TV SSIM-AD SSIM-
CD 

CP-TV CP-AD CP-CD 

0.05 0.9051 0.9846 0.9879 0.9519 0.9857 0.9885 
0.10 0.8431 0.9628 0.9702 0.9082 0.9659 0.9708 
0.15 0.7876 0.9595 0.9655 0.8099 0.9377 0.9389 
0.20 0.7025 0.9465 0.9575 0.7158 0.9089 0.9196 
0.25 0.6362 0.9075 0.9253 0.6531 0.9011 0.9094 
0.30 0.5194 0.8973 0.9054 0.6015 0.8815 0.8998 
Mean 0.7323 0.9430 0.9519 0.7734 0.9301 0.9378 

 

Table 5.4: Quantitative comparison of proposed method on Simulated MR data (Brain 

Web) for Rayleigh noise using PSNR, MSE, SSIM and CP 

Modality 
(slice) 

Noise 
ratio 

PSNR-TV PSNR-
AD 

PSNR-
CD 

MSE-TV MSE-AD MSE-CD 

 

 

 

T1-
weighted 
(slice 70) 

0.05 34.0182 36.6902 53.4115 35.1719 13.1882 10.5691 
0.10 31.5019 35.8007 52.8658 56.1409 33.1353 18.6167 
0.15 29.7152 34.8623 50.4752 77.5652 44.8061 25.7233 
0.20 26.3026 34.0087 47.2959 89.9408 51.0374 31.2191 
0.25 23.3632 33.9042 44.2978 98.5446 70.4395 41.8444 
0.30 21.8798 33.6601 43.2258 118.5376 80.8573 48.0198 
Mean 27.7968 

 
34.8210 
 

48.5953 
 

79.3168 
 

48.9106 
 

29.3320 
 

Noise 
ratio 

SSIM-TV SSIM-AD SSIM-
CD 

CP-TV CP-AD CP-CD 

0.05 0.9646 0.9802 0.9804 0.9797 0.9801 0.9808 
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0.10 0.9071 0.9485 0.9795 0.9578 0.9689 0.9783 
0.15 0.8858 0.9091 0.9391 0.9051 0.9397 0.9417 
0.20 0.8445 0.8988 0.9095 0.8922 0.9012 0.9094 
0.25 0.8037 0.8844 0.8991 0.8711 0.8822 0.8924 
0.30 0.7955 0.8631 0.8794 0.8521 0.8601 0.8644 
Mean 0.8668 

 
0.9140 
 

0.9311 
 

0.9096 
 

0.9220 
 

0.9278 
 

 

5.5. Conclusions 
In this chapter, we have proposed a partial differential equation-based general 

framework filter adapted to Rician noise, Gaussian noise and Rayleigh noise for 

restoration and enhancement of magnetic resonance images. The proposed filter consists 

of two terms namely data fidelity and prior. The data fidelity term i.e. likelihood term is 

derived from Rician pdf, Gaussian pdf and Rayleigh pdf and total variation (TV) based 

prior, anisotropic diffusion (AD) based prior and  a nonlinear complex diffusion (CD) 

based prior are used. Further, mathematical simplifications have been introduced for 

likelihood term for efficient implementation of the algorithm. The proposed method was 

tested on Brain Web data set for varying noise levels and performance was evaluated in 

terms of MSE and SSIM for Rician noise. Similarly the proposed method also removes 

Gaussian noise as well as Rayleigh noise. From obtained results and comparative 

analysis with other standard methods, it is observed that the proposed method is 

performing better. Further, visual results clearly indicate that the proposed technique 

has the capability of better noise removal. 
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