
Chapter 2 : THEORETICAL BACKGROUND 

This chapter discusses about theoretical background for restoration and enhancement of 

MRI. In this chapter, we have also given an overview of magnetic resonance images 

and its properties which provide basis for medical image applications discussed in 

subsequent chapters of the thesis. Further, in this chapter literature survey of prominent 

approaches for magnetic resonance images are given. Section 2.1 presents the 

Introduction for MR images. 2.2 presents the detailed noise patterns in MR images. 

Section 2.3 presents the literature survey of MRI restoration and enhancement Methods. 

Section 2.4 presents the dataset description. Section 2.5 presents the detailed discussion 

about various performance measures used for qualitative and quantitative analysis. 

2.1. Introduction 

     Magnetic  resonance  imaging  (MRI)  is  a  notable  imaging  technique  to  provide 

highly  detailed  images  of  tissues  and  organs  in the  human  body.  MRI  is  

primarily  used  to  demonstrate  the  pathological  or  other  physiological  alterations  

of  living  tissues  [30,31].  It provides  information  that  differs  from  other  imaging  

modalities such  as  ultrasound  and  computed  tomography  (CT).  Its  major  

technological  advantage  is  that  it  can  characterize  and  discriminate among  tissues  

using  their  physical  and  biochemical  properties.  MRI produces  sectional  images  of  

equivalent  resolution  in  any  projection  without  moving  the  patient, and it is limited  

only  by  its  spatial  resolution  and  long imaging  times.  The  ability  to obtain  

images  in multiple  planes  adds  to  its  versatility  and  diagnostic  utility  and offers 

special  advantages  for  radiation  and/or  surgical  treatment planning. Further, the  

inherent  flexibility  of  MRI  also  permits  its  application  in  many  clinical  tasks  

other  than imaging  static  anatomy.  
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       The  visual  quality  of  magnetic  resonance  images  plays  an  important  role  in  

accuracy  of  clinical diagnosis  which  can  be  seriously degraded  by  existing  noise  

during  acquisition  process.  In  a  single channel  signal  acquisition,  the  MR  image  

is  commonly  reconstructed  by  computing  the  inverse  discrete  Fourier  transform  

of  the raw  data.  The  signal  component  of  the  measurement  is  present  in both  real  

and  imaginary  channels.  Each  of  the  orthogonal  channels is  affected  by  additive  

white  Gaussian  noise  [32].  Most  commonly, the  magnitude  of  the  reconstructed  

MRI  image  is  used  for  visual inspection  and  automatic  computer  analysis.  Since  

the  magnitude of  the  MRI  signal  is  the  square  root  of  the  sum  of  the  squares  of  

two independent  Gaussian  variables,  it  follows  Rician  distribution  [33]. In  

multichannel signal  acquisition,  the  MR  image  is  reconstructed by  combining  

complex  images, and  the  noise  distribution  is described  by  noncentral  Chi  

distribution  [34, 35].  Moreover,  in  case  of parallel  imaging,  the  noise  amplitude  

varies  according  to  the  spatial  location  of  the  image  and  can  follow  Rician  or  

Chi  distribution according  to  the  reconstruction  technique  [36]. 

          In  general,  there  are  two  typical  ways  to  reduce  the  noise  in  the images.  

One  way  is  to  acquire  the  data  several  times  and  average them.  However, it 

increases the acquisition time.  Another  way  is  to de-noise  the  images  by  using  the  

post  processing  methods.  In  the  literatures,  numerous  approaches  to  denoising  

MR  images  have  been proposed  including  the  classic  spatial  and  temporal  filters  

[30], approaches  based  on  anisotropic  diffusion  filter  [37,38],  the  nonlocal  means 

algorithm  [39,40],  bilateral  and  trilateral  filters  [41,42], the  wavelet  transform 

[43,44],  the  curvelet  and  the  contourlet transforms  [45,46],  maximum  likelihood 

approach  [47,48],  linear minimum  mean  square  error  estimation  [49,50],  

nonparametric neighborhood  statistics/estimation  [51,52]  and  singularity  function  
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analysis  [53,54].  The  aim  of  this  chapter  is  to  summarize  these literatures  for 

MRI  denoising. 

2.2.  Noise patterns in MR images 

In this section, we have discussed various noise patterns in MR images, and its 

properties which provide basis for computer vision applications discussed in 

subsequent chapters of the thesis. MRI  system  is  working  on  the  principles  of 

nuclear  magnetic resonance  (NMR),  to  map  the  spatial  location  and  

associated  properties  of  specific  nuclei  or  protons  in  a  subject  using  the 

interaction between  an  electromagnetic  field  and  nuclear  spin  [30,31].   

          MRI,  even  if  the  scanner  technology  has  undergone  tremendous 

improvements  in  spatial  resolution,  acquisition  speed  and signal-to-noise  ratio  

(SNR),  the  diagnostic  and  visual  quality  of MR  images  are  still  affected  by  

the  noise  in  acquisition.  However,  MRIs  contain  varying  amount  of  noise  of 

diverse  origins, including  noise  from  stochastic  variation,  numerous  

physiological processes,  eddy  currents,  artifacts  from  the  magnetic 

susceptibilities  between  neighboring  tissues,  rigid  body  motion,  non-rigid 

motion  and  other  sources  [55,56].  Identifying  and  reducing  these noise  

components  in  MR  images  is  necessary  to  improve  the  validity and  accuracy  

of  studies  designed  to  map  the  structure  and  function of  the  human  body. 

             The  main  noise  in  MRI  is  due  to  thermal  noise  that  is  from  the 

scanned  object.  The  variance  of  thermal  noise  can  be  described as  the  sum 

of  noise  variances  from  independent  stochastic  processes  representing  the 

body,  the  coil  and  the  electronics  [57]. Such  a  noise  degrades  the  acquisition  

of  any  quantitative  measurements  from  the  data.  The  signal-to-noise  ratio  
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depends  on  static field  intensity,  pulse  sequence  design,  tissue  characteristics,  

RF  coil and  sequence  parameters,  such  as  voxel  size  (limiting  spatial  

resolution),  number  of  averages  in  the  image  acquisition  and  receiver 

bandwidth.  In  this  section,  the  noise  distribution  in  MRI  for  both single  coil  

and  multiple  coils  acquisition  are  explained.  

            The  raw  data  obtained  during  MRI  scanning  are  complex  values that  

represent  the  Fourier  transform  of  a  magnetization  distribution  of  a  volume  

of  tissue.  An  inverse  Fourier  transform  converts these  raw  data  into  

magnitude,  frequency  and  phase  components that  more  directly  represent  the  

physiological  and  morphological features  of  interest  in  the  person  being  

scanned.  Therefore,  noise in  the  k-space  in  MR  data  from  each  coil  is  

assumed  to  be  a  zero mean  uncorrelated  Gaussian  process  with  equal  

variance  in  both real  and  imaginary  parts  because  of  the  linearity  and  

orthogonality of  the  Fourier  transform  [32,33].  However,  it  is  common  

practice  to transform  the  complex  valued  images  into  magnitude  and  phase 

images.  Since  computation  of  a  magnitude  (or  phase)  image  is  a non-linear  

operation,  the  probability  density  function  (PDF)  of  the MR  data  changes.  In  

single  coil  MRI  systems,  magnitude  data  in  spatial  domain  is  modeled  as  

the  Rician  distribution  and  the  so-called Rician  noise  (the  error  between  the  

underlying  image  intensities and  the  measurement  data)  is  locally  signal 

dependent  [33]. 
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Where I  denotes amplitude of a noise-free image, 2
nσ  denotes the Gaussian noise 

variance, 0(.)J  is the modified zero order Bessel function. (.)∈  is the unit step 
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Heaviside function, and M is the magnitude variable of MR image. In  high SNR  i.e., 

high  intensity  (bright)  regions  of  the  magnitude  image, the  Rician  distribution  

tends  to  a  Gaussian  distribution  with  mean   2 2
nI σ+  and  variance  2

nσ  given  as 
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In  the  image  background,  where  SNR  is  zero  due  to  the  lack  of  water proton 

density  in  the  air,  the  Rician  PDF  simplifies  to  a  Rayleigh distribution  with PDF  
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           The  MR  images  acquired  using  parallel  imaging  with  multiple coil  

system,  noise  is  highly  inhomogeneous.  The  acquired  signal in  the  complex  

spatial  domain  in each  coil  may  also  be  modeled  as the  original  signal  corrupted  

with  complex  additive  Gaussian  noise, with  zero  mean  and  equal  variance  2
nσ .  

If  no  sub-sampling  is  done  in the  k-space,  the  composite  magnitude  image  may  

be  obtained  using methods  such  as  the  sum  of  squares  (SoS)  [58].  Assuming  

the noise components  are  independent  and  identically  distributed  (IID),  the 

envelope of  the  magnitude  signal )(xM L will  follow  a  noncentral  Chi distribution  

with  PDF  [104] 
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where L  is  the  number  of  coils.  Eq.  (4)  reduces  to  the  Rician  distribution  for  L  

=  1.  In  the  background,  this  PDF  reduces  to  a  central Chi  distribution  with PDF  

[58] 
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and Eq. (5) will become  to  Rayleigh  when  L  =  1. 

2.3. Literature Survey of MRI restoration and enhancement methods  

        In  MRI,  there  is  an  intrinsic  trade-off  between  the  signal-to-noise  ratio 

(SNR) and  resolution  i.e.,  high  resolution,  low  SNR  and low  resolution,  high  

SNR. Human  visual  system  is  highly  effective in  recognizing  structures  even  in  

the presence  of  a  considerable amount  of  noise.  When  the  SNR  is  too  small  or  

the contrast  too low,  it  becomes  very  difficult  for  human  visual  system  to  detect 

anatomical  structures.  Noise  reduction  can  be  categorized  in  two groups: 

acquisition  based  noise  reduction  methods  and  post-acquisition  image  denoising. 

The  method  for  improving  the  SNR  during the  acquisition  of  an  image  is  either  

increasing  acquisition  time  (i.e., time  averaging  over  repeated  measurements)  or 

decreasing  spatial resolution  (i.e.,  enlarging  voxel  volume).  However,  the 

acquisition time  is  limited  in  practice  due  to  constraints  such  as  patient  comfort 

and  system  throughput  and  by  physical  limitations  arising  in dynamic  applications 

such  as  cardiac  imaging  and  functional  MRI. Therefore,  there  is  a  practical  limit 

on  the  SNR  of  the  acquired  MRI data  in  most  applications.  Hence, post-

acquisition image denoising is an inexpensive and effective alternative. 

           The  aim  of  a  post  processing  MRI  de-noising  algorithm  is  that of  reducing 

the  noise  power  while  maintaining  the  original  resolution  of  the  useful  features. 

In  fact,  in  a  diagnostic  image,  edge preservation  is  important  in  maintaining  the 

original  clinical  significance.  It is also important to reduce  noise  without introducing 

artifacts.  This  chapter  focuses  on  the  post-acquisition  image  de-noising methods,  

and  reviews  the  various  methods  for  de-noising  MR images  presented  in the  

literature.  The  de-noising  methods  can  be grouped  based  on  filtering  approach, 

transform  approach  and  statistical  approach.  In  filtering  approach,  the  linear  or 
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non-linear filters  are  used  to  de-noise  the  MRI.  In  transform  approach,  the 

transforms  such  as  wavelet  transform,  curvelet  transform  are  used for  de-noising 

MRI.  In  statistical  approach,  the  estimation  of  noise based  on  Maximum 

likelihood  approach,  linear  minimum  mean square  error  (LMMSE)  estimation, 

Markov  random  process,  Empirical  Bayes  approaches  are  used  for  denoising  

MRI.   

2.3.1. Filtering approach  

2.3.1.1. Spatial and temporal filter  

            McVeigh  et al. [59]  proposed  the  spatial  filter  and  temporal  filter  for  

reducing Gaussian  noise  in  MR  images.  Spatial  filter  is  one method  by  

convolving  an image  with  a  filter  in  spatial  domain. This  technique  reduces  the  

variance  in  the  image  but  blurs  sharp edges  by  an  amount  related  to  the  shape  

of  the  function used  in the  convolution.  This  process  is  equivalent  to  reduce  high  

spatial frequencies  in  the  image.  MR  imaging  is  particularly  amenable  to 

convolution filtering,  since  the  data  obtained  in  frequency  domain, can  simply  be  

multiplied by  a  filter  function  which  reduces  higher spatial  frequencies.  This  type  

of  filter smoothen  the  final  image,  but the  signal-to-noise  ratio  as  a  function  of  

frequency is  unaffected because  both  the  noise  and  the  signal  are  reduced  by  the  

same factor.  With  this  type  of  image  smoothening,  there  is  a  compromise between  

the reduction  of  noise  and  artifact,  and  the  loss  of  spatial resolution.  Temporal  

filter must  be  chosen  in  appropriate  relation to  the  sampling  interval  in  order  to  

avoid the  aliasing  artifacts.  This filter at best would work  only  on  spin  echo  

images.  A temporal  filter  with  too  narrow  a  frequency  response  diminishes  the  

signal  at the  edges  of  the  image,  too  broad  a  frequency  response  introduces 

additional  noise  through  aliasing. 
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 2.3.1.2. Anisotropic diffusion filter 

             Perona  and  Malik et al.  [37]  developed  a  multiscale  smoothing  and edge  

detection scheme  called  anisotropic  diffusion  filter.  This would  overcome  the  

drawback  of spatial  filtering  and  significantly  improve  the  image  quality  by  

preserving  object boundaries, efficiently  removing  noise  in  homogeneous  regions  

and  edge sharpening.  This  filter  based  on  casting  the  problem  in  terms  of  a  heat 

equation which  is  based  on  second  order  partial  differential  equation  (PDE)  in  an 

anisotropic  medium.  Smoothening  is  formulated  as a  diffusive  process,  which  is 

suppressed  or  stopped  at  boundaries by  selecting  the  local  gradient  strengths  in  

different  directions.  In this  approach  the  image   I   is  only  convolved  in  the 

direction  orthogonal  to  the  gradient  of  the  image  which  ensures  the  preservation 

of  edges.  The iterative de-noising process of initial image 0I  can be expressed as 
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where  k   is  the  diffusivity  parameter.  This  filtering  technique  is  successfully 

applied  to  2D  and  3D  MR  images  denoising  by  Gerig  et al. [60].  Even  though 

the  performance  of  the  noise  filter  is  excellent, the  underlying  image  model  is 

piecewise  constant  or  slowly  varying.  As  a  result,  the  edge  sharpening  causes  a 

region  with  a  constant gray  value  slope.  Here,  image  noise  is  assumed  to  be  

zero  mean  and Gaussian  distributed. 
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2.3.1.3. Nonlocal means filter 

          Buades  et al. [39]  proposed  the  nonlocal  means  (NLM)  filter. Most  of  the  

existing  denoising  methods  mainly  rely  on  local  pixels within  a  small  neighbor  to  

remove  the  noise.  As  a  result,  large  scale structures  are  preserved  while  small  

structures  are  considered  as noise  and  are  removed.  The  NLM  filter  exploits  the 

redundancy  of information  contained  within  the  images  to  remove  the  noise.  The 

restored  intensity  value  of  the  voxel  is  calculated  as  the  weighted average  of  all  

the  voxel  intensities  within  the  image.  In  the  nonlocal means  Buades  et al. [39], 

Given  a  discrete  noisy  image })({ Iiiuu ∈= , the  estimated  value  )]([ iuNL ,  for  a  

pixel  i ,  is  computed  as  a  weighted average  of  all  the  pixels  in  the  image, 

∑
∈

=
Ij

jujiwiuNL )(),()]([                                                                                          (2.8) 

where  the  family  of  weights  jjiw )},({  depend  on  the  similarity between  the  

pixels  i  and  j,  and  satisfy  the  usual  conditions 1),(0 ≤≤ jiw  and 1),( =∑ j
jiw . 

             The  similarity  between  two  pixels  i  and  j  depends  on  the  similarity  of 

the  intensity  gray  level  vectors  )( iNu  and )( jNu ,  where kN denotes  a  square 

neighborhood  of  fixed  size  and  centered  at a  pixel  k.  This  similarity  is  measured 

as  a  decreasing  function  of  the weighted  Euclidean  distance, 
2

,2
)()(

aji NuNu −    

where  a  >  0  is  the standard  deviation  of  the  Gaussian  kernel.  The  application  of  

the Euclidean  distance  to  the  noisy  neighborhoods  raises  the  following equality: 

22

,2

2

,2
2)()()()( aNuNuNuNuE

qjiqji +−=−                                                          (2.9) 

             This  equality  shows  the  robustness  of  the  algorithm  since  in expectation  

the  Euclidean  distance  conserves  the  order  of  similarity between  pixels.  The  
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pixels  with  a  similar  gray  level  neighborhood  to )( iNu  have  larger  weights  in  

the average.  These weights are defined as, 
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where )(iZ  is the normalizing constant 
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and  the  parameter  h  acts  as  a  degree  of  filtering.  It  controls  the decay  of  the 

exponential  function  and  therefore  the  decay  of  the weights  as  a  function  of  the 

Euclidean  distances.                                  

2.3.1.4. Combination of domain and range filtering techniques 

              Tomasi  and  Manduchi  et al. [41]  proposed  the  bilateral  filter  as  a non-

iterative  alternative  to  anisotropic  diffusion  filter.  In  both these  approaches,  

images  are smoothed  while  edges  are  preserved. Unlike  anisotropic  diffusion,  

bilateral  filtering  does  not  involve  the solution  of  PDE  and  can  be  implemented  

in  a  single  iteration.  This filter  is  a  combination  of  two  Gaussian  filters  i.e.,  

domain  and  range filters.  Walker  et al.  [61]  and  Xie  et al. [62]  applied  this  filter  

for  MRI  and Hamarneh  and  Hradsky et al.  [63]  used  this  filter  for  reducing  noise  

in Diffusion  Tensor  MRI.  

             Wong  et al. [64,42]  proposed  the  trilateral  filter  for  reduction of  noise  in  

medical  images  which  works  along  similar  lines  to bilateral  filtering.  It  is  not  

only  taking  the  geometric  and  photometric  similarities  into  account,  but  also  

makes  use  of  the  local structural  similarity  to  smooth  the  images.  By  using  the  

local  structural  information,  the  non-homogeneous  regions  in  the  images have  
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been  identified.  In  the  homogeneous  region,  only  low  pass filtering  is  performed,  

where  as  in  the  non-homogeneous  region, the  intensity  value  at  each  pixel  is  

replaced  with  an  average  value weighted  by  the  geometric,  photometric  and  local  

structural  similarities  between  the  neighboring  pixels  within  a  spatial  window.  It 

uses  narrow  spatial  window  to  smooth  an  image  while  preserving the  edges. 

2.3.2. Transform domain approach 

2.3.2.1. Wavelet Transform       

           Wavelets  are  mathematical  functions  that  decompose  data  into different  

frequency  components  that  can  be  studied  with  a  resolution  matched  to  their 

scale.  Wavelet transforms are multiresolution representations of signals and images.  

They  decompose  a  signal  into a  hierarchy  of  scales  ranging  from  the  coarsest  

scale  to  the  finest one.  Wavelet  coefficients  of  a  signal  are  the  projections  of  the  

signal  onto  the  multiresolution  subspaces.  Since  the  work  of Donoho and  

Johnstone et al.  [43,65],  over  the  last  two  decades,  there  are  many wavelet  based  

noise  reduction  schemes  for  MRI  [66,67].  The  main advantage  of  the  discrete  

wavelet  transform  (DWT)  is  that  it  can describe  local  features  either  spatially  or  

spectrally,  which  makes it  to  filter  out  most  of  noise  while  at  the  same  time  

preserving  the edges  and  fine  details. 

          Typically, a wavelet based denoising technique includes the following steps: 

1. Transform the original image into wavelet domain and acquire the wavelet 

coefficients. 

2.   Process the wavelet coefficients.  This  step  typically  involves thresholding  the        

wavelet  coefficients  to  minimize  the  contribution  of  noise  in  the  wavelet       

domain. 
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3. Take  inverse  wavelet  transform  on  the  processed  coefficients  to produce  the  

denoised  image. 

The  above  steps  can  be  repeated  for  number  of  wavelet  transform scales,  each  

representing  different  degrees  of  wavelet  decomposition. 

2.3.2.2. Curvelet transform   

          The  denoising  methods  based  on  wavelet  transform,  are  not suitable  for  

describing  the  signals  which  have  high  dimensional singularities  such  as  edges.  

To  overcome  the  shortcomings  of the  wavelet  transform,  and  to  detect,  represent 

and  process  high dimensional  data,  Candès  and  Donoho et al.  [45]  proposed  the  

concept of  curvelet  transform  based  on  the  theory  of  multiscale  geometric 

analysis.  Curvelets  are  based on  multiscale  ridgelets  combined  with  a  spatial  band  

pass  filtering operation  to  isolate  different  scales.  Starck et al. [68] firstly used the 

curvelet transform for image denoising. 

 Following steps are involved in the denoising algorithm of curvelet transform: 

1.  Compute all thresholds for curvelets. 

2.  Compute norm of curvelets. 

3.  Apply curvelet transform to noisy image. 

4.  Apply hard thresholding to the curvelet coefficients. 

5.  Apply inverse curvelet transform to the result of step 4. 

2.3.2.3. Contourlet transform   

          The  wavelet  transform  is  powerful  in  representing  images  containing  

smooth  areas  separated  with  edges.  However,  it  cannot perform  well  when  the  

edges  are  smooth  curves.  The  contourlets have  the  property  of  capturing  contours  

and  fine  details  in  images. The Contourlet transform  by  Do  and  Vetterli et al.  [69]  

is  a  geometrical  image  transform,  which  represents  images  containing  contours 
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and  textures,  and  provides  sparse  representation  at  both  spatial and  directional  

resolutions.   

              The  steps  involved  in  the  denoising  algorithm  of  contourlet transform  are  

described  below: 

1. Perform multiscale decomposition of the image using contourlet transform and         

determine the number of scales and directions. 

2.  Apply thresholding at each direction in each scale of contourlet coefficients. 

3.  Reconstruct the denoised image from  the  modified  contourlet coefficients  by       

applying  inverse  contourlet  transform. 

      For  MR  images  denoising,  Latha  and  Subramanian  [70]  used  this contourlet  

transform  based  image  denoising  method. 

2.3.3. Statistical approach  

         A  few  works  have  been  reported  in  the  literature  for  MR  images denoising  

based  on  statistics/estimation  methods.  Estimation  of  the noise  variance  on  MR  

images  is  a  necessary  step  in  noise  removal for  several  reasons. 

statistics/estimation  methods Firstly,  it  gives  a  measure  of  the  quality  of  the MR  

data  and  used  to  measure  the  SNR.  Furthermore,  knowledge  of this  noise  

variance  is  useful  in  the  analysis  of  MRI  system.  Finally,  it is  a  crucial  

parameter  in  image  denoising,  image  segmentation  and image  registration.  One  of  

the  first  attempts  proposed  to  estimate the  magnitude  MR  image  from  a  noisy  

image  is  due  to  Henkleman et al.  [32]  who investigated  the  effect  of  the  noise  on  

MR  magnitude images.  He  showed  that the  noise  leads  to  an  overestimation  of the  

signal  amplitude  and  proposed  a  correction  scheme  based  on image  intensities.  

The  conventional  approach  (CA) was  proposed by  McGibney  and  Smith et al.  [71]  

utilizing  the  noise  properties  of  the second  order  moment. 
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2.3.3.1. Maximum likelihood approach  

           Sijbers  et al. [47,72]  estimated  the  Rician  noise  level  and performed  signal  

reconstruction  using  maximum  likelihood  (ML) approach  for  reducing  bias  that  

appears  in  the  conventional approach.  A  similar  method  is  used  by  Jiang  and 

Wang et al.  [73].  Sijbers et al. [74]  used  this  approach  to  estimate  the  image  noise  

variance from  the  background  mode  of  the  histogram  of  MR  image  which  is 

known  to  be  Rayleigh  distributed.  He  and  Greenshields et al.  [75]  used the  

nonlocal  maximum  likelihood  (NLML)  estimation  method  for Rician  noise.  This  

method  is  based  on  deploying  maximum  likelihood  estimator  on  the  nonlocal  

neighborhood  in  order  to  predict the  underlying  noise.  Rajan  et al. [76]  used  the  

ML  based  estimation  of  the  local  variance  for  each  pixel  of  the  image  using  a  

local neighborhood  when  no  background  information  is  available,  like cardiac  and  

lung  images.  Rajan  et al. [77]  proposed  the  MRI  denoising  for  spatially  varying  

noise  levels  based  on  ML  estimation  using restricted  local  neighborhoods.  

Recently, Rajan  et al. [48]  presented the  nonlocal  maximum  likelihood  estimation  

for  denoising  multiple  coil  MR  images. 

2.3.3.2. Linear minimum mean square error estimation  

        Aja-Fernandez  et al. [49,78]  used  the  linear  minimum  mean square  error  

(LMMSE)  estimator  for  Rician  noise.  This  method  uses information  of  the  sample  

distribution  of  local  statistics  of  the image  such  as  the  local  variance,  the  local  

mean  and  the  local  mean square  value.  That  is,  in  this  method,  the  true  value  

for  each  noisy pixel  is  estimated  by  a  set  of  pixels  selected  from  a  local  

neighborhood.  Golshan  and  Hasanzadeh  et al. [79]  have  developed  a  nonlocal 

processing  of  the  LMMSE  method  for  Rician  noise  removal  in  the  3D MRI  

which  is  using  the  hard  threshold  value  of  control  parameters. And  later,  Golshan  
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et al. [50]  modified  this  by  changing  the  control  parameters  according  to  the  

noise  level.  This  method  takes  the advantage  of  the  high  degree  of  redundancy  in  

the  contents  of  3D MR  images  and  provides  a  suitable  similarity  measure  to  find  

the similar  patterns  within  the  given  MR  data  and  the  required  parameters  are  

automatically  chosen  with  respect  to  the  estimated  local SNR  values. 

2.3.3.3. Phase error estimation  

            Tisdall and Atkins et al.  [80]  proposed  the  phase  error  estimation scheme  

for  MRI  denoising.  While  denoising  MR  images  using wavelet  thresholding  or  

anisotropic  diffusion,  there  is  the  risk  of over  smoothing  fine  details  particularly  

in  images  with  lower  SNR. The  phase-corrected  real  reconstruction  relies  on  an  

estimate  of the  phase  error  to  correct  the  phase  of  each  pixel  so  the  imaginary  

component contains  only  noise  and  can  be  discarded.  This approach offers the 

potential for image denoising without the risk of over-smoothening.  The  phase  error  

estimation scheme  is  based on  iteratively  applying  a  series  of  non-linear  filters,  

each  used  to modify  the  phase  estimate  into  greater  agreement  with  one  piece of  

knowledge  about  the  noise  corrupted  image,  until  it  converges  at the  desired  

phase  error  estimate.  This  method  is  useful  for  displaying  inversion  recovery  MR  

images, spin  echo  images  and  in  partial k-space  imaging  MR  images.  

2.3.3.4. Non-parametric estimation method   

         The  nonparametric  neighborhood  statistics  method  for  denoising  MR  images  

was  proposed  by  Awate  and  Whitaker et al.  [51]. This  method  model  images  as  

random  fields  and  uses  reduction  coupled  with  the  Rician  noise  model  as  a  

means  to  recover higher-order  statistics  of  image  neighborhoods  from  noisy  image  

Nonparametric neighborhood density estimation is used for characterizing 

neighborhood structure.  It exploits such statistics for optimal Bayesian denoising of 
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MR images.  Awate and Whitaker et al.  [81] extended  their  work  on  nonparametric  

empirical  Bayes  approach for  feature  preserving  denoising  of  MR  images  that  

bootstraps  itself by  inferring  the  prior,  i.e.,  the  uncorrupted  image  statistics,  from 

the  corrupted  input  data  and  the  knowledge  of  the  Rician  noise model. This  

method  preserves  most  of  the important  features  in  the  brain  MR  images. 

2.3.3.5. Singularity function analysis    

          Luo  et al. [53,54]  proposed  the  singularity  function  analysis (SFA) denoising  

method  of  MR  images,  which  is  based  on  the spectrum  of  the  images. The  

wavelet  de-noising  methods,  discard  least  significant  wavelet  coefficients  (hard  

thresholding)  or shrink  less  significant  wavelet  coefficients  more  than  significant 

coefficients  (soft  thresholding)  to  achieve  noise  reduction  [44,66]. All  these  

methods,  however,  exhibit  the  same  shortcoming  of  losing significant  high-

frequency  components  contained  in  the  original noise-free  image. 

            So  far,  the  MRI  de-noising  techniques  are  discussed  in  detail  and  the 

summary  of  the advantages and limitations  of  MRI  de-noising methods  for  spatially  

uniform  and  non-uniform  noise  distributions are  tabulated  in  Table 2.1. 

Table 2.1: Review of restoration and enhancement of MRI methods 

Category 
of methods 

Paper Brief descriptions Advantage Limitations 

Fuzzy based 
hybrid filter 

(Sharif et 
al., 2015) 

This method uses 
estimated noise 
variance along with 
local and global 
statistics for the 
construction of a robust 
fuzzy membership 
function. 

Appropriate 
construction of 
fuzzy membership 
parameters 
combines the 
advantages of local 
and non local 
estimates in an 
innovative manner. 

Fuzzy based hybrid 
filter provides good 
results with noisy 
spots because 
unbiased estimation 
not computed for 
accurate results. 

Adaptive  
nonlocal 
means 

(Manjón et 
al.,  2010) 

In the  adaptive  NLM  
filter  for  denoising  
MR  images  with  
spatially  varying  noise  
levels,  such  as  those 

This  method  does  
not  require  the  
prior  knowledge  
of  the  coil  
sensitivity  profiles  

Computational burden 
of algorithmic 
complexity. So,  
neglecting the  voxels 
/blocks  with  small 
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obtained  by  parallel  
imaging  and  surface  
coil  acquisitions. The 
information  regarding  
the  local  image  noise  
level  is  used  to  adjust 
the amount  of  
denoising  strength  of  
the  filter. 

in  the  MRI  
scanner. 

weights  (i.e.,  most  
dissimilar  patches  to  
the  current one)  for  
speeding  up  the  
filter. 

Singularity  
function 
analysis 

(Luo et al., 
2010) 

In this paper author 
proposed the singularity  
function  analysis 
(SFA)  denoising  
method  of  MR  
images,  which  is  
based  on  the spectrum  
of  the  images 

This approach can 
efficiently denoise 
while maintaining 
high quality image. 

The  efficiency  of  
this method  depends  
on  the selection  of  
the frequency 
response, 
determination of  the  
singular  points  and  
threshold 

Noise  
adaptive 
nonlinear 
diffusion  
filter 

(Krissian et 
al., 2009) 

This filter  relies  on  a  
robust  estimation  of  
the  standard  deviation  
of  the noise  and  
combines  local  linear  
minimum  mean  square  
error  filters  and  
partial  differential  
equations  for  MRI. 

This  filter  
combines  
volumetric,  planar,  
and 
linear  components  
of  the  local  image  
structure,  which  
can  improve the  
filtering. 

Requires  the  
calculation  of  the  
noise  map  from  the 
receiver  coil  matrix.  
This may be 
implemented by MRI 
scanner’s 
reconstruction 
software. 

Contourlet  
transform 

(Do et al., 
2005) 

The  Contourlet  
transform    is  a  
geometrical  image  
transform,  which  
represents  images  
containing  contours 
and  textures,  and  
provides  sparse  
representation at  both  
spatial and  directional  
resolutions 

The  contourlet 
have  the  property  
of  capturing  
contours  and  fine  
details  in  images. 

High computational  
complexity  because  
of capturing  the  
smooth  contours  in  
the  image. 

Nonlocal  
mean 

(Buades et 
al., 2005) 

Most  of  the  existing  
denoising  methods  
mainly  rely  on  local  
pixels within  a  small  
neighbor  to  remove  
the  noise.  As  a  result,  
large  scale structures  
are  preserved  while  
small  structures  are  
considered  as noise  
and  are  removed. 

The  NLM  filter  
exploits  the  
redundancy  of 
information  
contained  within  
the  images  to  
remove  the  noise. 

Computational burden 
due to its complexity 
of calculating the 
weight of the 
pixel/voxel. 

Bilateral 
and 

(Wong et 
al., 2004) 

Unlike  anisotropic  
diffusion,  bilateral  

This method was 
proposed as a non-

Use  the  narrow  
spatial  window  for  
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trilateral 
filter 

filtering  does  not  
involve  the solution  of  
PDE  and  can  be  
implemented  in  a  
single  iteration.  This 
filter  is  a  combination  
of  two  Gaussian  
filters  i.e.,  domain  
and  range filters. 

iterative alternative 
to anisotropic 
diffusion filter.  In 
both these 
approaches, images 
are smoothed while 
edges are 
preserved. 

the  selection  of the  
neighborhood  pixels  
in  order  to  calculate  
the new  value  of  that  
pixel.  So,  large  scale  
structures are  
preserved,  while  
small  structures  are 
considered  as  noise  
and  are  removed. 

Phase  error  
estimation 

(Sijbers et 
al., 2004) 

In this method the  
phase-corrected  real  
reconstruction  relies  
on  an  estimate  of the  
phase  error  to  correct  
the  phase  of  each  
pixel  so  the  imaginary  
component  contains  
only  noise  and can  be  
discarded. 

This approach  
offers  the  
potential  for  
image  denoising  
without  the  risk of  
over-smoothening. 

In  phase  error  
estimation denoising,  
the convergence  of  
the  phase  error  
estimate  is  a difficult  
task. 

Curvelet  
transform 

(Candés et 
al., 1999) 

The denoising  methods  
based  on  wavelet  
transform,  are  not 
suitable  for  describing 
the  signals  which  
have  high  dimensional 
singularities  such  as  
edges. 

Overcome  the  
short comings  of 
the  wavelet  
transform,   

Does not work well in 
smooth areas, produce 
curvelet-like artifacts. 

Wavelet  
transform 

(Nowak et 
al., 1999) 

Wavelet transforms are 
multiresolution 
representations of 
signals and images.  
They  decompose  a  
signal  into a  hierarchy  
of  scales  ranging  from  
the  coarsest  scale  to  
the  finest one.  Wavelet  
coefficients  of  a  
signal  are  the  
projections  of  the  
signal  onto  the  
multiresolution  
subspaces. 

The  main 
advantage  of  the  
discrete  wavelet  
transform  is  that  
it  can describe, 
local  features  
either  spatially or  
spectrally,  which  
makes it  to  filter  
out  most  of  noise  
while  at  the  same  
time  preserving  
the edges  and  fine  
details. 

May  introduce  
characteristic  artifacts  
that  can  be quiet  
problematic  and  also  
difficult  to  confirm  
the scale  and  
threshold  of  the  
wavelet. 

Anisotropic  
diffusion 
filter 

(Perona et 
al., 1990) 

This  filter  based  on  
casting  the  problem  in  
terms  of  a  heat 
equation  which  is  
based  on  second  order  
partial  differential  
equation  (PDE)  in  an  

This would  
overcome  the  
drawback  of  
spatial  filtering  
and  significantly  
improve  the  
image  quality  by  

Usually  erases  small  
feature and  
transforms  image 
statistics  due  to  its  
edge  enchantment  
causes blocky  
(staircase)  effect  in  
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anisotropic  medium. preserving  object  
boundaries, 
efficiently  
removing  noise  in  
homogeneous  
regions  and  edge  
sharpening. 

the  image. 

Spatial  
filter 

(McVeigh 
et al., 
1985) 

This method was 
proposed    for reducing 
Gaussian noise in MR 
images. 

Spatial  filter  is  
one method  by  
convolving  an  
image  with  a  
filter  in  spatial  
domain. This 
technique reduces 
the variance in the 
image. 

Blurring  edges  by  
averaging  pixels  with  
non similar  patterns  
(suitable  only  for  
Gaussian  noise). 

Temporal  
filter 

(McVeigh 
et al., 
1985) 

Temporal  filter  must  
be  chosen  in  
appropriate  relation to  
the  sampling  interval  
in  order  to  avoid  the  
aliasing  artifacts. 

Proper  selection  
of  frequency  
response  for  the 
filter  is  important  
in  order  to  avoid  
the  aliasing. 

Temporal  filter  must  
be  chosen  in  
appropriate  relation 
to  the  sampling  
interval  in  order  to  
avoid  the  aliasing  
artifacts. 

 

 

2.4. Dataset Description 

           In this section, the brief descriptions of dataset provided which are used in this 

thesis to do various operations and evaluations of the performance metrics using 

MATLAB of the restoration and enhancement of magnetic resonance images. The 

increased importance of automated computer techniques for anatomical brain mapping 

from MR images and quantitative brain image analysis methods leads to an increased 

need for validation and evaluation of the effect of image acquisition parameters on 

performance of these procedures. Validation of analysis techniques of in vivo acquired 

images is complicated due to the lack of reference data (“ground truth”). Also, optimal 

selection of the MR imaging parameters is difficult due to the large parameter space.   
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           BrainWeb makes available to the neuroimaging community, online on 

“http://www.bic.mni.mcgill.ca/ brainweb/”, a set of realistic simulated brain MR image 

volumes (simulated brain database, SBD) that allows the above issues to be examined in 

a controlled, system way. There are three modalities (pulse sequences) dataset present in 

the Brain Web data base [1] which are T1, T2 and PD weighted. Here in this thesis, 

downloaded nearly 1000 MR images from Brain Web dataset and used 70 to 80 images 

for experimental purpose.  

2.5. Performance Measures 

In this section, the brief descriptions of parameters used to evaluate the performance 

measures of restoration and enhancement of magnetic resonance images discussed as 

follows: 

2.5.1. Root mean square error  

The mean square error (MSE) and the root mean square error (RMSE) are the two error 

metrics used to compare image compression quality [81]. Lower value of RMSE means 

good segmentation (i.e. noise is minimum) while high value of RMSE indicates poor 

segmentation (i.e. noise is maximum). 
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where I  is the original image without noise, 'I  is the filtered noise reduced image, 

nm×  is the size of the image and njmi ....1,...1 == . 

2.5.2. Peak Signal-to-Noise Ratio (PSNR)  

The peak signal-to-noise ratio (PSNR) is the error metrics used to compare image 

compression quality [81]. Higher value of PSNR [81] means good segmentation (i.e. 
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noise is minimum) while low value of PSNR indicates poor segmentation (i.e. noise is 

maximum). 





=

RMSE
PSNR 255log20 10                                                                                         (2.13) 

for optimal performance, measured values of PSNR should be large.  

2.5.3. Correlation Parameter (CP)  

The Correlation parameter (CP) is a qualitative measure for edge preservation. If one is 

interested in suppressing noise while at the same time preserving the edges of the 

original image then this parameter proposed in paper [82] can be used. To evaluate the 

performance of the edge preservation or sharpness, the correlation parameter is defined 

as follows 
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where I∆ and 
∧

∆ I are  high pass filtered versions of original image I  and filtered 

image 
∧

I  obtained via a 3x3 pixel standard approximation of the Laplacian operator. 

The I∆  and 
∧

∆ I  are the mean values of I  and 
∧

I  respectively. The correlation 

parameter should be closer to unity for an optimal effect of edge preservation.   

2.5.4. Structure similarity index map (SSIM)  

The SSIM  [83] is used to compare luminance, contrast and structure of two different images. It 

can be treated as a similarity measure of two different images. This similarity measure is a 

function of luminance, contrast and structure. The SSIM of two images X and Y be calculated 

as 
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where iµ  ( YorXi = ) is the mean intensity, )( YorXii =σ is the standard deviation,

yxxy σσσ .=  and )21( oriCi =  is the constant to avoid instability when 22
yx µµ +  is 

very close to zero and is defined as 2)( LkC ii =  in which 1<<ik  and L is the dynamic 

range of pixel values e.g. L=255 for 8-bit gray scale image.  In order to have an overall 

quality measurement of the entire image, mean SSIM is defined as 
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The MSSIM value should be closer to unity for optimal measure of similarity. 

2.6. Conclusions 

This chapter presented the theoretical background for restoration and enhancement of 

MRI. In this chapter, an overview of magnetic resonance images and its properties was 

given which provided basis for medical image processing. Further, in this chapter a 

literature survey of prominent approaches for restoration and enhancement of MR 

images was presented with pros ans cons. 

 

 

 

 

 

 

 

 

 

32 
 


