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Abstract
The aim of the present paper is to analyze the collision of discontinuity wave with blast wave
in non-ideal gas flow through Lie group approach. The particular solution of the system of
quasilinear hyperbolic PDEs, governing one-dimensional unsteady cylindrically symmetric
motion in non-ideal gas, is obtained. The equation governing the evolutionary process ofweak
discontinuity in non-ideal gas is derived which is utilized to discuss the growth and decay
process of the weak discontinuity. Furthermore, the collision of discontinuity wave with the
blast wave is examined inside the state described by the exact solution of the blast wave.
Also, the existence and uniqueness properties of reflection and transmission coefficients of
the waves along with the discontinuity in the shock acceleration are discussed.

Keywords Group-theoretic method · Wave interaction · Non-ideal gas · Blast wave

Mathematics Subject Classification 76M60 · 76N15 · 76N30 · 76L05

1 Introduction

We study the problem of collision of the waves within the context of the system of quasilinear
hyperbolic PDEs. An interesting remark in the context of such system of PDEs is that its
solution admits discontinuity waves. Discontinuity waves are the special class of the solution
of the non-linear hyperbolic system of PDEs which are characterized by a discontinuity
in the flow variable and its normal derivative. For a non-linear system, to find analytical
solution and discussion of its physics in gasdynamics is of great interest from both physical
and mathematical point of view. One of the most interesting problems on the theory of
non-linear waves in gasdynamics is the process of the formation of shock waves. Detailed
investigation towards a better understanding of the wave interaction phenomenon has been
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studied by the authors Brun (1975), Morro (1978, 1980) and Jeffrey (1976). The authors
Ruggeri (1980), Virgopia and Ferraioli (1994), Radha et al. (1993), Pandey and Sharma
(2007), and Pandey (2010) have discussed the process of the interaction of waves in various
fields likemagnetogasdynamics, non-ideal gas, shallowwater, elastic solids, relaxing gas, etc.
Many authors Virgopia and Ferraioli (1994), Chaturvedi et al. (2019) studied the evolution of
weak discontinuity in different material media. In past decades, Pandey et al. (2008), Arora
et al. (2013), and Bira et al. (2016) have applied the group-theoretic method to obtain the
self-similar solution of the system of PDEs. The blast waves are the strong shock waves
which are produced when a large amount of energy is released suddenly. The mathematical
analysis of exact solution of the strong shock problem is analyzed by Rogers (1957), Sakurai
(1954, 1953), Murata (2006), Singh et al. (2011, 2012), and Ram et al. (2013). Lie group
analysis is utilized to convert the system of PDEs to the system of ODEs, and after that, the
system of ODEs is solved by change of variables to yield the exact particular solution of the
blast wave. This solution is utilized to investigate the behavior of amplitude of discontinuity
wave and its collision with the blast wave in the presence of non-idealness parameter. Also,
Jena and Sharma (1999) and Jena (2007) have discussed the evolution of a discontinuity
waves arising out of the system of hyperbolic PDEs governed by the Bernoulli-type ordinary
differential equation.

In the present analysis, Lie group transformation method is used to determine an approx-
imate analytical solution of the system of PDEs governing unsteady one-dimensional planer
and non-planar flows of an inviscid non-ideal gas. In the recent years, Lie group theory
(Baikov et al. 1988; Bluman and Anco 2008; Bluman and Kumei 2013; Donato and Oliveri
1994, 1995; O’Hara et al. 2013) provided extremely general and powerful methods to deter-
mine an analytical solution of the system of partial differential equations. The basic tool in
the study is the use of the corresponding infinitesimal representation of Lie-algebras. The first
approach to potential symmetries of a system of partial differential equations was proposed
by Bluman and Anco (2008) and Bluman and Kumei (2013) to introduce an algorithm which
yielded a new class of symmetries of given partial differential equations. With the help of
symmetry generators, one can construct similarity variables which can reduce the system of
partial differential equations (PDEs) to a system of ordinary differential equations (ODEs).
Also, the Lie group analysis is systematic technique leading to the determination of invariant
solutions of the initial and boundary value problems, as well as to the transformation of
differential equations into equivalent forms in a easier way to handle (see Donato and Oliveri
1994, 1995; Ovsiannikov 2014). Recently, authors in Raja Sekhar (2019) and Zeidan and
Sekhar (2018) considered the drift-flux modal of two-phase flow and discussed the Riemann
problem and interaction of weak shocks using similar mathematical approach. The authors
in Romenski et al. (2003), Zeidan et al. (2007, 2019, 2020), Zeidan and Touma (2014),
Goncalves and Zeidan (2018), and Goncalves et al. (2019) have studied numerical and the-
oretical problem related to the non-linear wave propagation phenomenon in two-phase flow.
In particular, Lie group analysis method is used to solve the Riemann problem for hyperbolic
system like author in Conforto et al. (2012). The authors in Baikov et al. (1988), Ibragimov
and Kovalev (2009) have used either the classical Lie symmetries or the first-order approx-
imate Lie symmetries with the first approach. Moreover, in Mentrelli et al. (2008), some
numerical simulations are performed to study the interaction of a weak discontinuity wave
with elementary waves (shocks and characteristic shock) of the Riemann problem for the
one-dimensional Euler equations governing the flow of ideal polytropic gases, and inves-
tigate the effects of shock strength, and the initial states on the jump in acceleration and
the amplitude of reflected and transmitted waves. The system of transport equations for C1

waves is much more general and it leads to the Bernoulli-type system when eigenvalues are
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simple. To study the effect of shock strength on the jump in shock acceleration and amplitude
of reflected and transmitted waves, we have focused our attention to study the interaction
between C1 wave and the blast wave solutions for the Euler equations. Also, Jena (2005)
has studied the interaction of non-linear waves with a bore in shallow water wave using Lie
group transformation. Later on, Singh and Jena (2013) have studied the interaction of weak
shock waves in polytropic reacting gas flow.

In the present work, one-dimensional unsteady cylindrically symmetric flow of an inviscid
gas in the presence of the non-ideal parameter is studied. Themain target of the paper is to get
the similarity solution through Lie group analysis and discuss the collision of discontinuity
wave with blast wave inside the state described by the blast wave in a non-ideal flow. The
non-ideal parameter effects on the discontinuity wave, and reflected and transmitted wave
have been examined. The motive of this paper is to give a contribution to the understanding
of development of the shock waves and structure of wave in a non-ideal gas through the
group-theoretic method. We employ group-theoretic method to obtain the exact invariant
solution of the one-dimensional gasdynamics equations for the non-ideal gas.

The rest of the paper is structured as: Sect. 2 consists of Lie symmetric method for
the basic equations of motion and jump condition for the blast wave problem in a non-
ideal gas. Using Lie point transformation, we reduce the system of PDEs into system of
ODEs and obtain the exact solution of the system. Section 3 describes the evolution of
C1-wave and derives the transport equation for the discontinuity wave. In Sect. 4, the col-
lision of discontinuity wave with the blast wave is discussed. Section 5 is the result and
discussions of this work in which we discuss the evolutionary behavior of discontinu-
ity wave and the jump in shock acceleration affected by the amplitude of incident wave
after wave collision. The influence of non-ideal parameter on the reflected and transmitted
wave is also discussed. Ultimately, the conclusions of this study are provided in the last
section.

2 Governing equations and Lie group approach

The governing equations for one-dimensional unsteady cylindrical flow in non-ideal gas may
be written as:

ρt + ρvx + vρx + ρvx−1 = 0,

ρ (vt + vvx ) + px = 0,

pt + vpx + Γ p (1 + bρ)
(
vx + vx−1) = 0,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

where x and t are the independent variables which correspond to the space coordinate and
time, respectively.ρ, p, v, andΓ are the density, pressure, gas velocity, and specific heats ratio
of the gas, respectively. b is the parameter of non-idealness which is constant with bρ <<

1 in high temperature gases. The non-numeric subscripts represent the partial derivative
with respect to indicated independent variables. The system of governing equations (1) is
supplemented with the equation of state satisfied by the non-ideal gas can be written as
p = ρ(1 + bρ)RT , where T and R are the temperature and gas constant, respectively.
Suppose the shock front, x = χ(t), is propagating with speed dχ/dt = V into the medium
which is specified by:

ρ ≡ ρ0, v ≡ 0, p ≡ constant, (2)
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The jump conditions for the blast wave at the shock front are:

ρ (χ(t), t) = (Γ + 1)
(
Γ − 1 + 2b̄

)ρ0 (χ(t)) ,

v (χ(t), t) = 2
(
1 − b̄

)

(Γ + 1)
V ,

p (χ(t), t) = 2(1 − b̄)

(Γ + 1)
ρ0 (χ(t), t) V 2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

where b̄ = bρ0.
Let us consider that the system of governing equations (1) has solution subject to jump

condition (3) along a family of curves; this family of curves is known as similarity curves
for which the system (1) reduces to a system of ODEs; these type of solutions are called
similarity solutions. To obtain the similarity solutions and similarity curves, we consider the
following transformations given by:

x∗ = x + εX(x, t, ρ, v, p), t∗ = t + ετ(x, t, ρ, v, p),

ρ∗ = ρ + εD(x, t, ρ, v, p), v∗ = v + εU (x, t, ρ, v, p),

p∗ = p + εP(x, t, ρ, v, p),

⎫
⎪⎬

⎪⎭
(4)

where D,U , P , X , and τ are the generators which can be obtained in suchway that the system
(1) is constantly conformally invariant with respect to the Lie group of transformations (4).
Following the straight forward procedure outlined in the literatures Bluman andAnco (2008);
Bluman and Kumei (2013), we obtain the following generators:

X = (α22 + 2a1)x, τ = a1t + d, D = 0,

U = (α22 + a1)v, P = 2(α22 + a1)p,

}

(5)

where α22, a1, and d are the arbitrary constants.
Let us consider the case when a1 �= 0 and α22 + 2a1 �= 0, and then, the form of similarity

solutions and the similarity variables follow from the invariant surface conditionwhich yields:

τρt + Xρx = D, τvt + Xvx = U , τ pt + Xpx = P. (6)

On solving (6) with the help of (5), we obtain:

ρ = D̂(ξ), p = t2(δ−1) P̂(ξ), v = tδ−1Û (ξ), (7)

where δ = (α22+2a1)
a1

, D̂(ξ), Û (ξ), and P̂(ξ) are dimensionless quantities and are function
of the similarity variable ξ , defined as:

ξ = x

Atδ
, (8)

where the parameter A is constant which can be determined with the help of similarity
exponent δ. At ξ = 1, the shock path x = χ(t) and the shock velocity V are given by:

χ(t) = Atδ, V = δχ(t)

t
. (9)

Then, we have the following conditions for flow variables at the shock ξ = 1:

ρ|ξ=1 = D̂(1), v|ξ=1 = tδ−1Û (1), p|ξ=1 = t2(δ−1) P̂(1). (10)
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In perspective of the invariance of jump condition (3), Eq. (2.10) prompts to the form of

ρ0(x) as ρ0(x) = ρc

(
x
x0

)


, and following conditions on the functions D̂, Û , and P̂ at the

shock:

D̂(1) = (1 + Γ )A
ρc

(2b̄ + Γ − 1)x

0

,

Û (1) = 2(1 − b̄)Aδ

(1 + Γ )
,

P̂(1) = 2(1 − b̄)A
+2δ2ρc

(1 + Γ )x

0

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

where ρc, x0, and 
 = (1 + a1)/δa1 are some reference constants related to the medium.
Now, we rewrite Eqs. (7–9) with the help of (11) as:

ρ = ρ0D
∗(ξ), v = VU∗(ξ), p = ρ0V

2P∗(ξ),

ξ = x

Atδ
, X = Atδ, V = Xδ

t
,

(12)

where D∗(ξ) = x

0 D̂(ξ)

ρc A
 , U∗(ξ) = Û (ξ)
Aδ

, P∗(ξ) = x

0 P̂(ξ)

A
+2ρcδ2
.

Using (12) in (1) yields the system of ODEs in D∗, P∗, U∗, and on suppressing, the
asterisk sign reduced system is:

(U − ξ)D′ + DU ′ + 
D + DUξ−1 = 0,

(U − ξ)U ′D + (δ − 1)δ−1UD + P ′ = 0,

(U − ξ)P ′ + 2(δ − 1)δ−1P + 
P + Γ P(1 + bρcD)(U ′ +Uξ−1) = 0,

⎫
⎪⎪⎬

⎪⎪⎭
(13)

where the prime denotes the derivative of related function with respect to the independent
variable ξ . Also, the jump conditions are given by:

D(1) = (1 + Γ )

(2b̄ + Γ − 1)
,

U (1) = 2(1 − b̄)

(1 + Γ )
,

P(1) = 2(1 − b̄)

(1 + Γ )
.

(14)

Now, along with the jump conditions (14), the system (13) satisfies the following particular
solutions:

D = (1 + Γ )

(2b̄ + Γ − 1)
,

U = 2(1 − b̄)

(1 + Γ )
ξ,

P = 2(1 − b̄)

(1 + Γ )
ξ2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(15)
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with δ = (1+ Γ )/2(Γ + b̄) and 
 = 4(b̄ − 1)/(1+ Γ ), then the solution of the system (1)
subject to the boundary conditions (3) is:

ρ = ρ∗
c

(1 + Γ )

(2b̄ + Γ − 1)
t
δ, v = (1 − b̄)

(Γ + b̄)

x

t
,

p = ρ∗
c

(1 + Γ )

2(Γ + b̄)2
x2t
δ−2, ρ0(χ(t)) = ρ∗

c t

δ,

⎫
⎪⎪⎬

⎪⎪⎭
(16)

where ρ∗
c = ρc

A


x

0

and χ(t) = Atδ .

The dimensionless form of the solution of system (1) obtained in (16) can be written as:

ρ = (1 + Γ )

(2b̄ + Γ − 1)
t
δ, v = (1 − b̄)

(Γ + b̄)

x

t
,

p = (1 + Γ )

2(Γ + b̄)2
x2t
δ−2, ρ∗ = x
,

v∗ = 0, p∗ = 1,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(17)

where the subscript ′∗′ denotes the value of flow variables ahead of the discontinuity curve
χ = χ(t) and V is the velocity of the discontinuity curve defined by:

V (t) = (1 + Γ )

2(Γ + b̄)
t
− (2b̄+Γ −1)

2(Γ +b̄) . (18)

3 Evolution of C1-discontinuity

The system (1) can be written in the matrix form:

ft + M fx = g, (19)

where f = (ρ, v, p)Tr , g = (−ρvx−1, 0,−vC2x−1)Tr and M =⎡

⎣
v ρ 0
0 v ρ−1

0 ΓC2 v

⎤

⎦.

Here, f and g are column vectors. M3×3 is the matrix whose eigenvalues are:

μ(1) = (v + C), μ(2) = v, μ(3) = (v − C), (20)

with left and right eigenvectors corresponding to each eigenvalues:

E (1) = (ρ/C, 1, ρC)Tr , L(1) = (0, 1, 1/ρC),

E (2) = (1, 0, 0)Tr , L(2) = (1, 0,−1/C2),

E (3) = (−ρ/C, 1,−ρC)Tr , L(3) = (0, 1,−1/ρC),

⎫
⎪⎪⎬

⎪⎪⎭
(21)

where the parameter C =
(

Γ p
ρ(1−bρ)

)1/2
is the speed of sound in non-ideal gas.

Now, we consider that the first derivative of the column vector f (x, t0) has discontinuity
at x0 < x1; this amounts to assume that at t = t0, there are both a shock wave at x1 and
C1-discontinuity at x0. SupposingC1-discontinuity curve, originating from the point (x0, t0)
in the column vector f = (ρ, v, p)Tr , is moving along the curve obtained by dx/dt =
μ(1) swept by the shock. Then, the transport equation for the C1-discontinuity across the

123



Evolution of C1-wave and its collision ... Page 7 of 13 247

characteristics of system (1) in terms of the independent variables x and t is given by Radha
et al. (1993):

L(1) d�

dt
+ L(1)( fx + �)(∇μ(1))�+((∇L(1))�)Tr

d f

dt
+ (L(1)�)((∇μ(1)) fx + μ(1)

x )

− (∇(L(1)g))� = 0,
(22)

where � = πE (1), denotes the discontinuity in fx across the C1-discontinuity. π is the
amplitude of theC1-wave. Substituting Eqs. (20) and (21) in (22) yields the transport equation
for the wave amplitude:

dπ

dt
+ θ1π

2 + θ2π = 0, (23)

where θ1 = (1+Γ )tα

2(tα−b̂)
with b̂ = b̄(1+Γ )

(2b̄+Γ −1)
, α = 2(1−b̄)

(Γ +b̄)

and θ2 = 1
4(tα−b̂)(Γ +b̄)t

{
6(tα − b̂) +

√
2Γ (1 − b̄)(2b̄ + Γ − 1)

(
(1+4Γ )

Γ
tα + b̂

)}
.

On integrating (23) yields:

π(t) = π0φ1(t)

1 + π0φ2(t)
, (24)

where π(1) = π0, φ1(t) = exp (− ∫
θ2dt), and φ2(t) = ∫

θ1φ1(t)dt .
In the analysis of the effect of non-ideal parameter, present in (24), on the evolutionary

process of the C1-wave, we observe the evolution in discontinuity wave while fixing the
various parameters involved in (24).We consider the value of specific heat ratio as Γ = 1.67.
We have used the MATHEMATICA software to generate the profile of amplitude of the C1-
wave. In view of (24), we observe that π0 > 0 corresponds to the expansive wave. π(t) is
non-zero finite and continuous function on the interval [1, t) and π(t) −→ 0 as t −→ ∞
which implies that C1-wave decays. However, π0 < 0 corresponds to the compressive wave.
When π0 < 0, there exist a critical value of π(t), such that |π0| ≤ πc, where πc = 1/φ2(∞).
Then, π(t) is non-zero finite and continuous function on the interval [1,∞) and π(t) −→ 0
as t −→ ∞. Then, we observe the decay in C1-wave, which is shown in Fig. 2. If |π0| > πc,
then there exist tc belonging to (1,∞), such that φ2(tc) = 1/|π0|, and then π(t) is non-
zero finite and continuous on the interval [1, tc), and it tends to ∞ as t tends to tc. This
implies that there is growth in C1-wave which is shown in Fig. 3 and these compressive
waves terminate into shock waves after a finite time. The effect of non-idealness on the
decay and growth of expansive and compressive waves, respectively, is shown by the curves
in Figs. 1, 2, and 3. From Figs. 1, 2, and 3, we observe that on increasing the value of non-
ideal parameter causes to decay the wave more rapidly in case of expansive wave and also an
increase in the value of non-ideal parameter causes to slow down the growth of compressive
wave.

4 Collision of the C1-wave with blast wave

In this section, we analyze the interaction of the C1-wave with the blast wave. The conserva-
tion system which is direct consequence of the governing system of PDEs (1) to obtain the
amplitude of the reflected and transmitted C1-wave, when the incident discontinuity comes
in contact with the blast wave, and have the following forms in the regions to the left and right
of the discontinuity curve dx/dt = V , where V is the propagation velocity of discontinuity
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curve:
Ft (x, t, f ) + Gx (x, t, f ) = H(x, t, f ),

Ft (x, t, f∗) + Gx (x, t, f∗) = H(x, t, f∗),

}

(25)

where f = (ρ, v, p)Tr and f∗ = (ρ∗, v∗, p∗)Tr , are the solution vectors to the left and right
of the discontinuity curve and F , G, H are given as:

F =
(

ρ, ρv,
(1 − bρ)

(Γ − 1)
+ ρv2

2

)Tr

,

G =
(

ρv, ρv2 + p, v

(
(1 − bρ)p

(Γ − 1)
+ ρv2

2
+ p

))Tr

,

H =
(

−ρv

x
,−ρv2

x
,−v(Γ − bρ)p

x(Γ − 1)
− ρv3

2x

)Tr

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

Now,we consider the situationwhen theC1-discontinuitywave intersects the blastwave at the
time t = tp . Let the fastestC1-discontinuity of (25) originating from the point (x0, t0), propa-
gating along the characteristic dχ/dt = μ(1), encounters the discontinuity curve dx/dt = V ,
originating from (x1, t0), at the point P(xp, tp). At t = tp , the eigenvalues of (25) on both
sides of the discontinuity curve are:

μ(1) =
2(1 − b̄) +

√
2Γ (Γ − 1 + 2b̄)(1 − b̄)(tαp + b̂)tαp

2(Γ + b̄)
t
− Γ −1+2b̄

2(Γ +b̄)
p ,

μ(2) = (1 − b̄)

(Γ + b̄)
t
− Γ −1+2b̄

2(Γ +b̄)
p ,

μ(3) =
2(1 − b̄) −

√
2Γ (Γ − 1 + 2b̄)(1 − b̄)(tαp + b̂)tαp

2(Γ + b̄)
t
− Γ −1+2b̄

2(Γ +b̄)
p ,

μ(1)∗ =
√

Γ (tαp + b̄), μ(2)∗ = 0, μ(3)∗ = −
√

Γ (tαp + b̄).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

From the above-computed values, we can see that:
μ

(1)∗ (tp), μ
(2)∗ (tp), μ

(3)∗ (tp) < V (tp) and μ(2)(tp), μ(3)(tp) < V (tp), μ(1)(tp) > V (tp).
Thus, Lax evolutionary conditions must hold (See Ref. Boillatt and Ruggeri (1979)), i.e.,

μ
(3)∗ (tp) < μ

(2)∗ (tp) < μ
(1)∗ (tp) < V (tp) and μ(1)(tp) > V (tp) > μ(2)(tp) > μ(3)(tp). This

ensures that when the incident wave (incident discontinuity) with speed μ(1) interacts with
the shock wave at the collision point t = tp , it rises to two reflected waves only with speed
μ(2) and μ(3). Then, the amplitudes of the reflected waves α1 and α2 with jump in the shock
acceleration |[V̇ ]| at the collision point t = tp can be obtained from the following algebraic
system of equations:

(F − F∗)p|[V̇ ]| + (∇F)pE
(2)
p (V − μ(2)

p )2α1 + (∇F)pE
(3)
p (V − μ(3)

p )2α2

= −(∇F)pE
(1)
p (V − μ(1)

p )2π.
(28)
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Using Eqs. (20), (21), and (26) in Eq. (28), we obtain the following system in the unknowns
α1, α2, and |[V̇ ]|:

(ρ − ρ∗)|[V̇ ]| + (V − μ(2))2α1 − ρ

C
(V − μ(3))2α2

= − ρ

C
(V − μ(1))2π,

ρv|[V̇ ]| + v(V − μ(2))2α1 − ρ

C
(v − C)(V − μ(3))2α2

= − ρ

C
(v + C)(V − μ(1))2π,

(
ρv2

2
− b(ρ − ρ∗)

(Γ − 1)

)
|[V̇ ]| +

(
v2

2
− bp

(Γ − 1)

)
(V − μ(2))2α1

−
(

v2

2
− bp

(Γ − 1)

ρ

C
− ρv + (1 − bρ)

(Γ − 1)
ρC

)
(V − μ(3))2α2

= −
(

v2

2
− bp

(Γ − 1)

ρ

C
+ ρv + (1 − bρ)

(Γ − 1)
ρC

)
(V − μ(1))2π.

(29)

On solving the system (29), we obtain:

|[V̇ ]| = −
(
A1

A2
+ 1

)
ρ

ρ∗v
(V − μ(1))2π(tp),

α1 =
{(

A1

A2
− 1

)
ρ

C
+

(
A1

A2
+ 1

)
ρ(ρ − ρ∗)

ρ∗v

}
(V − μ(1))2

(V − μ(2))2
π(tp),

α2 = A1(V − μ(1))2

A2(V − μ(3))2
π(tp),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(30)

where A1 =
{

1
(ρ−ρ∗)

(
v2

2 − 1
)

− b
(Γ −1)

}
−

(
v2

2 − bp
(Γ −1) − 1

(ρ−ρ∗)

)
ρ(ρ−ρ∗)

ρ∗v − ρv +
(1−bρ)
(Γ −1) ρC

and A2 =
{

1
(ρ−ρ∗)

(
v2

2 − 1
)

− b
(Γ −1)

}
+

(
v2

2 − bp
(Γ −1) − 1

(ρ−ρ∗)

)
ρ(ρ−ρ∗)

ρ∗v +ρv− (1−bρ)
(Γ −1) ρC .

Substituting (17) and (18) in (30), we obtain the amplitude of reflected waves, inside the
state described by the blast wave, at the collision time. Now, from the above-computed value
of α1 and α2, we can obtain the amplitude vectors�2 = α1E2(tp) and�3 = α2E3(tp) of the
reflected waves moving along the discontinuity curve with speedsμ(2) andμ(3), respectively.
From Eq. (30), it is clear that there is no jump in the shock acceleration in the absence of
incident wave (i .e., π(tp) = 0)which ensures that there are no reflected or transmitted waves
at the point t = tp . Also, from (30), we observe that the behavior of shock will depend on
the incident discontinuity.

5 Results and discussion

In the present investigation, the group-theoretic method is utilized to analyze the collision of
the weak discontinuity with blast wave in cylindrically symmetric flow of an inviscid non-
ideal gas. We derive the particular solution of the system of governing equations of motion
describing an unsteady cylindrically symmetric flows of a non-ideal gas, through Lie group
analysis. The solution of blast wave obtained in the paper is in close agreement with the
results reported by the many authors Murata (2006), Pandey et al. (2008). The system of
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Fig. 1 The decay of C1-wave (π0 > 0) in non-ideal gas flow with Γ = 1.67

Fig. 2 The decay of C1-wave (−πc ≤ π0 < 0) in non-ideal gas flow with Γ = 1.67

Fig. 3 The growth of C1-wave (π0 < −πc < 0) wave in non-ideal gas flow with Γ = 1.67
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transport equations for C1 waves is much more general and it leads to the Bernoulli-type
system when eigenvalues are simple. To study the amplitude of reflected and transmitted
waves, we focused our attention to study the interaction betweenC1 wave and the blast wave
solutions for the Euler equations throughout the study. Also, the growth and decay process of
weak discontinuity inside the case described by the blast wave is examined. We observe that
if the value of the initial discontinuity π0 related to the incident discontinuity increases, an
increase in the value of the shock acceleration and amplitude is observed. It is noticeable that
when the incident discontinuity with velocityμ1 at t = tp impinges on the blast wave, it gives
rise to two reflected waves with amplitudes α1 and α2 along the characteristics issuing from
the collision point t = tp , but there are no transmitted waves. These amplitudes of reflected
waves, at the collision point t = tp , are computed along with the discontinuity in the shock
acceleration.Weobserve that if the incident discontinuity is expansive (compressive), then the
reflected wave along the shock front is compressive (expansive), respectively. The behavior
of incident wave is shown by the curves in Figs. 1, 2, and 3. From Fig. 3, we observe that after
finite time, the compressive wave terminates into the shock wave, only if (π0 < −πc < 0).
We noticed that the process of acceleration and deceleration of shock depends upon the
behavior of incident wave (expansive or compressive). It is also noticeable from Fig.3 that an
increase in the value of non-idealness parameter causes to delay the shock formation. This is
in agreement with a recent work reported in Ref. Pandey (2010), Pandey and Sharma (2007),
Jena (2007), Pandey and Sharma (2007), and Jena (2007).

6 Conclusion

In this study, we discussed the problem of interaction of C1- wave with the blast wave in
one-dimensional unsteady inviscid cylindrically symmetric flow of non-ideal gas using Lie
group approach. The jump conditions for the blast wave in non-ideal gas flow are obtained.
Through Lie group transformation, we obtained the solution of the hyperbolic system of
PDEs describing the cylindrically symmetric flow of non-ideal gas. Also, we derived the
transport equation for the C1-wave and discussed its evolutionary process. Furthermore, the
interaction phenomena of these non-linear waves are examined. It is also observed that the
process of acceleration and deceleration of shock depends upon the behavior of incident
wave. We obtained that after finite time, the compressive wave terminates into the shock
wave, only if (π0 < −πc < 0). Also, it is observed that an increase in the value of non-ideal
parameter causes to slow down the growth rate of compressive wave, i.e., there is delay in
the process of shock formation in non-ideal gas flow.
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