Table of Content

CONTENTS	Page No.
Title Page	i
Certificates	iii
Acknowledgement	xi
Table of Content	xiii
List of Figures	xvii
List of Tables	xix
List of Abbreviations	xxi
Preface	xxiii
CHAPTER 1: PROLOGUE	1-16
1.1 Introduction	
1.2 Literature Review	
1.3 Research Objective	
1.4 Background of the Innovation	
1.4.1 Microbial Fuel Cell (MFC) Design Principles	
1.4.2 MFC and Wastewater Theoretical Principles and Variables	
1.5 Thesis Organization	
CHAPTER 2: Design and Performance Evaluation of Green Energy	17-60
Conversion System	
2.1 Introduction	
2.2 Materials and System Design	
2.2.1 Microbial Fuel Cells (MFCs)	

- 2.2.2 Electrical System
 - 2.2.3 Ancillary Equipment
 - 2.2.4 Electrolytes
- 2.3 Experimental Design and Operation
 - 2.3.1 System Operation
 - 2.3.2 Sampling and Feed System
 - 2.3.3 Electrical Variables
 - 2.3.4 Operational and Wastewater Variables
- 2.4 Analysis
 - 2.4.1 Electrical Parameters
 - 2.4.2 Chemical Oxygen Demand (COD)
 - 2.4.3 Total Kjeldahl Nitrogen (TKN) and Free and Saline Ammonia (FSA)
 - 2.4.4 Anolyte pH
 - 2.4.5 Ferricyanide
 - 2.4.6 Dissolved Oxygen
 - 2.4.7 Cover Space Gas

2.5 Results and Discussion

- 2.5.1 Electrical Parameters
- 2.5.2 Chemical Oxygen Demand (COD)
- 2.5.3 Total Kjeldahl Nitrogen (TKN) and Free and Saline Ammonia (FSA)
- 2.5.4 Anolyte pH
- 2.5.5 Ferricyanide
- 2.5.6 Dissolved Oxygen
- 2.5.7 Cover Space Gas

2.6 Conclusion

CHAPTER 3: Development of MFC based Bio Dry Cell Technology 61-86

- 3.1 Introduction
- 3.2 Materials and Experimental Methods
 - 3.2.1 Microbial Fuel Cell (MFC) System
 - 3.2.2 Bio Dry Cell
 - 3.2.3 BDC Experimental Design
 - 3.2.4 Carbon Source Pulse Tests (CSPTs)
 - 3.2.5 Anaerobic Sampling
- 3.3 Analysis
 - 3.3.1 Kinetic Optical Density (OD) Measurements
 - 3.3.2 Time Point Determination
 - 3.3.3 Data Transforms
 - 3.3.4 Statistical Constraint Diagnostics
 - 3.3.5 Principal Component Analysis (PCA)
 - 3.3.6 Functional Diversity
- 3.4 Results and Discussion
- 3.5 Conclusion

CHAPTER 4: Bio Dry Cell- A Novel Green Energy Conversion System 87-112

4.1 Introduction

4.2 Microbial Fuel Cell (MFC) System

4.2.1 System Design, Operation, Materials, and Experimental Methods

- 4.2.2 MFC Differentiation
- 4.2.3 CSPTs and BDC box Experimental Organisation System Acclimation period

4.3 System Acclimation period comparison

- 4.3.1 Current and Power Production
- 4.3.2 Organic waste Anolyte, Catholyte, and Head Space Gas Analyses
- 4.3.3 Bio dry cell Technology

4.4 Response to kitchen waste dosing	
4.4.1 Current and Power Production	
4.4.2 Organic waste Anolyte, Catholyte, and Head Space Gas Analyses	
4.5 Microbial Ecology	
4.6 Functional Diversity of Bio dry Cell	
4.7 Conclusion	
CHAPTER 5: Conclusions, Contributions and Future work	113-126
5.1 Conclusions	
5.2 Thesis Contributions	
5.2.1 Anolyte Wastewater Quality	
5.2.2 Dissolved Oxygen (DO) versus Ferricyanide as the Electron Acceptor (EA)	
5.2.3 Carbon Source Pulse Tests (CSPTs)	
5.2.4 Data Transformations and Principal Component Analysis (PCA)	
of Ecological Data	
5.2.5 Microbial Ecology in MFCs	
5.2.6 Prototype development	
5.2.7 Harit Urja Marg Deepak	
5.2.8 Bio-electric purifier	
5.3 Scope for future work	
References	127-139
Appendices	141-153
List of Publications	