LIST OF FIGURES

Fig 1.1(a):	Intel scaling trends and logic area scaling	2
Fig 1.1(b):	Intel innovation-enabled technology pipeline [Intel and Nikon Technologists Assess Status and Future of Lithography (2017)]	3
Fig 1.2:	Schematic illustration of the constant field scaling of Si technology by a scaling factor "k" [Taur and Ning (1998)]	5
Fig 1.3:	Cross-sectional view of DG JLFET	8
Fig 1.4:	Energy band diagram for n-channel MOSFET between source and drain in off-state to describe the threshold voltage roll-off. [Taur and Ning (1998)].	10
Fig 1.5(a):	Cross sections view of small channel and long channel MOSFETs [Streetman (2009)].	12
Fig 1.5(b):	Conduction band edge along the channel length for a short channel and long channel MOSFET [Streetman (2009)].	12
Fig 1.6:	Schematic illustration of channel length modulation effect [Arora (2007)].	13
Fig 1.7:	Schematic view of Punchthrough phenomena in a MOSFET [Arora (2007)]	14
Fig 1.8:	Cross-section of a MOSFET showing hot-carrier effects	15
Fig 1.9:	Schematic diagram of the LDD MOSFET [Kumar (2000)].	20
Fig 1.10:	Schematic view of the halo MOSFET	20
Fig 1.11	Cross-sectional view of DP-MOSFET [Jurczak et al. (2001)].	22
Fig 1.12	Different types of gate configuration in MOS structures to improve drive current and scalability of the MOS transistors [Colinge (2004)]	25
Fig 1.13	Gaussian function versus Gaussian-like function	28
Fig 1.14:	Electron concentration contour plots in an n-type JLFET [Colinge <i>et al.</i> (2010)].	30
Fig 2.1:	Simplified two-dimensional schematic view of DG- JLFET.	51
Fig 2.2:	The simulated view of Gaussian doped DG-JLFET.	51
Fig 2.3:	Simulation model calibration against non-planar JLFET experimental $I_{DS} - V_{GS}$ data from [Colinge <i>et al.</i> (2010)].	62

Fig 2.4:	Conduction path potential variation along channel length for various straggle.	63
Fig 2.5:	Conduction path potential variation along channel length for various doping concentration.	63
Fig 2.6:	Conduction path potential variation for short channel length at different drain voltages.	64
Fig 2.7:	Conduction path potential variation for long channel length at different drain voltages.	65
Fig 2.8:	Threshold voltage variation with channel length for different straggle.	66
Fig 2.9:	Threshold voltage variation with channel length for different drain voltages.	66
Fig 2.10:	Threshold voltage variation with channel length for different silicon thicknesses (t_{si}) .	68
Fig 2.11:	Threshold voltage variation with channel length for different oxide thicknesses.	68
Fig 2.12:	Threshold voltage variation with channel length for different peak doping concentrations.	69
Fig 2.13:	DIBL variation with channel length for different straggle.	70
Fig 3.1:	Simplified two-dimensional cross-sectional view of DG- JLFET.	74
Fig 3.2:	Subthreshold current variation with gate-to-source voltage for different gate lengths.	79
Fig 3.3:	Subthreshold current variation with gate-to-source voltage for different straggle parameter.	80
Fig 3.4:	Subthreshold current versus gate-to-source voltage for different oxide thickness.	80
Fig 3.5:	Subthreshold current versus gate-to-source voltage for different peak doping concentration.	81
Fig 3.6:	Subthreshold current versus gate-to-source voltage for different channel thickness.	82
Fig 3.7:	Subthreshold current versus gate-to-source voltage for different projected range (R_p) .	82
Fig 3.8:	Subthreshold swing versus device channel length for different channel thicknesses.	83

- Fig 3.9:Subthreshold swing versus device channel length for different gate84oxide thicknesses.
- Fig 4.1: Simplified two-dimensional cross-sectional view of DP-DG-JLFET. 87
- **Fig 4.2:** Simulation model calibration against non-planar JLFET experimental **97** $I_{DS} V_{GS}$ data from [Colinge *et al.* (2010)].
- **Fig 4.3:** Central potential variations versus position along channel for various **98** pocket length at $L = 20 \text{ nm}, t_{ox} = 1.5 \text{ nm}, t_{si} = 10 \text{ nm}, T_{side} = 7 \text{ nm},$ $V_{gs} = 0.1V$ and $V_{ds} = 0.1V$.
- Fig 4.4: Central potential variations versus position along the channel for 99 various pocket thickness at $L = 20 \text{ nm}, t_{ox} = 1.5 \text{ nm}, t_{si} = 10 \text{ nm},$ $\frac{t_{si}}{2} - a = 3 \text{ nm} V_{gs} = 0.1V \text{ and } V_{ds} = 0.1V.$
- **Fig 4.5:** Threshold voltage variation with channel length for different pocket **99** length at $t_{ox} = 1.5 \text{ nm}, t_{si} = 10 \text{ nm}, T_{side} = 7 \text{ nm}, V_{gs} = 0.1V$ and $V_{ds} = 0.1V$.
- Fig 4.6: Threshold voltage variation with channel length for different pocket 100 thickness at $t_{ox} = 1.5 \text{ nm}, t_{si} = 10 \text{ nm}, \frac{t_{si}}{2} a = 3 \text{ nm}$ $V_{gs} = 0.1V$ and $V_{ds} = 0.1V$.
- Fig 4.7: DIBL variation with channel length for different pocket length at 101 $t_{ox} = 1.5 \text{ nm}, t_{si} = 10 \text{ nm}, T_{side} = 7 \text{ nm}, V_{ds1} = 0.1 \text{ V} \text{ and } V_{ds2} = 1.1 \text{ V}.$
- Fig 4.8: DIBL variation with channel length for different pocket thickness at 101 $t_{ox} = 1.5 \text{ nm}, t_{si} = 10 \text{ nm}, V_{ds1} = 0.1 \text{ V}, V_{ds2} = 1.1 \text{ V} \text{ and } \frac{t_{si}}{2} - a = 3 \text{ nm}.$
- Fig 5.1:Simplified two-dimensional schematic view of DP-DG-JLFETs.105
- **Fig 5.2:** Variation of subthreshold current against gate-to-source voltage for **110** different DP lengths at $t_{ox} = 1.5 \text{ nm}, t_{si} = 10 \text{ nm}, T_{side} = 7 \text{ nm}, V_{ds} = 0.1 \text{ V}.$
- **Fig 5.3:** Variation of subthreshold current against gate-to-source voltage for **110** different DP thicknesses $t_{PL}=3nm$, $t_{ox}=1.5 nm$, $t_{si}=10 nm$, $V_{ds}=0.1 \text{ V}$.
- **Fig 5.4:** Subthreshold current variation with gate-to-source voltage for **111** different gate lengths at t_{PL} =3nm, t_{ox} = 1.5 nm, t_{si} = 10 nm,

List of Figures

 $T_{side} = 7 \,\mathrm{nm}, \ V_{ds} = 0.1 \,\mathrm{V}.$

- **Fig 5.5:** Subthreshold current versus gate-to-source voltage for different oxide 111 thickness at ${}^{t}{}_{PL}$ =3nm, ${}^{t}{}_{si}$ =10 nm, ${}^{T_{side}}$ = 7 nm, ${}^{V}{}_{ds}$ = 0.1 V, L=20nm.
- **Fig 5.6:** Subthreshold current versus gate-to-source voltage for different **112** doping concentration at t_{PL} =3nm, t_{si} =10 nm, T_{side} = 7 nm, V_{ds} = 0.1 V, L=20nm, t_{ox} = 1.5 nm.
- **Fig 5.7:** Subthreshold current versus gate-to-source voltage for different **113** channel thickness at t_{PL} =3nm, t_{si} =10nm, T_{side} =7nm, V_{ds} =0.1V, L=20nm, t_{ox} =1.5 nm.
- **Fig 5.8:** Variation of subthreshold swing against gate-to-source voltage at **114** t_{PL} =3nm, t_{si} = 10 nm, T_{side} = 7 nm, V_{ds} = 0.1 V, L=20nm, t_{ox} = 1.5 nm.

Fig 5.9: Variation of subthreshold swing against gate-to-source voltage at **115** t_{PL} =3nm, t_{si} =10 nm, T_{side} = 7 nm, V_{ds} = 0.1 V, L=20nm, t_{ox} = 1.5 nm.