
 

Chapter 6 

Exact Solution of a Two Phase Stefan Problem Including 

Moving Phase Change Material 

 

6.1 Introduction 

Phase-change problems or Stefan problems encounter in many aspects of natural and 

industrial phenomena. These problems are particular cases of the moving boundary 

problems, where prior information about the location of the moving boundary is not 

known but one has to calculate it as it is a part of solution. Due to many practical 

applications in the field of science, engineering and industries, Stefan problems have 

been attracting more interest of many researchers for over a century. The occurrence of 

Stefan problems can be seen in many specific fields of engineering and physical 

science (Tarzia, 1990; Gotz and Zaltzmans, 1995; Soni, 1999; Swenson, 2000; Yi, 

2002; Mitchell and Vynnycky, 2014; Li and  Sun, 2015; Fan et al., 2015; Mitchell and 

Vynnycky, 2016; Bollati et al., 2018; Li et al., 2018) such as melting or solidification 

process, crystal growth process, thermal energy storage process, metal casting, 

shoreline problem, and in many more areas. Stefan problems are inherently non-linear 

because of the presence of unknown moving boundary in the problem.  

In general, classical Stefan problems (Crank, 1987; Gupta, 2017) involve constant 

thermal coefficients which do not always occur with the many materials. By taking this 

fact into consideration, Stefan problems have been modified in different ways by many 
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researchers (Rogers, 1988; Oliver and Sunderland, 1987; Ramos et al., 1994; 

Broadbridge and Pincombe, 1996; Briozzo et al., 2007; Singh et al., 2007; Briozzo and 

Natale, 2015) to include new physical behaviour in the mathematical models of the 

problem. Besides these works, Ceretani et al. (2018); Kumar et al. (2018a, 2018b) are 

also presented few recent work associated to Stefan problems with variable thermal 

coefficients. In the field of phase change problem, the establishment of the exact 

solution to a complicated Stefan problem is a remarkable area of research due to 

presence of moving boundary and its non-linearity nature. From the literature, some 

exact solutions to the Stefan problems are presented by Solomon et al. (1982), Zubair 

and Chaudhry (1994), Voller et al. (2004), Trueba and Voller (2010),  Zhou et al. 

(2018), Bollati and Tarzia (2018), Ceretani et al. (2018), Khalida et al. (2019).  

In many physical processes, the phase change material is allowed to move when phase 

change occurs (Fila and Souplet, 2001), and this physical situation is not included in 

most of the available literatures. Recently, Turkyilmazoglu (2018) established 

analytical solutions for some mathematical models of melting and solidification 

processes including moving phase change material (PCM) and constant thermal 

coefficients. Singh et al. (2018a, 2018b) presented a mathematical model of one phase 

Stefan problem that simultaneously includes variable thermal coefficients and moving 

phase change material. In this chapter, a two phase Stefan problem with variable 

thermal coefficients and moving phase change material is presented that includes 

Dirichlets as well as convective types of boundary conditions. The thermal coefficients 

are assumed as the linear functions of temperature.  Here, we establish analytical 

solution to the problem with the aid of similarity variables.  
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6.2 Mathematical Model of the Problem  

Let us consider that the initial temperature of the phase change material in a semi-

infinite domain  x0  is sT  which is less than its melting temperature mT . Here, we 

assume that the thermal conductivity and specific heat linearly depend on temperature. 

At time t = 0, it is also assumed that the surface x = 0 is subjected to either a 

temperature mw TT  or a convective boundary condition. As time proceeds, the melting 

process starts and a moving interface between liquid and solid is formed which 

propagates in the positive x direction. The mathematical model of this two-phase Stefan 

problem is given below:   

  ,0),(0,)()( 1111111  ttsxTTkuTTTc
xxxt                 (6.1) 
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,0)0( s                                              (6.8) 

where 21, TT  are the temperatures in the liquid and solid regions, x  is the position, t  is 
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the time,   mT  is the constant melting temperature, mw TT   is the constant temperature 

at 0x ,  ms TT   is the constant temperature at 0t ,   is the density, 
 )(,)( tsts  are 

the positions of interface in the liquid and solid regions, l  is the latent heat, c  is the 

heat flux constant. 

The variable thermal conductivity )(),( 2211 TkTk  and specific heat )(),( 2211 TcTc  are 

defined as follows: 
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where 02010201 ,,, cckk  are positive constants, ),( wmw TTT   )( sms TTT   are the 

reference temperatures and
 

2,1;0  ii . 

6.3 Solution of the Problem 

First of all, we consider the following transformation:  
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and                                tvts 12)(  ,                                                                    (6.13) 

where   is a constant parameter, Pe  is the Peclet number and 21,SteSte  are Stefan 

numbers. 

With the aid of  Eqs. (6.11)-(6.13), the Eq. (6.1) converts to the following ODE:  

    .0)()(2)(2)(2)())(1( 11111111111111111   Pe        (6.14) 

Eq. (6.2) becomes  
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(6.15)

 

                                                                                                       

and the boundary conditions (6.3a), (6.3b), (6.4), (6.5) and (6.6) turn into, respectively 

,0)0(1                                            (6.16a) 

     0)0()0()0()0( 11111   ,                                         (6.16b) 

   1)(1  ,                                                                    (6.17) 

,1)(2 v                                             (6.18) 

.0)(2                                                                    (6.19) 

Also, the Eqs. (6.11)-(6.13) and the Stefan condition (6.7) give rise to 
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where 
01

101,02
k

vc
BiBi  (generalized Biot number). 
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Now, we present the solutions of the problem in the following two cases: 

6.3.1 Case1: Solution of the problem with Dirichlet boundary condition (6.3a)  

The solution of Eq. (6.14), with the conditions (6.16a) and (6.17) is given by 
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where (.)erf  is well known error function. 

The solution of Eq. (6.15) with the conditions (6.18) and (6.19) is calculated as 
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In this case, the location of the moving interface is determined by tvts 12)(  , where 

  can be calculated by the following transcendental equation: 
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(6.23) 

From Eq. (6.23), it is obvious that )(1 f  is defined and continuous on ),0(   and

,0)(lim 1
0







f   and ,)(lim 1 





f  for all positive parameters   ( 1 , 2 , Pe , 1Ste , 2Ste  

and v ) which show that there always exists at least one solution of Eq. (6.23). 

6.3.2 Case 2: Solution of the problem with convective boundary condition (6.3b) 

With the help of Eqs. (6.15b) and (6.16), the solution of Eq. (6.14) is given by 
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The solution of Eq. (6.15), i.e. )( 22   with the conditions (6.18) and (6.19) will remain 

same as given in Eq. (6.22). 

In this case, moving interface constant   can be calculated from the following 

transcendental equation: 
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From Eq. (6.25), it is obvious that )(2 f  is defined and continuous on ),0(   and
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


f  for all positive parameters which indicate that there 

exists at least one solution of Eq. (6.25). 

6.4 Discussion 

In this study, Wolfram Research (8.0.1) software is used for all the computational work 

and the numerical results are presented through the different figures. 

Figs. 6.1 and 6.2 are plotted for )(ts  against t  for different values of 

)0.1,5.0,2.0( 11   and )0.2,0.1,2.0( 22  , respectively for Dirichlet boundary 

condition at ,2Pe 5.01  vv  and 5.021  SteSte . Fig. 6.1 portrays that the 
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velocity of moving interface enhances when we increase 1  while Fig. 6.2 shows the 

reverse behaviour, i.e. velocity of the interface decreases with the increment in 2 . 

Hence, the increment in 1  improves the melting process and the growth in  2  leads 

the melting process slow. 

Figs. 6.3 and 6.4 are graphed for the tracking of )(ts  versus t  for various values of 

)2.0,5.0,0.1( 11   and )0.1,5.0,2.0( 22  , respectively in the case of convective 

boundary condition at  1,5.0,2 1  vvPe  and 5.021  SteSte .  These figures 

demonstrate the similar behaviour of the melting process with respect to the velocity of 

the moving interface as we observed in case of the Dirichlet boundary condition at the 

fixed face 0x . Fig. 6.5 depicts the impact of Biot number on the trajectory of 

moving interface for the different Biot number at 5.0,2,5.0 121  vvPe  and 

5.121  SteSte .  From this figure, it is clear that the melting becomes fast when we 

increase the Biot number in the case of convective boundary condition. 

Figs. 6.6 and 6.7 represent the effect of Peclet number on the location of moving 

interface s(t) for case 1 and case 2, respectively at ,5.021 

2.0,5.0,5.0 11  Stevv  and 2.02 Ste . From these figures, it is found that the 

movement of s(t) or melting process improves if we increase the Peclet number in the 

both cases. It is also observed that the effect of Pe on melting process for the 

convective boundary condition is more pronounced than the case 1. 
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Fig.6.1. Plot of tracking of phase front  vs.  for different              

at   and .  

Fig.6.2. Plot of tracking of phase front  vs.  for different  at  

 and . 
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Fig.6.3. Plot of tracking of phase front  vs.  for different  at  

 and . 

Fig.6.4. Plot of tracking of phase front  vs.  for different  at  

 and . 
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Fig.6.5. Plot of tracking of phase front  vs.  for different  at  

 and . 

Fig.6.6. Plot of tracking of phase front  vs.  for different  at  

 and . 
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6.5 Conclusion 

In this chapter, we establish the exact solution to the two-phase Stefan problem with 

variable thermal coefficients and moving phase change material by taking Dirichlet as 

well as convective boundary condition separately. From this study, it is seen the 

location of moving interface is directly proportional to the square root of time as we 

have found in the classical Stefan problems (Crank, 1987). For both the cases, it is also 

observed that the parameters 21,  , Bi  and Pe rapidly influence the melting process, 

i.e. the melting process becomes fast as we raise the values of Bi,1  and Pe whereas 

this process becomes slow with the increment in the value of 2 .   

 

                                                 *****  

Fig.6.7. Plot of tracking of phase front  vs.  for different  

at   and . 


