
 

 

 

Chapter 5 

A Phase Change Problem including Space-Dependent Latent 

Heat and Periodic Heat Flux 

5.1   Introduction 

In recent years, phase-change problem (Stefan problem) involving diffusion process and 

variable latent heat is of great interest from mathematical and physical points of views. The 

work related to diffusion process and its occurrence can be found in many aspects of 

research (Ouedraogo et al., 2008; Raheem, 2013; Chhetri and Vatsala, 2018). Physically, 

variable latent heat term arises in the Stefan problem governing the processes of movement 

of a shoreline in a sedimentary ocean basin due to changes in various parameters (Voller et 

al., 2004). Some solutions of Stefan problems including space-dependent latent heat have 

been reported in Rajeev et al. (2009a), Rajeev et al. (2013), Rajeev (2014). Zhou et al. 

(2014) presented a phase change model (Stefan problem) that contains variable latent heat 

term and they discussed the similarity solution to the problem. After that Zhou and Xia 

(2015) used the Kummer functions to present similarity solution to a Stefan problem 

containing a more general variable latent heat term. Mathematically, Stefan problem with 

periodic boundary are always interested due to the difficulty associated with its solution. 

From the literature, it is found that the exact solution to the phase-change problem with 

periodic heat-flux is not known even in its simplest form and a sophisticated scheme is 

required to solve these problems (Rizwan-Uddin, 1999). Therefore, various numerical 
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(Rizwan-Uddin, 1998; Savovic and Caldwell, 2003; Ahmed, 2006) and approximate 

analytical techniques (Rajeev et al., 2009b; Rajeev, 2014) have been used by the 

researchers to solve the phase-change problem containing the boundary conditions of 

periodic nature.  

In this study, we consider a Stefan problem containing space dependent latent heat and a 

periodic boundary condition. The solution of the problem is obtained by a well-known 

approximate technique homotopy analysis technique introduced by Liao (1997). From the 

literature (Liao, 2009; Abbasbandy, 2006; Gorder and Vajravelu, 2009; Zahran, 2009; 

Jafary et al., 2010; Onyejekwe, 2014), it can be seen that this scheme is used by many 

researchers to solve various problems occurring in science and industries. In this chapter, 

Wolfram Mathematica 8.0.1 has been used for all the computations with the aid of 

Stavroulakis and Tersian (2004). For the validity of proposed solution, the comparisons 

have been made with the analytical solution in a particular case. Dependence of movement 

of interface on some parameters is also analysed. 

5.2  Mathematical  Formulation  

This section presents a phase-change problem involving melting/freezing process in the 

half plane, i.e.    . Motivated by the work of Zhou et al. (2014) and Zhou and Xia 

(2015), we have assumed that the latent heat is space dependent. Moreover, a periodic 

surface heat flux is supposed in the problem. The mathematical model describing the 

process is given below: 
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where ),( txT  is the temperature profile, x  represents the space variable, t  is the time,   

denotes the thermal diffusivity, )(ts  denotes the tracking of moving phase front, k  is the 

thermal conductivity,   is oscillation frequency,  is the amplitude, )sin1( tq    is the 

periodic heat flux and  s  is latent heat term per unit volume which depends on space. 

5.3  Solution of the Problem 

According to the HAM (Liao, 2009; Abbasbandy, 2006), we assume 
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as the non-linear and linear operators, respectively. 

For Eq. (5.1), we first construct the following homotopy: 

)];,([),()],();,([)1( 0 ptxNtxHptxTptxLp   ,            (5.8) 

where ]1,0[p  denotes the embedding parameter, ),(0 txT represents the initial guess, 

0  is the auxiliary parameter, 0),( txH  is the auxiliary function. 
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If we substitute 0p  and  1p  in Eq. (5.8) then we simply obtain ),()0;,( 0 txTtx  and

),()1;,( txTtx  , respectively. This indicates that when p tends 1 from 0, the initial 

estimate ),(0 txT  shifts towards ),( txT  which satisfies the proposed problem. 

For Eq. (5.1), we can get the m-th order deformation equation (Liao, 2009; Abbasbandy, 

2006) as given below: 

)(),()],(),([ 11   mmmmm TRtxHtxTtxTL  ,                (5.9) 
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According to Rajeev et al. (2013), we consider the following initial approximation of 

),( txT : 

  )(sin1),( 00 xst
k

q
txT   ,                                     (5.10) 

where 
2

1

0 cos
2
















 









tt

q
s . 

Using Eq. (5.10) in Eq. (5.9), we obtain 
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(5.12)  

and similarly, other components of ),( txT can be calculated. 

Now, the solution ),( txT  to the problem can be given by: 

.),(),(),(),( 210  txTtxTtxTtxT
                                     

 (5.13) 

Now, by choosing the following linear and nonlinear operators, we have 
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We construct the following homotopy for Eq. (5.4): 

       )];([;1 0 ptNptsptp   .                                        (5.16) 

From Eq. (5.16), we can easily find 

0)0;( st                                                                 (5.17) 

and 
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72 
 

According to Liao (2009) and Abbasbandy (2006), the m-th order deformation equation in 

context of Eq. (5.4) is: 

)]([)]()([ 11 tsNtstsL mmmm    .                                                (5.19) 

By considering the expression of 0s (initial approximation for moving interface) and Eqs. 

(5.13), (5.17) and (5.19), the various components of )(ts , i.e. ,,)(),( 21 tsts can be 

calculated.  

Hence, the approximate solution for )(ts  is given by 

 )()()( 10 tststs .                                                (5.20) 

5.4   Comparisons and Discussion 

To show the accurateness of the obtained solution, we discuss the comparisons of our 

results for temperature profile ),( txT  and the location of moving phase front )(ts  with the 

exact solution at 0  through Tables 5.1 and 5.2, respectively. In case of 0 , the Eqs. 

(5.1)-(5.5) become  a shoreline problem with a fixed line flux and a constant ocean level 

(Voller et al., 2004). In this chapter, the comparisons of our calculated results have been 

made with the exact solution established by Voller et al. (2004). Table 5.1 represents 

relative errors of temperature distribution between obtained results and exact result (given 

in Voller et al. (2004)) at   α =1, 0 , k =1, 1  and  t = 5.5 . The absolute errors and 

relative errors of moving phase front are depicted in Table 5.2 at α =1, 1,0    and k 

=1. From both the tables, it is clear that the obtained computational results agree well with 

the result of exact solution. 
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q                   Absolute Error Relative Error 

0.5 0.1 

0.2 

0.3 

0.4 

0.5 

0.212321 

0.162679 

0.113274 

0.064106 

0.015176 

0.211090 

0.160212 

0.109579 

0.059189 

0.009037 

1.20 e-03 

2.40 e-03 

3.60 e-03 

4.90 e-03 

6.10 e-03 

5.80 e-03 

1.50 e-02 

3.30 e-02 

8.30 e-02 

6.70 e-02 

1.0 0.1 

0.2 

0.3 

0.4 

0.5 

0.641957 

0.542968 

0.444652 

0.347007 

0.250031 

0.637125 

0.533223 

0.430042 

0.327569 

0.225792 

4.80 e-03 

9.70 e-03 

1.40 e-02 

1.90 e-02 

2.40 e-02 

7.50 e-03 

1.80 e-02 

3.30 e-02 

5.90 e-02 

1.00 e-01 

1.5 0.1 

0.2 

0.3 

0.4 

0.5 

1.213060 

1.064920 

0.918012 

0.772339 

0.627896 

1.202430 

1.043280 

0.885505 

0.729075 

0.573966 

1.00 e-02 

2.10 e-02 

3.20 e-02 

4.30 e-02 

5.30 e-02 

8.80 e-03 

2.00 e-02 

3.60 e-02 

5.90 e-02 

9.30 e-02 

 

 

 

 

 

 

 

 

 

Table 5.1. Comparison between exact value   and numerical value  

of temperature distribution at γ = 20. 
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q               Absolute Error Relative Error 

0.5 1 

2 

3 

4 

5 

0.199681 

0.282205 

0.345453 

0.398724 

0.445619 

0.198055 

0.280092 

0.343041 

0.396109 

0.442864 

1.60 e-03 

2.10 e-03 

2.40 e-03 

2.60 e-03 

2.70 e-03 

8.20 e-03 

7.50 e-03 

7.00 e-03 

6.60 e-03 

6.20 e-03 

1.0 1 

2 

3 

4 

5 

0.281571 

0.397457 

0.486084 

0.560600 

0.626098 

0.277484 

0.392422 

0.480616 

0.554968 

0.620473 

4.00 e-03 

5.00 e-03 

5.40 e-03 

5.60 e-03 

5.60 e-03 

1.40 e-02 

1.20 e-02 

1.10 e-02 

1.00 e-02 

0.90 e-02 

2.0 1 

2 

3 

4 

5 

0.394948 

0.555582 

0.677665 

0.779793 

0.869169 

0.385578 

0.545290 

0.667841 

0.771156 

0.862179 

9.30 e-03 

1.02 e-04 

9.80 e-03 

8.60 e-03 

6.90 e-03 

2.40 e-02 

1.80 e-02 

1.40 e-02 

1.10 e-02 

0.80 e-02 

 

 

 

 

 

 

 

 

Table 5.2. Comparison between exact value  𝑠𝐸 𝑡   and numerical value  𝑠𝑁 𝑡  

of moving interface at γ = 25. 
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Fig.5.1. Plot of  vs.  at   and .  
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Fig.5.2. Plot of  vs.  at   and .  
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Figs. 5.1 and 5.2 show the evolution of movement of phase front at the fixed value of 

thermal diffusivity ( 0.1 ), oscillation amplitude ( 5.0 ), 1  and oscillation 

frequency ( 2/  ). In Figs. 5.1 and 5.2, the effect of periodic heat flux on the 

movement of phase front is depicted for different values of   and q, respectively. From 

Fig. 5.1, it can be seen that phase front propagates periodically and the movement of phase 

front becomes slow when we enhance the parameter  . However, Fig. 5.2 depicts that the 

periodic propagation of moving boundary )(ts  which becomes fast as the value of q rises. 

It is also observed that when we raise the value of q , it makes melting/freezing process 

fast. 

5.5  Conclusion  

In this work, we study a complicated phase-change problem with periodic heat flux and 

variable latent heat term. As per authors’ knowledge, the exact solution to the proposed 

problem is not available in literature yet. Therefore, homotopy analysis technique has been 

used to get an approximate analytical solution to the problem, and we have seen that our 

computed results are sufficiently close to the analytical solution when the surface heat flux 

is a constant, i.e. the oscillation amplitude is zero. In this chapter, we have seen that the 

movement of interface/phase front is profoundly affected due to the change in various 

parameters, like oscillation amplitude, oscillation frequency,   and q. It is also seen that 

the homotopy analysis technique is a straight forward method. Moreover, this technique is 

sufficiently accurate and efficient to solve different types of phase-change problems arising 

in the various industries. 
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