
 

 

 

Chapter 3 

Exact and Approximate Solutions for a Freezing Problem 

having Varying Thermal Coefficients and Convective 

Boundary Condition 

3.1 Introduction  

The phase change problems have been investigated since the nineteenth century. These 

problems involve one or more moving boundaries and encounter in many aspects of 

engineering and natural sciences. The problems related to heat conduction, especially in 

freezing of materials, have many applications in industries and materials science 

(Lunardini, 1991; Gupta, 2003; Evans, 2009). Due to involvement of moving phase 

front in the mathematical model, phase change problems become nonlinear problems 

and it is challenging to have the solutions in closed form for these problems even in 

many simple cases (Crank, 1984; Hill, 1986). Therefore, the establishment of solution 

of such types of phase change problem (Stefan problem) always attracts the 

researchers.  

One phase Stefan problems in semi-infinite material have been studied widely and their 

solutions have been proposed analytically and numerically (Meek and Norbury, 1984; 

Das and Rajeev, 2010; Fazio, 2013; Rajeev, 2014). In the classical literatures of Stefan 

problem, it was assumed that the thermal coefficients of the phases involved are 

constants but it did not happen in many of the physical phase change processes. 

Therefore, variable thermal coefficients have been considered in many researches to 
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include such type of behaviour of the materials (Cho and Sunderland, 1974; Petrova 

and Tarzia, 1994; Tritscher and Broadbridge, 1994; Natale and Tarzia, 2006; Kumar et 

al., 2018a). In 1987, Oliver and Sunderland (1987) discussed a two phase Stefan 

problem having variable specific heat and thermal conductivity which are linear 

functions of unknown temperature. Ramos et al. (1994) and Briozzo et al. (2007) also 

studied temperature depending specific heat and thermal conductivity in their models of 

phase change problems. In 2017, Briozzo and Natale (2017) discussed a closed form 

solution for a super-cooled Stefan problem in infinite domain having nonlinear thermal 

conductivity and Dirichlet boundary condition at the fixed boundary. They have 

presented the exact solution of the problem and also discussed uniqueness of the 

solution. Kumar et al. (2018b) assumed Dirichlet boundary condition and discussed a 

Stefan problem which involves non-linear specific heat and thermal conductivity. The 

Dirichlet boundary condition in the Stefan problem is chosen due to the assumption that 

the fixed surface of the material is suddenly imposed by a constant temperature from an 

external source. But, this is not valid in real sense. Therefore, convective types of 

boundary conditions are considered by many researchers (Natale and Tarzia, 2003; 

Briozzo and Natale, 2015; Briozzo and Natale, 2016). Recently, Ceretani et al. (2018) 

discussed a Stefan problem involving variable conductivity and convective boundary 

conditions at the fixed face. They have also obtained exact solution for the problem in 

term of the modified error function. Based on these observations, the time-dependent 

convective boundary condition applied at the fixed boundary, varying specific heat 

)(Tc  and thermal conductivity )(Tk  are considered in our study. 

The establishment of the closed form solution to a Stefan problem is always exciting 

and beneficial for comparison point of view to validate the numerical and approximate 

solution obtained by various techniques of a complex problem. We have constructed 
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the closed form solution to the considered problem when    and 1 qp  with the 

aid of suitable similarity variables. The uniqueness and existence of the obtained 

solution is also discussed.  For    and qp  , a semi analytical solution for the 

problem has been deliberated with the aid of similarity variable and tau method. The 

applications of collocation and tau methods in conjunction with shifted Chebyshev 

operational matrix of derivatives can be seen in Parand and Razzaghi (2004), Doha et 

al. (2011a, 2011b), Vanani and Aminataei (2011), Ghoreishi and Yazdani (2011). 

Recently, Kumar et al. (2018b) applied shifted Chebyshev tau method to a non-linear 

phase change problem with the first type of boundary condition.  

The primary focus of this chapter is to investigate a Stefan problem in one-dimension 

including temperature depending specific heat and thermal conductivity with 

convective boundary condition. The similarity solution of the problem is obtained for a 

special case. A semi-analytical solution for the problem is also explored for general 

case and comparisons of this solution are made with the calculated exact solution to 

check its accuracy. The effect of the various parameters on moving phase front is also 

considered in our study. 

 

3.2 Mathematical Model of the Problem  

In this section, we will take a one phase freezing problem having the temperature 

depending thermal conductivity )(Tk  and specific heat )(Tc . Moreover, it is assumed 

that the convective boundary condition on the fixed face 0x  is time-dependent as 

given in (Ceretani et al., 2018). The mathematical model of the governing process 

consists of non-linear heat conduction which is described as follow: 
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where ),( txT  denotes the temperature profile at the position x  and time ,t  fTT 0  
is 

constant temperature imposed in the neighbourhood of the boundary 0x , fT  is the 

freezing temperature, )(ts  is the moving phase front, 0q  is the heat flux coefficient, 

  and l  are the density and the latent heat, respectively. 

Motivated by (Kumar et al., 2018b), the temperature-dependent thermal conductivity 

)(Tk  is assumed as: 
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and the specific heat capacity )(Tc  is considered as: 
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where 00 c , 00 k , 0 , 0  are the constants and qp,  are non-negative 

integers. 
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3.3 Solution of the Problem 

First, we substitute  

,
),(

),(
0
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in the Eqs. (3.1)-(3.5) that produces the following equations: 
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where 
0

0
0

c

k


   (thermal diffusivity for 0k  and 0c ) and 

l

TTc
Ste

f )( 00 
  is the 

Stefan number. 

Here, we take the following similarity variable 

)(),(  ftx   with 
t

x

02 
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and it is supposed that phase front moves as 

tts 02)(  ,                                                  (3.15) 
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where   is a positive constant to be determined later. 

Now, we substitute Eqs. (3.14) and (3.15) into the Eqs. (3.9)-(3.12) that generates the 

following non-linear ordinary differential equation: 
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 where 02  Bi  with 
0

0

k

q
Bi


  (generalized Biot number). 

Now, we consider the following two cases to discuss the solution of the system given in 

Eqs. (3.16)-(3.19): 

3.3.1 Case: 1 

In this case,     and 1 qp  are considered and the exact solution is discussed. 

As mentioned in (Kumar et al., 2018b), the general solution of Eq. (3.16) in term of 

error function ( (.)erf ) is given by 
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where )(1 C  and )(2 C  are the following expressions of   which are determined 

with the aid of conditions (3.17) and (3.18): 
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From Eqs. (3.14) and (3.20), we have 
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In Eq. (3.24), the unknown parameter   is involved. To determine , we substitute Eq. 

(3.20) into Eq. (3.19) which produces the following transcendental equation: 
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Once   is obtained from the Eq. (3.25), the phase front position )(ts  can be found by 

substituting the value of   into Eq. (3.15). 

3.3.1.1 Existence of Unique Solution 

To establish the existence and uniqueness of the above constructed solution discussed 

in case 1 of the section 3.3, we will show that there is a unique positive value of   

which is the solution of transcendental equation (3.25). 

To show the unique value of  , we define a function )(g  as 
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It can be observed easily that )(g  is continuous on ),0(   and 

,0)(lim
0







g                  .)(lim 





g                  (3.27) 

From the intermediate value theorem, it is clear that 0)( g  has at least one solution 

in ).,0(   Now, the derivative of )(g  defined in Eq. (3.26) is given by the following 

expression 
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Since   2222 ))(2()2(4)(2  erferf   therefore, the 

derivative of the function )(g  i.e., )(g  is positive on the interval ),0(   for positive 

values of ,Ste  and  . Hence )(g  is strictly increasing function in ),0(   and it 

shows the uniqueness of .  Clearly, this demonstrates the unique solution to the 

problem considered in case 1. 

3.3.2 Case: 2 

 In this case, we will find the approximate solution to the problem (3.16)-(3.19) for all 

non-negative values of  and . 

As given in Eq. (1.4), first we take an approximation )(Nf  of the dependent variable 

)(f  of the Eq. (3.16) as follows: 
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According to the Eqs. (1.6) and (1.8), we consider the following approximations for the 

derivatives of the function )(f : 
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With the help of the approximations mentioned in Eqs. (3.29)-(3.31) for f , f   and 

f  , we define the following residual )(NR  for Eq. (3.16): 
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According to Tau method (Doha et al., 2011a, 2011b), we have the following 

condition: 
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 and from Eq. (3.33), we can generate a system of )1( N  algebraic equations.  

Besides above )1( N  equations, we have three more equations obtained by putting the 

Eqs. (3.29)-(3.31) into  the Eqs. (3.17)-(3.19): 
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Now, the unknown coefficients of the vector C  and   can be found by solving the 

system of )2( N  algebraic equations deliberated from Eqs. (3.33)-(3.36). From Eqs. 

(3.14) and (3.29), the temperature distribution ),( tx  can be determined. Moreover, the 

location of moving interface )(ts  can be found with the aid of calculated   and Eq. 

(3.15). 

3.4  Comparisons and Results  

In this section, we discuss the approximate results for accuracy of the proposed 

approximate solution of the considered problem and dependence of moving interface 

on various parameters involved in the model of the problem. Here, all the calculations 

are reported through tables and figures by taking the following operational matrices of 

derivatives D  of order three, four and five, respectively:  
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Table 3.1 displays the comparisons for the approximate values of the temperature 

distribution A  for N = 2, 3, 4 and exact values of temperature E  for the different Biot 

numbers ( Bi ) at 1,1,5 0  t  and .5.0Ste  The numerical results of 

approximate position of moving phase front )(tsA  for N = 2, 3, 4 and exact location of 

moving phase front )(tsE  are portrayed in Table 3.2 at 1,5 0    and .5.0Ste  

These tables demonstrates that the proposed approximate solutions i.e., A  and )(tsA   
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  x  
E  

2NA  
3NA  

4NA  

 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.989950 

0.998213 

1.006260 

1.013940 

1.021130 

1.027730 

0.989973 

0.998284 

1.006330 

1.014980 

1.022310 

1.029610 

0.989950 

0.998213 

1.006260 

1.013920 

1.021040 

1.027470 
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0.998213 

1.006260 

1.013930 

1.021120 

1.027710 
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 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.662276 

0.735700 

0.802467 

0.862675 

0.916418 

0.963834 

0.661211 

0.734761 

0.801858 

0.862501 

0.916691 

0.964427 

0.662287 

0.735701 

0.802422 

0.862590 

0.916342 

0.963816 

0.662274 

0.735718 

0.802486 

0.862670 

0.916471 

0.963823 
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 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.437309 

0.561909 

0.666834 

0.756874 

0.834537 

0.901387 

0.436625 

0.563429 

0.671098 

0.762024 

0.838601 

0.903220 

0.437256 

0.562629 

0.667771 

0.757103 

0.833970 

0.900638 

0.437307 

0.561906 

0.666832 

0.756873 

0.834370 

0.901387 

 

10  

 

 

 

 

Table 3.1. Comparison of the exact values of temperature E  and approximate values 

of temperature
 A  at 1 qp  and .5.0Ste  

 

  Time

)(t  
)(tsE  

2
)(

NA ts  
3

)(
NA ts  

4
)(

NA ts  

 

 

5.0  

0.2 

0.4 

0.6 

0.8 

1.0 

0.109047 

0.154215 

0.188875 

0.218094 

0.243836 

0.109053 

0.154224 

0.188885 

0.218106 

0.243850 

0.109047 

0.154215 

0.188875 

0.218094 

0.243836 

0.109047 

0.154215 

0.188875 

0.218094 

0.243836 

 

 

5  

0.2 

0.4 

0.6 

0.8 

1.0 

0.524790 

0.742165 

0.908963 

1.049580 

1.173470 

0.523404 

0.740205 

0.906562 

1.046810 

1.170370 

0.524752 

0.742111 

0.908897 

1.049560 

1.173380 

0.524791 

0.742161 

0.908960 

1.049570 

1.173460 

 

 

10  

0.2 

0.4 

0.6 

0.8 

1.0 

0.612142 

0.865699 

1.060260 

1.224280 

1.368790 

0.613977 

0.868294 

1.063440 

1.227950 

1.372890 

0.612358 

0.865102 

1.060910 

1.224050 

1.368150 

0.612142 

0.865699 

1.060260 

1.224280 

1.368790 

 

Table 3.2. Comparison of the exact values of moving boundary )(tsE  and approximate 

values of moving boundary )(tsA  at 1 qp  and .5.0Ste  
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 Fig.3.1. Plot of tracking of phase front  vs.  for different      

 at .  

 Fig.3.2. Plot of tracking of phase front  vs.  for different 

 at .  
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are close to its exact solutions in case 1. When we increase the order of operational 

matrix of differentiation, then the growth in the accuracy of the proposed solution is 

also noticed from Tables 3.1 and 3.2. Hence, this approximate technique will be a 

beneficial tool to explore the non-linear phase change problems.  

Now, we discuss the effect of parameters   and   on moving phase front )(ts  at  p = 

q = 2 which are shown in Figs. 3.1-3.3 by considering the approximate technique 

discussed in case 2. Fig. 3.1 shows the dependence of )(ts  on Biot number (Bi) for 

,5.0  0.1 , 5.0Ste  and 0.10  . It is observed from this figure that the 

tracking of phase front )(ts  upswings if we increase the value of Biot number. 

Moreover, the evolution in the movement of )(ts  is detected when the parameter Bi is 

raised. The dependence of the location of phase front )(ts  on   is displayed in Fig. 3.2 

at 5.0 , 0.2 , 0.10   and 5.2Ste . Fig. 3.3 indicates the effects of   on 

trajectory of )(ts  at 5.0 , 0.2 , 0.10   and 5.1Ste . It can be observed from 

  Fig.3.3. Plot of tracking of phase front  vs.  for different 

 at .  
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Fig. 3.1 that the tracking of moving interface enhances with the decrease in  . 

However, opposite to this trend is observed in Fig. 3.3 that is the tracking of )(ts  

increases when   increases. Beside these observations, it is also found that the Biot 

number has more impact on the movement of phase front than   and  . 

3.5  Conclusion 

The present chapter is devoted to a freezing problem having variable heat capacity and 

thermal conductivity in a semi-infinite domain. A Robin boundary condition on the 

boundary x = 0 is also taken into the account. For a particular case (   , p = q =1), 

the similarity solution for the problem is discussed with its uniqueness and existence. 

An approximate solution to the problem based on spectral tau method is also proposed 

for small values of   and  . In our study, it is established that the moving phase front 

)(ts  is equal to the constant multiple of t  in the considered problem which is similar 

to the previous results given in (Crank, 1984; Hill, 1986). 

From comparisons and discussion section, it is noticed that the applied approximate 

technique is reliable, easy and efficient to apply on the phase change problems after the 

similarity reduction. It is also apparent that when we increase the order of matrix of 

differentiation, the obtained result tends to the exact solution rapidly. One more 

important point is observed for p = q = 2 that is the freezing process becomes slow if 

we increase the value of  . However, the freezing process becomes fast when we 

increase the values of either Biot number (Bi) or   or both. It is also observed that the 

effect of Biot number on the freezing process is more than   or  . 

  

                                                                 ***** 


