
 

Chapter 2 

A Moving Boundary Problem with Variable Specific Heat and 

Thermal Conductivity 

2.1 Introduction 

Melting and freezing processes are encountered widely in nature and in many industrial 

processes, such as freezing of water, casting of melted alloys, thawing of food products, 

welding, thermal energy storage with phase change material, cryosurgery, production of 

steel and plastic products. During these processes, the material undergoes phase change 

includes a boundary that separates the two different phases. This boundary propagates in 

the material undergoing the phase change during the process. Mathematical formulation of 

the melting and freezing processes is governed by Stefan problems. Stefan problem (a 

moving boundary problem) describing the process of melting and freezing has been 

studied since eighteen century. These kinds of problems always attract interests due to the 

existence of one or more moving interfaces, inherent non-linear nature even in its simplest 

form and its wide applications in many natural/industrial processes. A detail discussion of 

various mathematical models related to the moving boundary problems and its analytical 

and approximate solutions is mentioned in the book of Crank (1984). The formulation of 

the problem with complicated boundary conditions can be seen in Carslaw and Jaeger 

(1959), Cho and Sunderland (1974), Hill (1986), Oliver and Sunderland (1987), Petrova et 

al. (1994), Tritscher and Broadbridge (1994).  
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From last one decade, the Stefan problem involving variable thermal coefficients (Briozzo 

et al., 2007; Briozzo and Natale, 2015; Briozzo and Natale, 2017; Kumar et al., 2018a) 

has attracted great to Mathematicians as well as scientists because of its applicability and 

difficulty in getting its solution. Recently, Ceretani et al. (2018) considered a Stefan 

problem which involves thermal conductivity as a function of temperature and a Neumann 

type boundary condition at the left boundary and discussed the exact solution to the 

problem. A temperature-dependent thermal conductivity has been considered by 

Animasaun (2015) in his study of an incompressible electrically conducting Casson fluid 

flow along a vertical porous plate. Animasaun (2017) assumed temperature-dependent 

thermal conductivity and fluid viscosity in his study of a problem of steady mixed 

convection micropolar fluid flow towards stagnation point formed on horizontal linearly 

stretchable melting surface. Some more models involving temperature-dependent thermal 

conductivity can also be found by Korik et al. (2017), Makinde et al. (2018). Sandeep et al. 

(2017) presented a numerical exploration to examine the momentum, thermal and 

concentration boundary level behaviour of liquid-film flow of non-Newtonian nanofluids 

by assuming space and temperature dependent heat source/sink. Motivated by these works, 

we have discussed the following phase change problem in the domain 0x  that includes 

variable heat capacity and thermal conductivity: 
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http://www.sciencedirect.com/science/article/pii/S1468121817301402#!
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where ),( txT denotes the temperature profile in liquid region, x  is space variable, t is the 

time pT  represents the phase change temperature, wTT 0  is the constant temperature at 

the left boundary 0x , )(ts  is the moving boundary and  denotes the density. 

To govern the position of moving interface, we need one additional condition on the 

boundary )(tsx   which is known as the Stefan condition of the problem and it is given by  

dt

ds
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)( ,                                      (2.4) 

where l  is latent heat. This condition describes the law of motion of the interface between 

two different phases of the material and can be derived from the energy balance equation 

on the moving boundary (Briozzo and Natale, 2015; Briozzo and Natale, 2017; Briozzo et 

al., 2007). 

Besides conditions (2.2)-(2.4), an initial condition associated with the moving boundary is 

0)0( s .                                                     (2.5) 
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and also thermal conductivity )(Tk  is considered as 
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where ,00 c 00 k , 0 , 0  and ,m n  are non-negative integers. 

In this area, besides the mathematical model of the problem in different physical process, 

the establishment of solution of the mathematical model is also an exciting point of 

interest. Meek and Norbury (1984) presented a moving boundary problem which models 

the spreading of the viscous fluid under the gravitational force above a smooth horizontal 

plane and used the modified Keller box method to find a numerical solution of the 

problem. Therefore, many approximate, numerical and exact solutions of these problems 

have been reported by Meek and Norbury (1984), Savivic and Caldwell (2003), Natale and 

Tarzia (2006), Rajeev et al. (2009), Słota and Zielonka (2009), Rajeev (2014), Fazio 

(2013), Voller and Falcini (2013), Zhou and Li-jiang (2015). As far as author’s knowledge, 

exact solutions to the Stefan-type problems can be found by using similarity 

transformations only. In this study, the appropriate similarity variables are considered 

which allow us to convert the problem into an ordinary differential equation (ODE) along 

with boundary conditions. The exact solution to the proposed problem has been discussed 

for 1 nm  and 2 nm . In order to discuss the solution for all positive integers m  and

n , the converted system of ODE is solved by using the shifted Chebyshev spectral 

technique. Parand and Razzaghi (2004) discussed to solve ordinary differential equations 

of higher order by the rational Chebyshev tau method. The approximate solution of ODE 

with the aid of shifted Chebyshev tau technique is described in Doha et al. (2011a). An 

approximate solution to partial differential equations with fractional derivative by tau 

method is also discussed in Vanani and Aminataei (2011), Doha et al. (2011b). Ghoreishi 

and Yazdani (2011) discussed a generalization of the Tau method and presented its 

convergence analysis to numerical solution of multi-order fractional differential equations. 

http://www.sciencedirect.com/science/article/pii/S0017931012008496#!
http://www.sciencedirect.com/science/article/pii/S0017931012008496#!
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The chapter has been arranged as follow: We have used this operational matrix of 

differentiation in our calculations. Next, the solution for all non-negative integers m  and 

n  is discussed in section 2.2 by applying a shifted Chebyshev tau method. Section 2.2 

describes the exact solutions to the problem for two cases, i.e. 1 nm  and 2 nm .  

The existence and uniqueness of the exact solutions (obtained in sect. 2.2) are discussed in 

section 2.3. Finally, section 2.4 contains the comparison of obtained approximate solution 

(given in sect. 2.2) with exact solution for some cases. The dependent of temperature 

distribution and interface on m, n and Stefan number are also discussed in section 2.4. The 

effect of Stefan number on the evolution of the moving boundary can be seen in the article 

of Savovic and Caldwell (2003). 

2.2 Solution for General Case 

First of all, we use the transformation defined as follows: 
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the problem (2.1)-(2.5) becomes 
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0)0( s ,                                                (2.13) 

where 
0

0
0

c

k


   (thermal diffusivity for 0k  and 0c ), and 

l

TTc
Ste w)( 00 

  is the Stefan 

number. 

Now, we take the similarity variable defined as 

)(),(  ftx   with 
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x

02 
                                       (2.14) 

and from (2.11), (2.12) and (2.14), we can conclude that )(ts  must be proportional to 

t0  and therefore given by 

tts 02)(  ,                                              (2.15) 

where   is a constant yet to be found. 

Next, substituting the variables given in Eqs. (2.14) and (2.15) into the Eqs. (2.9)-(2.12), 

we have the following system consisting of ODE: 
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Now, we can use the (N+1)th partial sum of the series given in (1.4) for an approximate 

solution to the problem given in Eqs. (2.16)-(2.19). Therefore, the dependent variable 

)(f  can be stated as: 
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As given in Eq. (1.7), the derivatives of dependent variable f can be approximated as: 
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From Eqs. (2.20) and (2.21), the residual )(xRN  corresponding to Eq. (2.16) is given as: 
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The )1( N algebraic equations can be found by the condition (Doha et al., 2011a, 2011b) 

given below: 
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Moreover, by substituting the Eqs. (2.20) and (2.21) into the Eqs. (2.17)-(2.19), the 

following equations can be found: 
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1)0( TC ,                                                    (2.24) 

0)( TC                                                    (2.25) 
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Beside )1( N equations generated by Eq. (2.23), three more algebraic equations can be 

generated by Eqs. (2.24)-(2.26). Now, the system of )2( N  algebraic equations with 

)2( N  unknowns can easily be solved which determines the unknown vector C  and  . 

Consequently, the temperature distribution in liquid region ),( tx  and )(ts  can be 

determined with the help of Eqs. (2.14) and (2.15). 

2.3 Exact Solutions 

In this section, we categorise the problem into two parts as: 

2.3.1 Case 1: When 1 nm  and    then the Eqs. (2.16)-(2.18) can be written as: 
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and interface condition (2.19) becomes  
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The general solution of Eq. (2.27) is 
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where 1C  and 2C  are arbitrary constants which can be determined from the boundary 

conditions (2.28), which emerge out as: 
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After substituting the above values of 1C  and 2C , the exact solution of the Eq. (2.27) along 

with boundary condition becomes: 
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where (.)erf  denotes the error function that is given by 
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In view of Eqs. (2.14), (2.15) and (2.33), the solution of Eq. (2.9) at 1 nm  and    

can be given by 
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Substituting Eq. (2.33) into Eq. (2.29), we get the following transcendental equation: 
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The solution of Eq. (2.36) gives   and by substituting this value into (2.15), a tracking of 

the interface position )(ts  with time can be found. 

2.3.2 Case 2: If 2 nm  and    then the Eqs. (2.16)- (2.19) become: 







 







 0,0))(1())(1(2 22

d

df
f

d

d

d

df
f ,           (2.37) 

1)(
0



f  and 0)( 


f                                    (2.38) 
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The solution of Eq. (2.37) with the boundary conditions (2.38) is given by 
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Consequently, the ),( tx  at 2 nm  and    can be determined by substituting 

tx 02/  
 
in the Eq. (2.40). 

The Eqs. (2.39) and (2.40) produce the following transcendental equation: 
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Solving (2.42) for , will, on substitution into (2.15), provide the phase front )(ts . 

2.4 The Existence and Uniqueness 

To validate the existence and uniqueness of solution established previously, we discuss as 

follows: 

For case 1, we consider the transcendental equation given in Eq. (2.36) and suppose 
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where Ste  is a positive constant and 0 . 

It is obvious that )(1 f  is defined and continuous on ),0(   and 
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From Eqs. (2.44) and (2.45), it is clear that 0)(1 f  has at least one solution in ).,0(   
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Now, for all 0Ste , it is clear that 
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Hence, )(1 f  is strictly increasing and this shows the uniqueness of .  Existence of 

unique  which satisfies the transcendental equation (2.36) assures the existence and 

uniqueness of solution to the problem (2.9)-(2.13) for 1 nm  and   . 

For case 2, we define )(2 f  on ),0(   with the help of transcendental Eq. (2.42) as 
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Clearly, )(2 f  is continuous on ),0(   and 
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Hence 0)(2 f  has a solution in ).,0(   Moreover, 0)(2  f  on ),0(   for all positive 

Stefan number which shows that )(2 f  is strictly monotonically increasing function. 

Hence, 0)(2 f  has a unique solution on ).,0(  Consequently, there exists unique 

solution to the problem (2.9)-(2.13) for 2 nm  and   . 
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2.5 Comparisons and Discussions 

In this chapter, all the computations for temperature distribution θ(x, t) and moving 

interface s(t) have been made with the help of Wolfram Research (8.0.0) software at fixed 

value of 0.10  . We first present accurateness of the approximate solution described in 

section 2.2 through the figures for the proposed problem by considering the following 

matrices: 
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Table 2.1 represents the comparisons of approximate temperature ),( txA  and exact 

temperature distribution ),( txE  in )(0 tsx   at t = 1.0 for m = n =1 and m = n =2. The 

correctness of proposed approximate solution )(tsA  for the moving interface at m = n = 1 

and m = n = 2 is shown in Table 2.2. From these tables, it can be seen that our proposed 

approximate solutions are near to exact solutions )(tsE  in the considered cases. Therefore, 

to explore the Stefan problem involving non-linear heat equation, this simple approach 

(stated in section 2.2) can be useful to solve the problem. 

With the help of proposed approximate solution, the variations of temperature distribution 

θ(x, t) and moving interface s(t) are shown in Figs. 2.1 and 2.2. In Fig. 2.1, the dependence 

of temperature distribution θ(x, t) on x is depicted at t =1.0 and 0.10   for various values 

of m, n (m = n =1, m = n =2 and m = n =3) and   5.2,5.1,5.0 . From this figure, it can 

be seen that the temperature is maximum at x = 0 and is continuously decreasing to zero at  
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nm,  Ste,,  x  ),( txE  ),( txA  Absolute error 

 
 

1nm  

 
 

2  , 

Ste = 1.0 

 
 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.000000 

0.948498 

0.895368 

0.840694 

0.784560 

0.727047 

 

1.000000 

0.948765 

0.896559 

0.843262 

0.788751 

0.732907 

0.0000e-0 

2.6647e-4 

1.1909e-3 

2.5677e-3 

4.1914e-3 

5.8596e-3 

 
 

2nm  

 
 

,1   

Ste = 0.2 
 
 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.000000 

0.895802 

0.780190 

0.651389 

0.507803 

0.349012 
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0.893501 

0.772801 

0.639219 

0.494075 

0.338691 

 

0.0000e-0 

2.3006e-3 
7.3889e-3 

1.2170e-2 

1.3727e-2 

1.0321e-2 

 

Table 2.1. Exact and approximate values of temperature distribution ),( tx  for different x 

at 10   and 1t . 

 

 

nm,  Ste,,  t  )(tsE  )(tsA  Absolute error 

 
 

1 nm  

 

2  , 

Ste = 1.0 

 
 

0.1 

0.2 

0.3 

0.4 

0.5 

0.506345 

0.716080 

0.877015 

1.012690 

1.132220 

0.504351 

0.713261 

0.873562 

1.008700 

1.127760 

1.9933e-3 

2.8190e-3 

3.4525e-3 

3.9867e-3 

4.4572e-3 

 
 

2 nm  

 
 

1  , 

Ste = 0.2 

 
 

0.1 

0.2 

0.3 

0.4 

0.5 

0.221606 

0.313398 

0.383833 

0.443212 

0.495526 

0.221807 

0.313682 

0.384181 

0.443614 

0.495975 

2.0080e-4 

2.8398e-4 

3.4780e-4 

4.0160e-4 

4.4901e-4 

 

Table 2.2. Exact and approximate values of moving boundary )(ts  for different time at

10  .  
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Fig.2.1. Plot of θ(x, t) vs. x at Ste =0.5 and α =0.5.  

 

Fig.2.2. Plot of s(t) vs. t at Ste =0.5 and α = 0.5. 
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  Fig.2.3. Plot of phase front for different values of Ste at 1 nm , 

1   and 10  . 

 

  Fig.2.4. Plot of phase front for different values of Ste at 2 nm , 

1   and 10  . 
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the moving interface. Moreover, it is clear that the temperature decreases in molten region 

as the value of m and/or n or   decreases. Fig. 2.2 shows the trajectory of moving interface 

s(t) at 0.10   and 5.0  for different m, n and  . This figure confirms that the velocity 

of moving interface s(t) improves when we increase either m and/or n or  . This implies 

that the melting of material enhances when the parameters m or n or   rises. The effect of 

Stefan number on the moving phase front is depicted in Figs. 2.3 and 2.4 for m = n =1 and 

m = n =2, respectively. These figures show that the larger values of Stefan numbers 

accelerate the movement of phase front which makes the process of melting fast. This is 

similar result as reported in the paper of Savovic and Caldwell (2003). 

 

2.6 Conclusion 

In this study, the one-phase Stefan problem of melting process with variable thermal 

conductivity and heat capacity is discussed.Two exact solutions of the problem are 

presented for particular cases with the help of similarity variables method. Existence and 

uniqueness of exact solutions are also discussed. It is found that the movement of moving 

boundary s(t) is proportional to t  in the proposed model and this result was well 

established earlier for the Stefan problem with 0  (Crank, 1984; Carslaw and 

Jaeger, 1959).  

Besides exact solutions, an approximate approach based on similarity transformation and 

spectral tau method has been successfully applied to obtain the solution to the problem for 

general case. From section 2.5, it has been observed that the growth in the rate of change of 

temperature in molten region and the melting process are found if the value of m and/or n 
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or   increases. It is also observed that the proposed approximate approach is efficient, 

accurate and easy to apply on Stefan problems. The authors believe that this scheme is 

helpful for the researchers working in the field of moving boundary problem. 

 

 

 

***** 


