LIST OF FIGURES

Page No.

Chapter 1	Introduction and Literature Review	
Fig. 1.1	Components of Typical wind power system.	3
Fig. 1.2	Squirrel cage induction generator	4
Fig. 1.3	Wound Rotor Induction Generator	5
Fig. 1.4	Doubly Fed Induction Generator	5
Fig. 1.5	Electrically Excited Synchronous Generator	7
Fig. 1.6	PM excited synchronous generator.	7
Fig. 1.7	Radial Flux PMSG.	8
Fig. 1.8	Single Sided Axial flux PMSG.	9
Fig. 1.9	Double Sided Axial flux PMSG.	9
Fig. 1.10	Transverse flux machine.	10
Fig. 1.11	Multi-layer PM rotor PMSG.	11
Fig. 1.12	V-shape PM rotor-PMSG.	11
Fig. 1.13	Dual stator Single rotor PMSG.	12
Fig. 1.14	Dual rotor Single stator PMSG.	12
Fig. 1.15	Dual rotor single stator PMSG.	12
Fig. 1.16	Dual stator hybrid excited rotor PMSG.	13
Fig. 1.17	Design Analysis of a machine.	17
Fig. 1.18	Objective of design Analysis.	18
Fig. 1.19	Thesis layout.	22
Chapter 2	Proposed PMSG and Model Analysis	
Fig. 2.1	Rotor without segmentation.	26
Fig. 2.2	Rotor With Segmentation.	26
Fig. 2.3	Five Phase Winding pattern of SSFP-PMSG.	30
Fig. 2.4	Winding Layout of A-Phase for MCDSFP-PMSG.	30
Fig. 2.5	Hysteresis Loop of Soft Magnetic Material.	31
Fig. 2.6	B-H curve of permanent Magnet material.	33
Fig. 2.7	Schematic of single stator single rotor generator.	35
Fig. 2.8	Schematic of MCDSFP-PMSG	35

Fig. 2.9	SSFP-PMSG model.	37
Fig. 2.10	Improved magnetic circuit model of SSFP-PMSG.	38
Fig. 2.11	Improved magnetic model for no-load of SSFP-PMSG.	39
Fig. 2.12	Improved magnetic model with winding mmf of SSFP-	39
	PMSG.	
Fig. 2.13	Magnet to magnet leakage flux path.	41
Fig. 2.14	Magnet to rotor iron leakage flux path.	41
Fig. 2.15	Simplified form of IMC.	43
Fig. 2.16	Reduced for IMC.	44
Fig. 2.17	Flux line plot due to four pair of rotor PMs of SSFP-	51
	PMSG.	
Fig. 2.18	Flux line plot due to MMF of five Phase winding of SSFP-	51
	PMSG.	
Fig. 2.19	Flux density plot due to rotor PMs of SSFP-PMSG.	52
Fig. 2.20	Flux density plot due to winding MMF of SSFP-PMSG.	53
Fig. 2.21	Generated voltage due to variation of magnet height (1	57
	mm to 4.5 mm).	
Fig. 2.22	Cogging torque due to variation of magnet height (1 mm	58
	to 4.5 mm).	
Fig. 2.23	Generated voltage with saturation due to variation of	58
	magnet height.	
Fig. 2.24	Generated voltage with the variation of rotor sleeve	60
	thickness (0.1 to 1 mm).	
Fig. 2.25	Cogging torque with the variation of rotor sleeve thickness	60
	(0.1 to 1mm).	
Fig. 2.26	Generated Voltage with the variation to magnet gap (5.105	62
	mm to 15.32 mm).	
Fig. 2.27	Cogging torque with the variation of magnet gap (5.105 to	63
	15.32 mm).	
Fig. 2.28	RNM of MCDSFP-PMSG.	64
Fig. 2.29	RNM of MCDSFP-PMSG under one pole pitch.	68
Fig. 2.30	Leakage flux variation through flux barrier with α .	70
Fig. 2.31	FFT analysis of No load inner stator EMF.	73

Fig. 2.32	FFT analysis of No load outer stator EMF.	73
Fig. 2.33	External circuit connected to MCDSFP-PMSG FEM	76
	model.	
Fig. 2. 34	FEM and analysis result of outer air gap flux density.	77
Fig. 2.35	FEM and Analytical result of inner air gap flux density.	77
Fig. 2.36	FEM and Analytical result of outer stator voltage	78
Fig. 2.37	FEM and Analytical result of inner stator voltage.	78
Fig. 2.38	FEM inner and outer stator No-Load phase EMF.	79
Fig. 2.39	FEM and Analytical results of electromagnetic torque.	79
Chapter 3	Fabrication and Operation of PMSG	
Fig. 3.1	View of stator and frame.	83
Fig. 3.2	Rotor magnet pasting arrangement of SSFP-PMSG.	84
Fig. 3.3	Stator and rotor of generator.	85
Fig. 3.4	Polarity test of rotor for generator.	86
Fig. 3.5	Stator and rotor arrangement on the iron bed of the PMSG.	86
Fig. 3.6	Experimental Setup.	87
Fig. 3.7	Voltage develop at 384.59 rpm.	88
Fig. 3.8	Five Phase generated voltage.	88
Fig. 3.9	Generated phase Voltage vs. Speed.	89
Fig. 3.10	Generated Voltage vs. Speed.	90
Fig. 3.11	DC Voltage vs. Current under different condition.	91
Fig. 3.12	Outer stator.	92
Fig. 3.13	Inner stator.	92
Fig. 3.14	Coils of inner stator winding.	93
Fig. 3.15	Coil placement in the slot of inner stator.	93
Fig. 3.16	Coil placement in the slots of outer stator.	94
Fig. 3.17	Complete winding connection of outer stator winding.	94
Fig. 3.18	Winding of inner stator coming through the shaft of the	95
	generator.	
Fig. 3.19	Rotor PM sleeve.	95
Fig. 3.20	Component of fabricated MCDSFP-PMSG.	96
Fig. 3.21	Experimental Setup.	97
Fig. 3.22	Outer stator voltage developed at 400 rpm.	98

Fig. 3.23	Inner stator voltage developed at 400 rpm.	98
Fig. 3.24	Outer stator voltage.	99
Fig. 3.25	Inner stator voltage.	99
Fig. 3.26	Series Connection.	100
Fig. 3.27	Resultant phase and rectified DC voltage due to series	100
	connection of winding.	
Fig. 3.28	Resultant voltage vs. Speed when both are in series	100
	connection under no-load.	
Fig. 3.29	When both are connected series the resultant DC voltage	101
	vs. DC current under loaded condition.	
Fig. 3.30	Anti- Series Connection.	102
Fig. 3.31	Resultant phase and inner phase voltage due to Anti-series	102
	connection of winding.	
Fig. 3.32	Resultant voltage vs. Speed under no-load condition, when	102
	both are connected anti-series.	
Chapter 4	Result and Validation	
4.1	Phase voltage comparison for Analytical, FEM and	105
	Experimental results	
4.2	Cogging torque comparison for Analytical, FEM and	107
	Experimental results	
4.3	Analytical Phase and line voltages of SSFP-PMSG	107
4.4	Experimental Phase and line voltages of SSFP-PMSG	108
4.5	Rectified DC Voltage vs. Speed	109
4.6	DC Voltage vs. DC Current	109
4.7	Output DC power vs Load resistance	110
4.8	Electromagnetic torque of SSFP-PMSG	110
4.9	Inner stator generated voltage of MCDSFP-PMSG	112
4.10	Inner stator DC rectified voltage of MCDSFP-PMSG	113

4.12	Outer stator DC rectified voltage vs. speed under no-load	114
	condition of MCDSFP-PMSG	
4.13	Outer stator rectified voltage vs. speed under healthy and	115
	faulty condition	
4.14	Outer stator rectified DC voltage under loaded condition of	116
	MCDSFP-PMSG	
4.15	Outer stator DC rectified voltage vs. DC current under	117
	healthy and faulty condition of MCDSFP-PMSG	
Chapter 5	Thermal Modeling of Five-Phase PMSG	
Fig. 5.1	Schematic of Single stator single rotor Generator	120
Fig. 5.2	Winding Pattern of SSFP-PMSG	120
Fig. 5.3	Flux lines of eight poles of SSFP-PMSG	121
Fig. 5.4	Lumped Parameter Model	122
Fig. 5.5	Equivalent Thermal Lumped Parameter Model for a	124
	hollow cylinder	
Fig. 5.6	Temperature distribution in the model	132
Fig. 5.7	Temperature developed in the model	133
Fig. 5.8	Radial temperature distribution	133
Fig. 5.9	Shaft temperature	134
Fig. 5.10	Rotor Yoke temperature	134
Fig. 5.11	Magnet temperature	135
Fig. 5.12	Winding temperature	135
Fig. 5.13	Stator Yoke temperature	136
Fig. 5.14	Schematic of MCDSFP-PMSG	138
Fig. 5.15	Winding Layout of MCDSFP-PMSG	139
Fig. 5.16	Flux lines Confirming Eight Poles of MCDSFP-PMSG	139
Fig. 5.17	Lumped parameter thermal model of MCDSFP-PMSG	140
Fig. 5.18	Temperature distribution in the model	147
Fig. 5.19	Temperature variation in the different parts of model	148
Fig. 5.20	Radial Temperature variable from inner to outer in model	149
Fig. 5.21	Shaft temperature	149

Fig. 5.22	Inner Stator Yoke temperature	149
Fig. 5.23	Inner stator winding temperature	151
Fig. 5.24	Inner PM temperature	151
Fig. 5.25	Rotor Yoke temperature	152
Fig. 5.26	Outer PM temperature	152
Fig. 5.27	Outer Stator Winding temperature	153
Fig. 5.28	Outer stator Yoke temperature	153