LIST OF FIGURES

Figure 1.1 Different Auto-ID techniques
Figure 1.2 Schematic diagram of an RFID system
Figure 1.3 A tree diagram of the thesis
Figure 2.1 RFID system components
Figure 2.2 A semi-rigid differential probe test fixture
Figure 2.3 (a) Schematic configuration of measurement setup with differential probe, (b) impedance measurement setup with VNA24
Figure 3.1 Geometry of the linearly tapered meander line cross dipole CP antenna.55
Figure 3.2 Intermediate stages of the evolution of the designed antenna structure, (a) Linear dipole, (b) Meander line antenna, (c) Linearly tapered meander line antenna, and (d) Cross dipole CP antenna
Figure 3.3 Fabricated prototype of the cross dipole CP antenna
Figure 3.4 Impedance measurement setup of cross dipole CP antenna with VNA60
Figure 3.5 Simulated and experimental input resistance of the cross dipole CP antenna
Figure 3.6 Simulated and experimental input reactance of the cross dipole CP antenna
Figure 3.7 Simulated and experimental reflection coefficient of the cross dipole CP antenna and simulated axial ratio
Figure 3.8 Simulated input impedance characteristics of the antenna with variation in length of the semi-circular curve (Lsc)
Figure 3.9 Simulated electric field ratio (Ex/Ey) and phase difference characteristics of the antenna with variation in length of the semi-circular curve (Lsc)
Figure 3.10 Simulated axial ratio characteristics of the antenna with variation in length of the semi-circular curve (Lsc)
Figure 3.11 Simulated surface current density of the cross dipole CP antenna at 915 MHz at different time phases (a) wt= 0^{0} , (b) wt= 90^{0} , (c) wt= 180^{0} , (d) wt= 270^{0}
Figure 3.12 Simulated radiation pattern of the cross dipole antenna at 915 MHz (a) XZ plane, and (b) YZ plane
Figure 3.13 Maximum read range of the cross dipole CP antenna

Figure 4.1 Schematic representation of passive RFID tags (A) Conventional (B) Dual antenna
Figure 4.2 Configuration of the dual-band dual antenna structure75
Figure 4.3 Fabricated prototype of the dual band dual antenna with a differential probe
Figure 4.4 Simulated and measured input impedance of the receiving antenna 78
Figure 4.5 Simulated and measured reflection coefficient against frequency for the receiving antenna
Figure 4.6 Isolation between receiving and backscattering antenna
Figure 4.7 Input impedance of the receiving antenna with backscattering antenna being short circuit ($Z_L=0$) and open circuit ($Z_L=\infty$)
Figure 4.8 Radiation patterns of the dual antenna at 866 MHz (a) XZ plane, (b) YZ plane
Figure 4.9 Radiation patterns of the dual antenna at 915 MHz (a) XZ plane, (b) YZ plane
Figure 4.10 Simulated and measured input impedance variation of the backscattering antenna
Figure 4.11 Backscattering RCS of the dual antenna when the receiving antenna is conjugately matched and backscattering antenna in two states (open and short)
Figure 4.12 Backscattering RCS of conventional single antenna when in two states (match and short)
Figure 4.13 Detection range comparison of the dual antenna and conventional antenna
Figure 4.14 Simulated input impedance of the receiving antenna with different size of metallic surfaces
Figure 5.1 One slot based CP antenna (a) Square- shaped slot, (b) Circular- shaped slot, (c) Cross- shaped slot, (d) Meandered cross-shaped slot (L is 70 mm)
Figure 5.2 Simulated reflection coefficient with frequency of the one slot based CP antenna
Figure 5.3 Axial-ratio at boresight versus frequency of the one slot based CP antenna
Figure 5.4 Simulated result of gain at boresight versus frequency of the one slot based CP antenna
Figure 5.5 A fabricated prototype of the single meandered-cross shaped slot antenna
Figure 5.6 Simulated and measured reflection coefficient with frequency of the single Meandered-cross slot CP antenna

Figure	5.7 Simulated and measured axial-ratio at boresight versus frequency of the single Meandered-cross slot CP antenna
Figure	5.8 Simulated and measured Radiation patterns of the single Meandered- cross slot CP antenna at 915 MHz (a) XZ (b) YZ planes94
Figure	5.9 Meandered cross-shaped slot based CP antenna (a) One-, (b) Two-, (c) Four- slot (W= 62 mm)
Figure	5.10 Simulated reflection coefficient of one-, two- and four- slot meandered cross-shaped CP antennas
Figure	5.11 Simulated axial ratio at the boresight of one-, two- and four- slot meandered cross-shaped CP antennas
Figure	5.12 Simulated results of gain at the boresight of one-, two- and four- slot meandered cross-shaped CP antennas
Figure	5.13 Simulated surface current distribution for the meandered cross- shaped four-slot LHCP antenna at 915 MHz in the phase of (a) 0^0 , (b) 90^0 , (c) 180^0 , (d) 270^0
Figure	5.14 A fabricated prototype of the designed four meandered cross-shaped slot antenna
Figure	5.15 Simulated and measured reflection coefficient of four meandered cross-shaped slot antenna
Figure	5.16 Simulated and measured axial ratio at boresight of four meandered cross-shaped slot antenna
Figure	5.17 Simulated and measured gain of the four meandered cross-shaped slot antenna
Figure	5.18 Simulated and measured Radiation patterns of the four meandered cross-shaped slot antenna at 915 MHz (a) XZ (b) YZ planes101