LIST OF FIGURES

Figure 1.1:	Historical development of electronic devices: starting with the point-contact device to the organic materials based thin film devices.	4
Figure 1.2:	Comparison of the conductivity of conducting polymers to the inorganic counterparts.	6
Figure 1.3:	The energy levels distribution of a π -conjugated polymer in comparison with convention inorganic materials.	7
Figure 1.4:	Spin-coating process steps (a) Coating unit (b) Sample on coating unit and (c) Coating on the sample and spin coated film.	14
Figure 1.5:	FTM set-up and process of thin film deposition (a) Hydrophilic liquid substrate (surface) in petri-dish, (b) Drop of conducting polymer on the liquid surface, (c) Floating polymer film on liquid surface and (d) Stamping of polymer film.	15
Figure 1.6:	Working process of SPM (STM, AFM, and NSOM) measurement.	16
Figure 1.7:	Set-up and working of (a) SEM measurement and (b) TEM measurement.	18
Figure 1.8:	Set-up and working of (a) XRD measurement and (b) Cyclic voltammetry measurement.	19
Figure 1.9:	Working principle of (a) FTIR spectroscopy and (b) Spectrophotometry.	21
Figure 1.10:	Working principle of (a) UV-Vis spectroscopy and (b) Photoluminescence spectroscopy.	22
Figure 1.11:	Device structure of (a) Schottky diode, (b) p-n diode, (c) MSM, and (d) MIS.	24
Figure 1.12:	Different OTFT structures: (a) Bottom-gate top-contact, (b) Bottom-gate bottom-contact, (c) Top-gate top-contact, and (d) Top-gate bottom-contact.	24
Figure 1.13:	Semiconductor parameter analyser for the measurement of various electrical parameters.	25
Figure 1.14:	Clusters of organic device application from OE-A Roadmap.	26
Figure 1.15:	E-nose and its processing with respect to the human nose.	27

Figure 1.16:	Generation of charge excitons in conducting polymer under light exposure.	29
Figure 2.1:	The band alignment of PQT-12 polymer with Au.	43
Figure 2.2:	(a) Device structure of MSM sensor on polyamide substrate, (b) Optical image of as-fabricated sensor, and (c) Flexibility of as-fabricated sensor.	44
Figure 2.3:	Thin film XRD of PQT-12 on flexible polyamide substrate.	45
Figure 2.4:	AFM topography of PQT-12 thin film on polyamide substrate: (a) 2 D and (b) 3 D.	45
Figure 2.5:	SEM image of PQT-12 film on (a) Carbon tape and (b) Polyamide substrate.	46
Figure 2.6:	FTIR plot of the PQT-12 films: before gas exposure and after NH_3 and NO_2 gas exposure.	46
Figure 2.7:	CV plot of the $PQT-12$ films: without gas exposure and with NH_3 and NO_2 gas exposed.	47
Figure 2.8:	<i>IV</i> characteristics of interdigitated MSM sensor under dark and unexposed condition. Inset shows the logarithmic current scale.	48
Figure 2.9:	Stability characteristics of the MSM sensor over 10 days.	48
Figure 2.10:	(a) Assembled layer of PQT-12 film with molecules, carrier holes, and trapped carriers, (b) PQT-12 film after exposure to NH ₃ gas, and (c) PQT-12 film after exposure to the NO ₂ gas.	50
Figure 2.11:	The current-voltage characteristics of the PQT-12 based MSM ammonia sensor without and with a 100 ppm NH ₃ gas exposure conditions.	51
Figure 2.12:	The gas response transient of the sensor at an applied bias of 5 V with NH ₃ gas exposure.	51
Figure 2.13:	Responses at different concentration of NH ₃ gas with linearly fitted.	52
Figure 2.14:	The sensor current-voltage characteristics: before gas exposure and after exposure of 100 ppb and 500 ppb of NO ₂ gas.	53
Figure 2.15:	Transient gas responses of MSM sensor at 5 V with 100 to 500 ppb of NO_2 gas exposure. The transient responses at 100 and 500 ppb of NO_2 gas are in the inset of figure.	55
Figure 2.16:	Linearity plot of the obtained NO ₂ gas response of the sensor.	55

Figure 2.17:	Selectivity plot of the MSM sensor in presence of interfering gases and organic vapours.	56
Figure 2.18:	The current-voltage characteristics of MSM sensor at different relative humidity values.	56
Figure 3.1:	OTFT device structure (cross-sectional view) for pristine PQT-12 and PQT-12/CdSe QDs composite film.	64
Figure 3.2:	TEM topography of (a) CdSe QDs and (b) PQT-12/CdSe QDs composite. The SAED pattern of CdSe QDs in the inset of (a) and PQT-12/CdSe QDs composite in the inset of (b).	65
Figure 3.3:	AFM topography of (a) pristine PQT-12 film and (b) PQT-12/CdSe QDs composite film.	65
Figure 3.4:	Band diagram of (a) Au/PQT-12/Au and (b) Au/PQT-12/CdSe QDs composite/Au under thermal equilibrium.	66
Figure 3.5:	Output characteristics of pristine PQT-12 based OTFT.	67
Figure 3.6:	Output characteristics of PQT-12/CdSe QDs composite based OTFT.	67
Figure 3.7:	Transfer characteristics of pristine PQT-12 and PQT-12/CdSe QDs composite based OTFTs.	69
Figure 3.8:	Transfer plots of the pristine PQT-12 based OTFT sensor with 100 ppm NH ₃ gas.	71
Figure 3.9:	Transfer plots of PQT-12/CdSe QDs composite based OTFT sensor with 100 ppm NH ₃ gas.	71
Figure 3.10:	Transient response of pristine PQT-12 and PQT-12/CdSe QDs based OTFTs at $V_{DS} = V_{GS} =$ -40 V for different NH ₃ gas concentration.	72
Figure 3.11:	Gas responses and fitted line of pristine PQT-12 and PQT-12/CdSe QDs composite based OTFTs at $V_{DS} = V_{GS} = -40~V$ for different NH ₃ gas concentration.	72
Figure 3.12:	Selectivity of PQT-12/CdSe QDs composite based OTFT ammonia gas sensor over common interferences.	73
Figure 4.1:	Camera image of the FTM steps: (a) PQT-12 solution in chloroform and substrates (glass and Si/SiO ₂), (b) Hydrophilic solution of EG and G (1:1), (c) Drop of PQT-12 on liquid surface, (d) PQT-12 film on liquid surface, (e) PQT-12 film on liquid surface after stamping on solid sample, and (f) FTM coated PQT-12 film on glass and Si/SiO ₂ substrates.	79

Figure 4.2:	Energy band diagram between PQT-12 and source/drain of the OTFT.	80
Figure 4.3:	Device structure of the organic thin film transistor along with a block diagram of gas sensing setup.	80
Figure 4.4:	AFM topography of (a) FTM film and (b) Spin-coated film on OTS treated Si/SiO ₂ substrate.	81
Figure 4.5:	Output characteristics of as-fabricated FTM coated OTFT sensor.	82
Figure 4.6:	Output characteristics of the spin-coated OTFT sensor.	82
Figure 4.7:	Transfer characteristics of as-fabricated OTFT sensor based on FTM and spin-coating PQT-12 film.	83
Figure 4.8:	Output characteristics of FTM coated OTFT for different NH_3 gas concentrations measured at $V_{GS}\!=\!$ -50 V.	85
Figure 4.9:	Transfer characteristics of the as-fabricated sensor using FTM and spin coating: without gas exposer and with 80 ppm NH ₃ gas exposer.	85
Figure 4.10:	Variation in field effect mobility and the threshold voltage of FTM coated OTFT at various concentration of NH ₃ gas.	86
Figure 4.11:	Transient response of FTM coated OTFT sensor for various concentration of a NH ₃ gas. The response vs. ammonia gas concentration curve with linearly fitted is in the inset.	87
Figure 4.12:	Ammonia gas interaction mechanism in the as-fabricated OTFT sensor.	90
Figure 5.1:	The cross-sectional device structure of as-fabricated PQT-12 based OTFT.	96
Figure 5.2:	Optical absorbance in spin-coated and FTM coated PQT-12 films. Inset image shows the absorption in parallel and perpendicular aligned FTM film under polarized light.	98
Figure 5.3:	Photoluminance in the spin-coated and FTM coated PQT-12 films.	98
Figure 5.4:	AFM 3D topography images of (a) spin-coated PQT-12 film and (b) FTM Coated PQT-12 film.	99
Figure 5.5:	Output characteristics of the PQT-12 thin film based OTFT under dark condition.	99
Figure 5.6:	Transfer characteristics of the PQT-12 thin film based OTFT under dark condition.	100

Figure 5.7:	Output characteristics of the OTFT under illumination of 200 $\mu W/cm^2$ light intensity at different wavelength.	101
Figure 5.8:	Output characteristics of the OTFT under illumination of 540 nm wavelength at different light intensity.	101
Figure 5.9:	Transfer characteristics of the PQT-12 thin film based OTFT at $V_{\rm DS} =$ -40 V under dark and illumination of 540 nm light with an intensity of 200 $\mu W/cm^2$.	102
Figure 5.10:	Transfer characteristics of the PQT-12 thin film based OTFT at $V_{DS} = -10~V$ under dark and illumination of 540 nm light with an intensity of 5 $\mu W/cm^2$.	103
Figure 5.11:	Responsivity of the PQT-12 thin film based phototransistor under illumination of 5 μ W/cm ² light intensity.	103